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1. ABSTRACT

In this paper, a new set of techniques exploiting N-best
hypotheses in supervised and unsupervised adaptation are
presented. These techniques combine statistics extracted from
the N-best hypotheses with a weight derived from a likelihood
ratio confidence measure. In the case of supervised adaptation
the knowledge of the correct string is used to perform N-best
based corrective adaptation. Experiments run for continuous
letter recognition recorded in a car environment show that
weighting N-best sequences by a likelihood ratio confidence
measure provides only marginal improvement as compared to
1-best unsupervised adaptation and N-best unsupervised
adaptation with equal weighting. However, an N-best based
supervised corrective adaptation method weighting correct
letters positively and incorrect letters negatively, resulted in a
13% decrease of the error rate as compared with supervised
adaptation. The largest improvement was obtained for non-
native speakers.

2. INTRODUCTION

Adaptation techniques can be classified into two main classes:
1) supervised and 2) unsupervised. While supervised techniques
are based on the knowledge of the adaptation data
transcriptions, unsupervised techniques determine the
transcriptions of the adaptation data automatically using the
best models available and consequently provide often limited
improvements as compared to supervised techniques. Given a
small amount of adaptation data, one of the common challenges
of supervised adaptation is to provide adapted models which
accurately match a user’s speaking characteristics and are
discriminative. On the other hand unsupervised adaptation has
to deal with inaccuracy of the transcriptions and the selection of
reliable information to perform adaptation. For both sets of
techniques it is important to adjust the adaptation procedure to
the amount of adaptation data available.

Among the techniques available to perform adaptation,
transformation-based adaptation (e.g. Maximum Likelihood
Linear Regression or MLLR [1]) and Bayesian techniques such
as Maximum A Posteriori (MAP) [2] adaptation are most
popular. While transformation-based adaptation provides a
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solution for dealing with unseen models, Bayesian adaptation
uses a priori information from speaker independent models.
Bayesian techniques are particularly useful in dealing with
problems posed by sparse data. In practical applications,
depending on the amount of adaptation data available,
transformation-based, Bayesian techniques or a combination of
both may be chosen.

An N-best paradigm has been proposed in [3] for unsupervised
adaptation. This method jointly optimizes control parameter
sets and recognized word sequences. It was shown to be
effective for "difficult” speakers with poor recognition rates. In
their work Matsui and Furui showed that utterance verification
can be useful to reduce the amount of calculation. In [4] the log
likelihood ratio between the first and second candidate was used
to select only reliable recognition results in an unsupervised
adaptation scheme. This was aimed at improving the training
efficiency.

In this paper, we present a new set of techniques exploiting N-
best hypotheses in supervised and unsupervised adaptation.
First, we clarify the trade-offs between transformation-based
and Bayesian adaptation in the context of unsupervised
adaptation when recognition accuracy on the adaptation data
varies. Then, we propose a weighting scheme of N-best strings
for unsupervised adaptation where weights are assigned to the
N-best hypotheses according to a likelihood ratio confidence
measure. Finally, we present a corrective adaptation procedure
weighting incorrect models by a log likelihood ratio between
the current and the best hypothesis and show that corrective
adaptation outperforms supervised adaptation. Results are
presented for both native and non-native speakers in the context
of a continuous letter recognition task in cars.

3. UNSUPERVISED ADAPTATION USING
MLLR AND MAP
3.1 Introduction to MLLR and MAP

MLLR, when used for adapting the emitting distribution mean
vectors of the Hidden Markov Models (HMMs) can be written
as an affine transformation :

i =Wp+b,



where 1 and p are respectively the adapted and original mean
vector; W and b are the transformation matrix and bias derived
to optimize the maximum likelihood through the optimization
of Baum’s “auxiliary function”, Q [5]:

QW 1) = L(O, 6|p)log(L(O, 6{1)),

6 [ states

where L(O, 8|p) stands for the likelihood of the observation
O, and the sequences of states, 6, given the specific mean
vector p. In the following experiments involving MLLR one
global matrix was used.

On the other hand, the MAP approach maximizes the
a posteriori probability:

Hmap = argmix f(u0),
which for adaptation of the means reduces to:
Ty + Zy(t)ot
T

Hvap = ————
T+ v()
t
where T is a measure of confidence on the prior (t = 15 inour
experiments) and y is the observed posterior probability of the
observation.

The two techniques can be serialized, e.g. [6], i.e. one can apply
MAP after MLLR. Doing so, it is possible to take advantage of
the different properties of the two techniques.

