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ABSTRACT

In this paper, we consider the blind multichannel dereverberation
problem for a single source. The multichannel reverberation im-
pulse response is assumed to be stationary enough to allow esti-
mation of the correlations it induces from the received signals. It
is well-known that a single-input multi-output (SIMO) filter can
be equalized blindly by applying multichannel linear prediction
(LP) to its output when the input is white. When the input is col-
ored, the multichannel linear prediction will both equalize the
reverberation filter and whiten the source. We exploit the chan-
nel spatial diversity to estimate the source correlation structure,
which can hence be used to determine a source whitening filter.
Multichannel linear prediction is then applied to the sensor sig-
nals filtered by the source whitening filter, to obtain source dere-
verberation. We exploit the input signal time diversity to reduce
the equalization noise. Due to the speech signal non-stationarity,
averaging equalizers (which are computed on different frames)
increases the dereverberation accuracy. Simulation results reveal
that an iterated equalization scheme (based on frame-by-frame
analysis) increases the dereverberation performance, and leads
to better auditive results.

1. INTRODUCTION

The quality of speech captured in real-world environments is in-
variably degraded by acoustic interference. This interference can
be broadly classified into two distinct categories: additive and
convolutive. The convolutive interference (commonly referred
to as reverberation) is due to sound wave reflections from sur-
rounding walls and objects. It leads to a modification of the
speech signal characteristics. Therefore, it constitutes a major
problem in speech recognition, speaker verification, and general
auditive comfort in "hands-free” telephony applications. Blind
dereverberation is the process of removing the effect of rever-
beration from an observed reverberant signal. Reducing the dis-
tortion caused by reverberation is a difficult blind deconvolution
problem, due to the broadband nature of speech and the length
of the equivalent impulse response from the speaker’s mouth to
the microphone.

A simple multi-microphone speech dereverberation system is the
delay-and-sum beamfomer [1, 2]. The dereverberation is per-
formed by a simple averaging over the sensor outputs, delayed
to focus in the direction of the desired speaker. Note that beam-
forming exploits only a partial spatial information (relative de-
lays), and ignores the input signal characteristics.
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A first class of speech dereverberation techniques suggests ex-
ploiting the statistical and spectral models of the speech signal
to improve the enhancement accuracy. In [3], the authors seek
to find a blind deconvolution filter that makes the LP residual
as non-Gaussian as possible (using a kurtosis-based metric). In
this way, they exploit the a priori knowledge that the signal to
be recovered (speech) is super-Gaussian. They show that the
proposed technique achieves significant improvement in perfor-
mance over the delay-and-sum beamformer. A generic approach
is proposed in [4] exploiting simultaneously the non-gaussianity,
non-whiteness, and non-stationarity of the speech signal. On
the other hand, source production-based techniques are also pro-
posed for blind dereverberation. The source model describes
speech signal in terms of an excitation sequence exiting a time-
varying all-pole filter. Dereverberation is achieved by attenuat-
ing the peaks in the excitation sequence (due to room reverbera-
tion), then synthesizing the enhanced speech using the enhanced
LP residual on the all-pole filter (estimated from the reverberant
speech). It is clear that an important assumption is made; that
the LP coefficients are unaffected by reverberation. In [5], the
authors show that spatial averaging of the LP coefficients (esti-
mated on each microphone) is required to improve the accuracy
of this type of algorithms. They also demonstrate in [6] that
LP coefficients obtained from spatially averaged multichannel
speech signals achieve equally satisfactory results.

Another way to address the problem is to consider the whole
Acoustic Impulse Response (AIR). Matched Filter (MF) is pro-
posed to equalize the room response [7]. In such a way, one
increases the dereverberation SNR (compared to the Delay-and-
Sum beamformer). However, MF equalization introduces a large
equalization delay (of about the AIR length), and produces a
pre-echo that is annoying in several applications (speech recog-
nition...). On the other hand, SIMO channel can be perfectly
equalized using multiple FIR filters (transverse filters) [8]. Let
us consider a clean speech signal, s(n), produced in a reverber-
ant room. The reverberant speech signal observed on M distinct
microphones can be written as:

y(k) = H(q)s(k) @
where y(k) = [y1(k)---yam(k)]" is the reverberant speech
signal, H(q) = [Hi(q)--- Hu(q)]" = Y75 " hig™" is the
SIMO channel transfer function, Ly, is the channel length, and
g~ ' is the one sample time delay operator. According to the
Bézout’s identity, if the channels Hi (q) - - - Har (q) does not have

common zeros, then 3F(q) = [Fi(q) - - - Fam(q)] such that:

F(QH(q) = Y Fu(9)Hu(g) = 1 O]

m=1



If H(q) is known (or can be estimated), the coefficients of £}, (q)
can be computed by the well-known rules of matrix algebra. The
AIR blind estimation should face the channel/speech identifia-
bility problem. In fact, for any scalar filter a(q), (H(q)/a(q),
a(q)s(k)) is also an acceptable solution of (1).

