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Abstract— This paper considers the use of nr × nt dual-
polarized arrays for improving the mutual information of MIMO
communications. We first develop an elegant model of the multi-
polarized MIMO channel, which allows to account for spatial
correlation and depolarization effects. The major advantage of
the model lies in its analytical expression, whose parameters
have a clear physical meaning. In a second part, we investigate
the ergodic mutual information of multi-polarized schemes, and
derive a condition upon which multi-polarized transmissions offer
a higher capacity than equivalent uni-polarized schemes using
the same number of antennas under the same overall array
dimensions.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) broadband wire-
less communication systems are now becoming part of future
standards. However, many investigations have shown that
antenna spacings of at least half a wavelength at the customer
premise equipment and ten wavelengths at the base station
are typically required for achieving significant MIMO gains.
As as consequence, using arrays of co-located orthogonally-
polarized antennas appears as a space- and cost-effective
alternative [1], [2]. It is intuitively expected that orthogonal
polarizations offer a complete separation between individual
channels, fully canceling both transmit and receive correla-
tions. At the same time, depolarization mechanisms reduce
the receive energy, decreasing the average signal-to-noise ratio
(SNR).

Despite a number of recent studies focusing on spatial
channel models, only a limited number of papers have ad-
dressed the polarization issue [1], [3]–[8], theoretically or ex-
perimentally, mostly because the (de-)coupling effect between
orthogonal polarizations is a complex mechanism.

In this paper, we deal with multi-polarized nr × nt sys-
tems, i.e. both the transmit and receive arrays are made of
nt/2 and nr/2 dual-polarized spatially separated sub-arrays
(with orthogonal polarizations). We compare such schemes
to equivalent uni-polarized systems, keeping the number of
antennas (or RF chains) equal to nt and nr. In Section II, we
review a few analytical models for dual-polarized channels,
and propose a simple model combining the effects of space
and polarization separations. In Section III, we compare uni-
polarized to multi-polarized communications under a mutual
information perspective, and derive simple criteria at high and
arbitrary SNR.

II. MULTI-POLARIZED CHANNEL MODELING

The use of antennas with different polarizations may lead
to power and correlation imbalance between the elements of
the channel matrix. For 2 × 2 channels, the channel matrix
corresponds to a system for which both the transmit and
receive arrays are made of two antennas, co-localized or
not, with orthogonal polarizations. The polarizations at both
ends do not need to be identical. For example, the transmit
polarization scheme may be vertical-horizontal (denoted as
VH), while the received scheme is chosen as slanted

(±45
degrees).

To account for depolarization in analytical representations,
we must consider depolarization caused by the non-ideal
antennas as well as by the scattering medium. Regarding the
first effect, it is evident that the cross-polar discrimination
(XPD) of the antennas is easily included in a physical model
by means of the cross-polar antenna pattern. Analytically,
this can be approximated on the average by a scalar antenna
depolarization factor. The latter is used to build an antenna
depolarization matrix, which pre- or post-multiplies the chan-
nel matrix (similarly to a coupling matrix). In what follows,
we assume that antenna cross-polar coupling is negligible, i.e.
that antenna XPDs at both ends are infinite, and we focus on
Rayleigh channels.

In that case, the channel matrix is denoted as H× and should
account for three mechanisms:

• the spatial correlation arising from the finite spacing
between the antennas (if dual-polarized antennas are co-
located, this correlation is equal to one),

• the gain imbalance between the various co- and cross-
polar components,

• the (de)correlation between all pairs of co- and cross-
polar antennas arising only from the polarization differ-
ence (i.e. for co-located dual-polarized antennas).

A. Dual-Polarized Rayleigh Channels

In a first approach [9], [10], H× is decomposed by isolating
the impact of depolarization on the channel gains, yielding

H× =
∣∣X∣∣� H

′
, (1)

where
∣∣ · ∣∣ is the element-wise absolute value and � is the

Hadamard product. Naturally, X depends on the polarization



scheme. For a slanted-to-slanted scheme (±45 degrees at both
Tx and Rx), it is naturally given by

|X±45◦→±45◦ | =
[

1
√
χ√

χ 1

]
. (2)

where χ is the global real-valued depolarization factor (0 <
χ < 1) for a slanted-to-slanted scheme. What is important
to notice is that H

′
still includes two correlation mechanisms

(space and polarization). Hence, it is generally not equal to an
equivalent uni-polarized transmission matrix H (i.e. with the
same antenna spacings, all polarizations being then identical).
As a result, H

′
is some hybrid matrix, whose covariance

does not explicitly depend on the spatial and polarization
correlations.