3.2 Database

All the experiments conducted in this paper were done on
continuous spelled names. The training data used to build the
HMMs consists of telephone speech (1222 calls) extracted from
the spelled name part of the OGI database [7]. The test data was
recorded in two medium size cars with a Knowles 3310 close
talking microphone. 10 speakers (6 native speakers of
American English, comprised of 4 males and 2 females and 4
non-native speakers comprised of one female Japanese and 3
males, one French, one Italian and one Chinese) uttered 45
spelled street names at 60 mph leading to an overall test set of
3951 letters with an average of 8.8 letters per street name.

As adaptation data we used one repetition of the alphabet
produced by each speaker in a continuous mode and in five
sentences (“abcdef”, “ghijkI”, “mnopqgr”, “stuvw”, and “xyz”)
when the car was parked. The data recorded in the two cars was
sampled at 8kHz. We wused Perceptually-based Linear
Prediction (PLP) cepstral parameters (18 coefficients
comprised of 8 static cepstral coefficients + energy and their
delta) whose trajectories were bandpass filtered.

3.3 Experiments and Results

Unsupervised adaptation is difficult because the transcriptions
used in the adaptation process can be unreliable. To assess how
this factor affects both MLLR and MAP, we ran experiments
where recognition accuracy on the adaptation data varied. Our
speaker-independent HMMs led to an average of 60%
recognition accuracy on the adaptation data. To vary the
recognition accuracy on the adaptation data we randomly
selected one out of the five adaptation sentences and corrected
its transcription, leading to 70% unit accuracy. Iterating the
process led to 78%, 85%, 94% and 100% recognition accuracy
on the adaptation data.
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Figure 1: Sensitivity of MAP and MLLR techniques
to recognition accuracy on the adaptation data for
both native and non-native speakers

Figure 1. shows how MLLR, MAP and MLLR followed by
MAP perform when the recognition accuracy on the adaptation
data varies in the case of both native and non-native speakers. It
can be seen that in the case of native speakers MLLR is less
sensitive to the recognition accuracy on the adaptation data than
MAP. For non-native speakers this tendency is not present. This
may be due to errors which occur sometimes between two
letters not belonging to the same confusable set. In this case the
estimation of the MLLR matrix may not be reliable. As EM-
based algorithms [8], MAP and MLLR both gather statistics for
each mean. While MLLR further combines them to estimate
another set of parameters shared by several means, MAP uses
statistics directly to update the means. Therefore, in MLLR, the
reliability of statistics is averaged into the estimation of the
transformation matrix, whereas in MAP, the granularity is
maximal and each parameter is associated to its seen statistics.
It is thus clear that MLLR is best suited for unsupervised
adaptation because the parameters are estimated globally
combining all statistics, reliable and not reliable altogether.
MAP, in contrast, updates model parameters on a per mean
basis and hence appears as a good candidate for discriminative
schemes.




4. UNSUPERVISED ADAPTATION
USING N-BEST DECODING AND
LIKELIHOOD RATIO WEIGHTING

The application of the EM-algorithm for supervised adaptation
is well-known. For unsupervised adaptation, the mathematical
solution is clear: we need to take the expectation over all
possible word sequences in the grammar. This being in practice
intractable, we only need to take into account the N-best
hypotheses, based on the assumption that they accumulate most
of the probability mass. We subsequently describe three types
of approximations of the estimation. These approximations
make use of the max operator instead of the expectation. The
simplest unsupervised algorithm consists of using decoded
labels as true labels; we call it 1-best unsupervised adaptation:

NE argmax max f(O, 6, w|A),

A w, 6
where f(.) is the likelihood function, 6 is the states sequence
and w is the word sequence.

Another possibility is to maximize the likelihood of all N-Best
strings as follows:

A= f(0,8,W|\).
argmix %mgx (0, 6,w|A)

We will refer to this technique as equal-weighting. Yet the
optimal solution is

A= argmix %q)wmaxef(o, 8, w[A),

where ¢, is the weight applied to the word sequence w.

Each N-best string w should be weighted according to its
probability. Since we use non-normalized measures of
likelihood, a straightforward approximation of the probability is
given by:

q)n = exp([Ln_ Ll]n)x

where L, is the log likelihood of the n-th best hypothesis, ¢, is
by definition inferior or equal to 1 and n is a heuristic
parameter that represents prior confidence on the decoded
labels. When n — o, the best hypothesis is expected to be
correct and a 1-best adaptation is performed. If n = 0, then an
equal weighting is applied to N-best hypotheses. Figure 2.
shows sample weights for different values of the n parameter
versus the rank of the word sequence n.