In [9], Huang et al. focus on the single-source two-microphone
system. They notice that the AIR can be estimated by minimiz-
ing the mean squared value of

e(k) = Ha(q)y1 (k) + Hi(q)ya(k) ©)

They show that the solution is obtained through the eigenvalue
decomposition of the autocorrelation matrix of the observed sig-
nal. Generalization to an arbitrary channel number is presented
in [10]. If the channel length is known, the AIR is well esti-
mated. However for acoustic channels, the true impulse response
length is generally unknown, or/and not defined. Therefore, it is
frequently overestimated (let us denote by Ly, the overestimated
length). In such a case, for any scalar filter a(q)/deg(a(q)) <

(L — L) , a(q)H(q) is also a solution of (3)

a(q)H2(q)y1 (k) + a(q) Hi(q)y2(k)
a(q) (H2(q)yi(k) + Hi(q)y2(k)) =0

Hikichi et al. propose solve the identification ambiguities by
post-processing the estimated channel, in order to estimate and
compensate the common factor «(g) [11]. The common factor is
extracted as a characteristic polynomial of the two-channel lin-
ear prediction matrix.

Another way to deal with identification ambiguities by exploit-
ing a priori information on source spectrum. If the source is
white, the channel can be equalized using multi-channels linear
prediction [12]. For speech input, we take advantage of the spa-
tial diversity to estimate the speech correlation; and we propose
a tree-stage dereverberation procedure exploiting spatial, tempo-
ral, and spectral diversities [13, 14].

This paper is organized as follows. In section 2, the tree-stages
speech dereverberation procedure will be reviewed. Next, multi-
frame speech dereverberation will be investigated in section 3.

e(k) =

2. SPEECH DEREVERBERATION PROCEDURE

We have proposed in [14] a processing scheme that works with
three cascades of stages:

e First, the colored non-stationary speech signal is trans-
formed into an iid-like signal (by taking advantage of the
spatial and temporal diversities).

e Then, a blind channel predictor is computed based on pre-
processed reverberant speech.

e Finally, speech signal dereverberation is performed using
a zero-forcing equalizer based on the predictor computed
in the previous step.

2.1. The source whitening stage

From the Statistical Room Acoustics (SRA) theory, one can show
that for frequencies f > fscn = 20004/Ts0/V, the average re-
verberation spectrum is flat [15], i.e.,

E {‘H (exp%”f) ‘2} = 17;5 4)

where E {} is the spatial expectation, 3 is the average wall ab-
sorption coefficients, A is the total wall surface area, f.; is the
”Schroeder frequency”, Tgo is the reverberation time and V' is
the room volume.

In [13], simulations shows that the superposition of the SIMO
sub-channels spectrums tends to be flat as the number of micro-
phones increase. Then, the superposition of the spectra of the
received signals can estimate (up to a multiplicative factor) the
source spectrum. As this common part is due to the anechoic
speech signal, it can be modeled as an AR process. The com-
mon AR coefficients can be estimated as those that minimize the
sum of the squares of the prediction errors, averaged over the
microphones (which leads to the normal equations):

M oo M oo !
=3 =35 ) - amn—n| @
k=1n=0 k=1n=0 Jj=1

Once the source spetrum is estimated, the source whitened re-
verberant signal is computed as:

x(k) = a(q)y(k) ~ H(q)5(k) (6)

where x(k) = [z1(k) - 2 (k)]) %, alg) = 1+ ' ajq 7 is
the linear prediction error filter of the source signai (performed
in the previous stage), 5(k) is the source prediction error.

A periodic input signal (which is perfectly predictible) may lead
to identifiability problem for the SIMO channel: the predictor
will have tendency to kill the signal rather than to whiten it.
To alleviate this problem, we propose taking advantage from
the signal non-stationarity (that can be interpreted as a form of
temporal diversity). We suggest considering the totality of the
speech signal in order to calculate the AR coefficients (which
estimates the averaged speech spectrum). It is important to em-
phasize that non-stationarity of the source is irrelevant as long as
the source correlations are estimated with the same temporal av-
eraging as for the multichannel linear prediction. The temporal
diversity becomes a byproduct of this requirement.