In a more general modeling approach, a second model
explicitly separates spacing-related and polarization-related
effects. The separation is thus operated based on the phys-
ical mechanisms (space versus polarization) rather than on
their impact (gain versus correlation). Subsequently, the dual-
polarized Rayleigh channel matrix may be rewritten as

H× = H � X. (3)

In (3), H is modeled as a uni-polarized correlated Rayleigh
channel, while X models both the correlation and power
imbalance impacts of scattering-induced depolarization. It is
important to stress that X only models the power imbalance
and the phase-shifts between the four channels, but does
not contain fading. Normalized fading (i.e. with unit average
power) is entirely modeled by H.

A practical model of H [11] relies on the transmit and
receive correlation matrices, Θt and Θr, and is given by

H = Θ1/2
r HwΘ1/2

t , (4)

where Hw is the classical i.i.d. complex Gaussian matrix.
A relatively general model of the channel matrix for VH-

to-VH downlink transmission [12] is given by

vec
(
XH

VH→VH

)
=


1

√
µχϑ∗

√
χσ∗ √

µδ∗1√
µχϑ µχ

√
µχδ∗2 µ

√
χσ∗

√
χσ

√
µχδ2 χ

√
µχϑ∗√

µδ1 µ
√
χσ

√
µχϑ µ




1/2

vec
(
XH

w

)
, (5)

where

• µ and χ represent respectively the co-polar imbalance and
the scattering XPD, and are assumed to be constant,

• σ and ϑ are the receive and transmit correlation coeffi-
cients (i.e. the correlation coefficients between VV and
HV, HH and HV, VV and VH or HH and VH),

• δ1 and δ2 are the cross-channel correlation coefficients
caused by the use of orthogonal polarizations, i.e. δ1 is
the correlation between the VV and the HH components,
and δ2 is the correlation between the VH and the HV
components (both are typically low, see [8]),

• Xw is a 2×2 matrix whose four elements are independent

circularly symmetric complex exponentials of unit ampli-
tude, ejφk , k = 1, . . . , 4, the angles φk being uniformly
distributed over [0, 2π).

In the following, we assume for simplicity that the correlation
coefficients σ and ϑ between any cross-polar component (VH
or HV) and any co-polar component (VV or HH) are equal
to zero, although they might actually be slightly higher [8].
Furthermore, if δ1 = δ2 = 0, we may also write that H× =∣∣X∣∣� Hw.

For alternative polarization schemes, the Rayleigh channel
matrix is simply obtained by applying adequate rotations, as
outlined in [12].

B. Multi-Polarized Rayleigh Channels

Arbitrary nr×nt schemes (for even values of nt and nr) are
modeled by considering that the transmit (resp. receive) array
is made of nt/2 (resp. nr/2) dual-polarized sub-arrays (each
sub-array is identical and is made of two co-located antennas
with orthogonal polarizations). In that case, the transmission
between any transmit sub-array to any receive sub-array can
be derived from (3) and reads as

H× = hX, (6)

where h is the scalar channel representing the transmission
between the locations of the considered transmit and receive
sub-arrays (remember that each sub-array is made of two co-
located orthogonally-polarized antennas). Hence, the global
channel matrix is represented as

H×,nr×nt
= Hnr/2×nt/2 ⊗ X, (7)

where the covariance of Hnr/2×nt/2 is the spatial covariance
related to the spacing between the sub-arrays, and X is the
2 × 2 dual-polarized matrix modeled by (5). Again, X only
models the power imbalance and the phase-shifts between the
four dual-polarized channels.