4.1 Experiments and Results

We ran experiments with a value of N equal to 5 and 3 iterations
of the adaptation procedure. Table 1. shows how
weighting N-best hypotheses by an exponential weight
compares to the 1-best case and the N-best case with equal
weighting. Table 1. reveals that exponential weighting provides

only a marginal improvement. However, more experimentation
is necessary to find the best weighting scheme. One possible
explanation for the results obtained could be that there are too
many similar strings on the N-best hypotheses and an N-best
paradigm has a hard time to provide a significant difference.
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Figure 2: Exponential weighting versus the rank of
the word sequence n

MLLR->MAP Non
- r] -

adaptation Native Nat. Total
I-best 1 78.9% [64.7% [73.2%
N-best & exp weights 0.1 |79.0% |64.2% [73.1%
1l 0.05 |79.4% (64.8% |73.5%
1 0.01 |79.7% |(65.2% |73.9%
N-best & Eq. weights |0 79.6% [65.0% |73.8%

Table 1: Unsupervised adaptation using N-best
decoding (in unit accuracy)

5. SUPERVISED ADAPTATION USING
CORRECTIVE N-BEST DECODING

When dealing with supervised adaptation, as the correct label
sequence is known, the N-best information can be used in a
discriminative way. During preliminary experiments we found
that using the correct segmentation is crucial to adaptation and
that the segmentation can easily vary between the N-best
solutions. This led us to investigate corrective adaptation based
on the segmentation produced by a forced alignment of the
correct label sequence. In other words, for each segment
produced by the correct segmentation, an N-best pass is done to
collect the N most probable labels. These N-best labels are then
used to adapt the model, either with a positive or a negative
weight according to the following rule:



K , if correct label

—pe([L"_le , otherwise,

where K represents the weight given to the supervised forced
alignment. It is independent of n because we want to recover
the correct label the same way whatever its rank is. L, is the
likelihood of the n™ best answer. p and n control the amount
of backoff mis-recognized letters should receive. Ensuring that
n>0 and K > (N —1)p guarantees that for a given segment,
the sum of all weights will be positive for MLLR and MAP,
assuming the correct label is in the N-best. Typical values for
these parametersare: Kk = 2, n = 0.01 and p = 0.3 .

As an iterative procedure over the adaptation data can be used
to further improve the models, the global training protocol can
then be summarized as follows:

For each iteration :
For each recorded sentence of the adaptation set,

Make a forced alignment according to the
expected labeling of the sentence.

For each aligned segment of the sentences,
use an N-best decoder to get the N-best
transcriptions and their corresponding
likelihood (Ly, Ly, ..., Ly).

Accumulate the adaptation of all the N-best
transcriptions, according to their weights
¢, n=1,..,N.

Apply the adaptation.

5.1 Experiments and Results.

Table 2. shows a comparison between letter recognition
accuracy obtained with speaker-independent models after
unsupervised 1-best adaptation, supervised 1-best adaptation
and corrective N-best adaptation. Corrective N-best adaptation
decreases the error rate by 13% as compared to supervised
adaptation. The improvement is larger for difficult speakers
such as non-native speakers than for native American speakers.

Native Non Nat. | Total
Spkr. Tnd. 75.6% 64.3% 71.1%
Unsupervised (n = 0.01) |79.7% 65.2% 73.9%
Supervised 1-best 79.5% 69.0% 75.3%
Corrective 5-best 81.7% 73.7% 78.5%

Table 2: Supervised adaptation using corrective
N-best decoding (in unit accuracy)

In comparison with other discriminative methods, this
corrective adaptation has several advantages. It operates on a

small amount of data, is computationally inexpensive and is
easy to implement. Moreover it carries out discrimination
specific to speaker and in practice, convergence is not an issue.
Note that anti-observations (those associated with a negative
weight) can be regarded as additional observation that
contribute to obtaining more reliable statistics.

6. CONCLUSIONS

In this paper, we presented new techniques for supervised and
unsupervised adaptation. These techniques combine statistics
extracted from the N-best hypotheses with a weight derived
from a likelihood ratio confidence measure. While our
experiments revealed that weighting N-best hypotheses in
unsupervised adaption did not bring much improvement in the
context of continuous letter recognition, corrective supervised
adapation decreases the error rate by more than 13%. These
techniques need to be further explored to derive optimal
weighting schemes. They also need to be applied to other tasks
where there is less confusability between words of the lexicon.
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