2.2. Themultichannel prediction stage

In the previous section, we have shown that the channel spatial
diversity and the speech non-stationarity can be exploited to es-
timate the source correlation structure, which can hence be used
to compute a source whitening filter.

Consider now the problem of predicting x(k) from the L, latest
observations X (k—1) = [x"(k—1)---x"(k—L,)]". The
prediction error is given by:

LP
%(k) =x(k) + Y A, ix(k—i) = AL, Xp4a (k) (7)

where Ap, = [Im AL,1 -+ AL,,L,], AL, are the linear
prediction filter coefficient matrices that should be determined
to minimize the mean squared value of %X(k), L, denotes the
prediction order. Minimizing the energy of the prediction error
leads to the system of equations (for large enough L [17]):

Sxx(2) = AL, (2)Sxx(2) A} (2) = hoSss(2)ho™ (8)

where - Szz(z), Swz(2), and Sss(z) denote respectively the
spectrum of the reverberant signal prediction error, reverberant
signal, and source prediction error signals.



-A(z) = Efzpo Ar,iz~" denotes the prediction error
filter, computed by solving the well-known normal equations.
At (2) is the matched filter associated to A(z).

- ho = H(+o00) represents the first vector coefficient of
the SIMO channel filter, which can be estimated (up to a scalar)
as the eigenvector corresponding to the maximum eigenvalue of
the LP residual correlation matrix rzz(0).

A relevant issue with the linear prediction approach is the align-
ment of the received signals on the various microphones(delay
compensation for direct path). This leads to an increase in the
prediction performance, and allows the use of shorter predic-
tor. Contrarily to the Delay-&-Sum beamformer, we would align
first paths (not the most powerful paths). So that, correlation
based techniques do not give always good results. In [14], we
have proposed an iterative approach based on the analysis of the
covariance matrix of the multi-channel prediction error. And, we
have showed that the proposed scheme gives satisfactory results.

2.3. Thedereverberation stage

Based on the predictor performed in the previous stage, the spa-

tiotemporal zero-forcing equalizer (called Delay-and-Predict equal-

izer) can be computed as:

Fper(g) = hi' AL, (¢)D(q) 9)

where D(q) is a diagonal matrix of delays aligning the direct
path contributions in the M reverberant signal.
Thus, the dereverberated speech signal can be computed as:

3(k) = Fper(q)y(k) = ho A, (9)y (k) (10)

Note that the delays in D(q) are the same as in the delay-and-
sum beamformer, in which ho ™’ AL, (¢) gets replaced by [1 - - - 1]

3. MULTI-FRAME SPEECH DEREVERBERATION

The residual error in the delay-&-predict equalization can be
broadly classified into two distinct categories: estimation and
modelling errors. The estimation error is due to the use of the
sampling covariance matrices. Whereas, the modelling error is
due to the assumptions on the channel and the input signal struc-
tures. In fact, we suppose that we have enough spatial diversity
such as the multichannel response becomes an all-pass filter; and
that the averaged speech signal is an AR process with a given or-
der. Of course, in practice this will never be the case; and some
of the input signal correlations will remain on the output of the
”source whitening stage”. In general, the more data we have,
the best we estimate the channel correlation; and the lower the
estimation error will be. However, it has a very little influence
on the error modelling.

On the other hand, the temporal diversity of the input signal (the
speech signal non-stationarity) is used just to avoid singulari-
ties due to the prediction of the voiced frames. Therefore, a
frame-by-frame based technique can be proposed to solve the
problem. The received signal is first segmented into P frames
(with or without overlapping). The frame length should be suf-
ficient to have a good estimation of the channel correlations. At
each frame, a channel equaliser is computed using the delay-&-
predict technique. The equalized signal computed on the basis
of p** frame correlations is

2Pk =P xs(k) p=1:P (11)

where A®) = £®) 4« h is the equalized channel. In such a way,
the M-SIMO channel equalization is transformed on P-SIMO
channel equalization; with the advantage that ®) is less rever-
berant then the acoustic impulse responses.

The reverberation in 2®) is mainly function of remaining source
correlations in the whitened signal. Due to the speech non-
stationarity, the average speech spectrum (next, the reverberation
in ﬁ@)) at each frame are not correlated. Thus, this reverbera-
tion can be reduced by averaging the computed equalizers (cor-
responding to delay-&-sum Beamforming on 2 (k)).