To simplify the analysis of such channels, we assume from
now on that µ = 1. In that case, it is relatively straightforward
to compute the eigenvalues of XXH , given by

η1,2 = A±
√
A2 +B, (8)

where

A = 1 + χ+ χ|δ2|
√

1 − |δ2|2 cos
(
φ2 − φ3 + arg{δ2}

)
+

|δ1|
√

1 − |δ1|2 cos
(
φ1 − φ4 + arg{δ1}

)
, (9)

and

B = 2χ|δ2||δ1| cos
(
2φ1 − 2φ2 + arg{δ1} − arg{δ2}

)
+ χ2|δ1|

√
1 − |δ2|2 cos

(
2φ1 − φ2 − φ3 + arg{δ1}

)
+ 2χ|δ2|

√
1 − |δ1|2 cos

(
φ1 − 2φ2 + φ4 − arg{δ2}

)
+ 2χ2

√
1 − |δ2|2

√
1 − |δ1|2 cos

(
φ1 − φ2 − φ3 + φ4

)
− 2|δ1|

√
1 − |δ1|2 cos

(
φ1 − φ4 + arg{δ1}

)− 1 − χ2

− 2χ2|δ2|
√

1 − |δ2| cos
(
φ2 − φ3 + arg{δ2}

)
. (10)



Note that if δ1 = δ2 = 0, the eigenvalues simplify into

η1,2 = 1 + χ±
√

2χ(1 + cosψ), (11)

where ψ = φ1 − φ2 − φ3 + φ4 is a random angle uniformly
distributed over [0, 2π). These eigenvalues are needed in the
later developments.

III. SINGLE VS. MULTIPLE POLARIZATIONS: MUTUAL

INFORMATION ANALYSIS

A. Problem Statement

We want to compare the mutual information (MI) of two
MIMO systems

• using the same numbers of antennas on both sides (nt =
nr = n),

• with uniform linear arrays having the same total length
(denoted by Lt and Lr respectively for the transmit and
receive arrays) in both cases.

The first system is made of uni-polarized arrays with n equi-
spaced antennas whereas for the second system the Tx and Rx
arrays are made of n/2 dual-polarized equi-spaced sub-arrays
(each sub-array is identical and is made of two co-located
antennas with orthogonal polarizations).

Because we use the total length as a constraint, we must
define a spatial correlation model. In what follows, we simply
assume that the antenna correlation is an exponential function
of the spacings (dt and dr) [13], hence it is given by e−dt/∆t

at the Tx side, and e−dr/∆r at the Rx side (∆t and ∆r are
characteristic distances proportional to the spatial coherence
distance at each side). We further assume that the spatial
correlation is separable (i.e. the Kronecker model may be used)
with the Tx and Rx correlation matrices respectively expressed
as,

Θt =




1 e−dt/∆t . . . e−(n−1)dt/∆t

e−dt/∆t 1 . . . e−(n−2)dt/∆t

...
. . .

e−(n−1)dt/∆t e−(n−2)dt/∆t . . . 1




(12)

Θr =




1 e−dr/∆r . . . e−(n−1)dr/∆r

e−dr/∆r 1 . . . e−(n−2)dr/∆r

...
. . .

e−(n−1)dr/∆r e−(n−2)dr/∆r . . . 1




(13)
Combining all assumptions, it can be shown that the deter-

minant of, say, Θt reads as

detΘt =
(

1 − e−2dt/∆t

)n−1

, (14)

=
(

1 − e−
2Lt

(n−1)∆t

)n−1

, (15)

where dt = Lt/(n− 1) is the element spacing for n antennas
over a length Lt. The channel matrices therefore read as

• for the first system,

H = Θ1/2
r HwΘ1/2

t , (16)

• for the second system,

H× = Θ̃1/2
r H̃wΘ̃1/2

t︸ ︷︷ ︸
H̃

⊗X, (17)

Note that Θr, Hw and Θt are n×n matrices, while Θ̃r, H̃w

and Θ̃t are n/2 × n/2. It is also interesting to note that

H×HH
× = H̃H̃H ⊗ XXH (18)

B. High SNR Analysis

The mutual information with identity transmit covariance
reads as

I = log2det

[
In +

ρ

n
HHH

]
, (19)

where ρ is the SNR. At high SNR, a good approximation is
given by

I ≈ log2det

[
ρ

n
HHH

]
. (20)

1) Uni-Polarized Systems: In this case, (20) can be devel-
oped as follows:

I ≈ log2

{(
ρ

n

)n

det

[
HHH

]}
, (21)

= n log2

(
ρ

n

)
+ log2 detΘr + log2 detΘt

+ log2 det

[
HwHH

w

]
(22)

= n log2

(
ρ

n

)
+ (n− 1) log2

[
1 − e−

2Lt
(n−1)∆t

]
+ (n− 1) log2

[
1 − e−

2Lr
(n−1)∆r

]
+ log2 det

[
HwHH

w

]
(23)

The ergodic mutual information is then given by

Ī = E{I} = n log2

(
ρ

n

)
+ (n− 1) log2

[
1 − e−

2Lt
(n−1)∆t

]
+ (n− 1) log2

[
1 − e−

2Lr
(n−1)∆r

]

+
1

log 2

( n∑
k=1

n−k∑
l=1

1
l
− nγ

)
, (24)

where γ ≈ 0.57721566 is Euler’s constant.

2) Multi-Polarized Systems: In the high SNR regime, we
have:

I× ≈ log2

{(
ρ

n

)n

det

[
H×HH

×

]}
, (25)



which yields I×

= n log2

(
ρ

n

)
+
n

2
log2

(
η1η2

)
+ 2 log2 det

[
H̃wH̃H

w

]
+ 2

(
n

2
− 1
)

log2

[
1 − e−

4Lt
(n−2)∆t

]
+ 2

(
n

2
− 1
)

log2

[
1 − e−

4Lr
(n−2)∆r

]
(26)

The ergodic mutual information is then given by

Ī× = E{I×} = n log2

(
ρ

n

)
+
n

2
E
{

log2

(
η1η2

)}

+
2

log 2

( n/2∑
k=1

n/2−k∑
l=1

1
l
− n

2
γ

)

+ 2
(
n

2
− 1
)

log2

[
1 − e−

4Lt
(n−2)∆t

]
+ 2

(
n

2
− 1
)

log2

[
1 − e−

4Lr
(n−2)∆r

]
.(27)

We are now able to calculate the normalized difference
∆Ī/n = (Ī× − Ī)/n assuming that n is large, and that
Lt/∆t = Lr/∆r. In this case, let us define ξ = n∆t/Lt =
n∆r/Lr, which can be thought of as a normalized antenna
density. This yields

∆Ī/n ≈ 1 + 2 log2

[
1 − e−4/ξ

1 − e−2/ξ

]
+

1
2
E
{

log2

(
η1η2

)}

≈ 1 + 2 log2

[
1 − e−4/ξ

1 − e−2/ξ

]
(28)

where the simplification in (28) is derived from the observa-
tion (through simulations) that E

{
log2

(
η1η2

)}
/2 is small,

irrespective of χ, if δ1 and δ2 are sufficiently small (say,
below 0.25, which is usually the case). Interestingly, the
MI difference only depends of ξ. Therefore, dual-polarized
schemes offer higher ergodic MI at high SNR when ∆Ī/n ≥
0, i.e. when ξ ≥ 2.27.

C. Arbitrary SNR Analysis

At arbitrary SNR, the asymptotic mutual information of uni-
polarized spatially correlated channels is well-known, and can
be calculated using the Stieltjes transform [14]. Alternative
methods can also be used (see [13] as an example). We even-
tually obtain that the asymptotic average mutual information
per receive antenna Ī/n is given by

Ī
n

=
1
n

log2 det(In+βtΘr)+
1
n

log2 det(In+βrΘt)− 1
ρ
βtβr,

(29)
where βt and βr are the solutions of

 βt = ρ
nTr
[
ΛΘt

(
In + βrΛΘt

)−1
]

βr = ρ
nTr
[
ΛΘr

(
In + βtΛΘr

)−1
] (30)

and ΛΘt
and ΛΘr

are diagonal matrices containing the
eigenvalues of Θt and Θr. Both correlation matrices have

the form

Θ =




1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 . . . 1


 , (31)

and it is known (see [15, p. 38]) that the eigenvalue distribution
function of Θ converges uniformly (as n→ +∞) to

f(λΘ) =
∞∑

k=0

ρkejkλΘ +
∞∑

k=1

ρke−jkλΘ (32)