The most serious drawbacks of such approach are related to the
process of segmentation of the received signal y(k): a finite
length segment % (k) can only approximately be represented
by the convolution of h(k) with some clean-speech segment
s® (k) [19]. In fact, each segment of the reverberant speech
can be written as:

y P (k) = s (k) * h(k) + 0@ (k) — u (k) (12)

where v’ (k) is the "extra” echo which includes from the pre-
vious segment; and (k) is the “missing” tail of echo of the
speech of the current segment. As fp. p is a zero-forcing equal-
izer, it may amplify the additive noise e (k) = v® (k) —
u® (k); and it can reduce the dereverberation accuracy.

To illustrate this problem, we consider a rectangular room with
dimensions L, = 8m, L, = 10m, and L. = 4m; and with
wall reflection coefficients p, = py = p. = 0.9 (a reverber-
ant room). A speech signal with duration of 8.8s, and sampled
at 8 kHz is used as the original source signal. The reverberant
speech signal is observed on a microphone array formed by 8
distinct microphones (spaced by 0.5m). A computer implemen-
tation (graciously provided by Geert Rombouts from K.U. Leu-
ven) of the image method as described in [16] is used to generate
synthetic room impulse response for the microphones.

As an evaluation criterion, we consider the Direct to Reverberant
energy Ratio (DRR), defined as:

_ Yoo hi(n)
DRR = 10log,, {72 21 n) dB (13)

where h(n) = hxf(n) denotes the equalized channel, 7 is
the number of samples to include as the direct component, and
L = Tsofs is the length of the impulse response (Z&o is the re-
verberation time, and f; is the sampling frequency).

The table 1 gives the equalization DRR of the Delay-&-Sum
beamformer, the classic Delay-&-Predict equalizer, and the win-
dowed Delay-&-Predict equalizer (using a rectangular window,
with an overlap of 50%). We consider the cases of 2, 4, and 8
microphones. We take 7 = 10ms.

[ [ vz [ wea [ wes ]
D&S —3.81 0.8 1.94
classicD &P 7.43 9.34 10.71
windowed D & P 5.5 9.5 10.8

Table 1: Equalization DRR of the Delay-&-Sum beamformer,
the classic and windowed Delay-&-Predict equalizers.



We notice that in all cases the Delay-&-Predict equalization out-
performs the Delay-&-Sum beamforming, and that, due to the
windowing effect, the frame-by-frame approach does not usu-
ally improve the equalization DRR.

In [18], the authors face the same problem when they estimate
the channel cepstrum coefficients. They suggest using a smooth-
ing window w(k) to segment the speech signal. The goal of the
windowing would be to reduce the error components by smoothly
tapering the segment boundary. If w(k) is sufficiently smooth
(with respect to the channel), the received signal can be ex-
pressed approximately as:

y(p)(k)

([
—_~
w  »
—~
L

The effects of time-domain windowing are investigated in [19].
Windowing should be chosen to reduce the error component in
(12); while at the same time not introducing distorsion into the
computed equalizer.

As in [19], we consider rectangular, Hamming, and exponential
windows as candidates. The corresponding equalization DRR
are given in table 2.

[ M=2 M=4 M=8 ||
Rectangular window 6.5 9.5 10.48
Hamming window 7.1 10.16 12.1
Exponential window 8 10.1 11.9

Table 2: Equalization DRR of the Delay-&-Predict equalizer us-
ing Rectangular, Hamming, and Exponential windows.

As expected, we see that Hamming and Exponential windows
outperform the rectangular one. On the other hand, the expo-
nential window surpasses the Hamming window only for a small
number of microphones. In fact, exponential windows do not de-
stroy the convolutional combination between the signal and the
channel, i.e., \*y(k) = A\*s(k) = A¥h(k). On the other hand,
Hamming window is tailor-made for reduction of truncation er-
ror, but its effect upon the convolutional combination of signal is
not known. As the number of microphones increases, the chan-
nel will be better equalized, and 1(®) tends to the Dirac pulse.
Hence, the effect of the Hamming window on the convolutional
combination is less perceptible.

Another way to address the problem is the use of an iterated
dereverberation procedure:

1. an equaliser is computed (using the classic, or the win-
dowed D-&-P.

2. using this equaliser, we cancel the error in (12); and we
recomputed the D-&-P equaliser.

3. we iterate until convergence

The table 3 gives the equalization DRR of Iterated Delay-&-
Predict equalizer. Simulation results reveal that this iterated equal-
ization scheme (based on frame-by-frame analysis) increases the
dereverberation performance, and leads to better auditive results.

I [ M=2 [ m=4 | m=8 |
[ Merated D&P | 85 | 113 | 15 |

Table 3: Equalization DRR of the Iterated Delay-&-Predict
equalizer.
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