=
1

1 − ρejλΘ
+

ρ

1 − ρe−jλΘ
(33)

for λΘ ∈ [0, 2π]. Therefore, the asymptotic per-antenna MI at
fixed SNR is given by limn→+∞ Ī/n

=
∫ 2π

0

log2(1 +
αt

1 − e−
dr
∆r ejλΘ

+
e−

dr
∆r αt

1 − e−
dr
∆r e−jλΘ

)dλΘ

+
∫ 2π

0

log2(1 +
αr

1 − e−
dt
∆t ejλΘ

+
e−

dt
∆t αr

1 − e−
dt
∆t e−jλΘ

)dλΘ

− 1
ρ
αtαr, (34)

where

αt =
4πρe−

dt
∆t

1 +
√

1 + 8e−
dt
∆t πρe−

dr
∆r

and

αr =

√
1 + 8e−

dt
∆t πρe−

dr
∆r − 1

2e−
dt
∆t

are the solutions of


αt = ρ

∫ 2π

0

1

1−e
− dt

∆t ejλΘ

+ e
− dt

∆t

1−e
− dt

∆t e−jλΘ

1 + αr

1−e
− dt

∆t ejλΘ

+ αre
− dt

∆t

1−e
− dt

∆t e−jλΘ

dλΘ

αr = ρ

∫ 2π

0

1

1−e
− dr

∆r ejλΘ

+ e
− dr

∆r

1−e
− dr

∆r e−jλΘ

1 + αt

1−e
− dr

∆r ejλΘ

+ αte
− dr

∆r

1−e
− dr

∆r e−jλΘ

dλΘ.

(35)

For dual-polarized schemes, assume first that the eigen-
values of XXH are fixed. In this case, the n eigenvalues
of H×H×H can be expressed as the product of the n/2
eigenvalues of H̃H̃H by η1 and η2 respectively. Hence, we
may decompose the conditional MI per antenna as

Ī×
n

∣∣∣∣
η1,η2

=

1
2

∫
log2

[
1+ρη1λ

]
pλ(λ)dλ+

1
2

∫
log2

[
1+ρη2λ

]
pλ(λ)dλ,

(36)

where λ designates the eigenvalues of H̃H̃H/n and pλ(λ) is
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Fig. 1. Normalized antenna density ξmin above which dual-polarization
should be favored as a function of the SNR (χ is the scattering XPD, δ1 =
δ2 = 0).

the limit probability density of λ when n→ ∞. The latter can
be quite easily evaluated, e.g. as described in [13]. When η1
and η2 are random, the quantities ρη1 and ρη2 can be thought
of as randomly varying effective SNRs. The randomness is
represented by the four phase-shifts φk, k = 1, . . . , 4 in (9)
and (10), which are uniformly distributed over [0, 2π). The
ergodic MI per antenna is finally given by

Ī×
n

=
1

32π4

∫ 2π

0

. . .

∫ 2π

0
2∑

k=1

{∫
log2

[
1 + ρηkλ

]
pλ(λ) dλ

}
dφ1 dφ2 dφ3 dφ4

(37)

Simulation results are illustrated in Figure 1. The minimum
normalized antenna density ξmin for which ∆Ī/n ≥ 0 is plot-
ted for various values of χ and δ1 = δ2 = 0. ξmin decreases as
the SNR increases, and reaches its asymptotic value of 2.27
at high SNR. The impact of χ is also pretty intuitive: for
small XPD values, uni-polarized schemes remain attractive for
larger densities, as the dual-polarized transmissions are heavily
penalized by the energy loss, especially at low SNR levels. At
low SNR, it is indeed well known that the mutual information
is essentially linked to the channel energy [9].

IV. CONCLUSIONS

This paper has presented a simple model of multi-polarized
MIMO transmissions in Rayleigh fading channels, which
combines spatial correlation effects and polarization-related
mechanisms. The model has then been exploited to analyze
the mutual information offered by MIMO schemes using either
single, or multiple polarizations. In the high SNR regime, a
closed-form criterion has been derived, which depends on a
normalized antenna density. The latter is the product of the
array antenna density by the spatial coherence distance of
the channel. At arbitrary SNR levels, we have proposed a

method to estimate the mutual information, and shown that for
small depolarization, uni-polarized schemes remain attractive
for large normalized densities, especially in the low SNR
regime.
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