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1 Abstract

This paper discusses and optimizes an HMM/GMM based User-Customized Password Speaker Verifi-

cation (UCP-SV) system. Unlike text-dependent speaker verification, in UCP-SV systems, customers

can choose their own passwords with no lexical constraints. The password has to be pronounced a few

times during the enrollment step to create a customer dependent model. Although potentially more

“user-friendly”, such systems are less understood and actually exhibit several practical issues, includ-

ing automatic HMM inference, speaker adaptation, and efficient likelihood normalization. In our case,

HMM inference (HMM topology) is performed using hybrid HMM/MLP systems, while the parameters

of the inferred model, as well as their adaptation, will use GMMs. However, the evaluation of a UCP-SV

baseline system shows that the background model used for likelihood normalization is the main diffi-

culty. Therefore, to circumvent this problem, the main contribution of the paper is to investigate the

use of multiple reference models for customer acoustic modeling and multiple background models for

likelihood normalization. In this framework, several scoring techniques are investigated, such as Dynamic

Model Selection (DMS) and fusion techniques. Results on two different experimental protocols show

that an appropriate selection criteria for customer and background models can improve significantly the

UCP-SV performance, making the UCP-SV system quite competitive with a text-dependent SV system.

Finally, as customers’ passwords are short, a comparative experiment using the conventional GMM-UBM

text-independent approach is also conducted.

2 Introduction

Speaker Verification (SV) is the task of automatically accepting or rejecting a claimed identity based

on the voice characteristics of a speaker (Furui, 1994). Speaker verification can be divided into text-

dependent and text-independent. In Text-Dependent Speaker Verification (TD-SV), the text is con-

strained to be a known phrase, which can be fixed or randomly prompted from a small vocabulary

(usually digits) (DeVeth and Bourlard, 1995). Hence, the system has a priori knowledge about the text.

In Text-Independent Speaker Verification (TI-SV), there is no constraint on the text during enrollment

and verification steps. Test utterances can be completely different from enrollment utterances. Conse-

quently, TI-SV systems need a large and rich training data to model properly the characteristics of the

speaker’s voice. Because in TD-SV systems, the speaker’s model encodes both the lexical properties and
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the speaker’s voice characteristics, these systems usually achieve better performance compared to TI-SV

systems. However, because user has no freedom to choose the predefined password, TD-SV systems are

less user-friendly and not fully appreciated by users.

This paper studies another kind of TD-SV systems which are more user-friendly. That is customer can

choose easily his/her own password without any lexical constraints. The password has to be pronounced

a few times during a short enrollment step to create a customer specific model that will be subsequently

used for verification. Such a system is referred to as User-Customized Password Speaker Verification

(UCP-SV). Given that the password is chosen from an unconstrained lexicon, it makes it more difficult

for an impostor to guess the customer’s password. The main assumption in a UCP-SV system is that no

a priori knowledge about the password is available to the system. The goal of this paper is to study how

does this assumption affect the performance of the UCP-SV compared to a TD-SV.

However, UCP-SV systems present new challenges. First, the system has to automatically infer

the topology of the Hidden Markov Model (HMM) associated with the password simply based on a few

utterances. The inferred model has then to be parameterized in terms of speaker-independent parameters

(in our case, Gaussian Mixture Models (GMM)) that can easily be adapted to the customer characteristics.

Finally, we have to design an appropriate likelihood normalization model that best competes with the

customer model with respect to the test utterance. The likelihood normalization model will be used in the

usual log likelihood ratio test. As we will see, this is considered as the main problem of an HMM/GMM

based UCP-SV system and it will be the focus of this paper.

3 HMM/GMM based UCP-SV system

Figure 1 illustrates the enrollment process of a new customer in the HMM/GMM based UCP-SV system

we have implemented. Each step will be discussed in more detail in the sequel of the paper.

1. HMM inference: The main assumption in UCP-SV systems is that no a priori information about

the lexical content of the password is available. This information should be inferred automatically

in terms of sub-word units like phonemes. A speech recognizer is used to transcribe each utterance

of the customer’s password to a sequence of phonemes. The inferred Phonetic Transcriptions (PTs)

should be representative of the lexical content of the password. The accuracy of the inferred

PTs depends on the accuracy and the consistency of the speech recognizer. Ideally, the inferred
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Figure 1. Block-diagram of the enrollment process in an HMM/GMM based UCP-SV system: For each enrollment utterance
X`

c , corresponding to the `th repetition of the password pronounced by the customer (c), first (1) we extract MFCC features,
which will be used in an ergodic HMM/MLP model (M, Θ) to (2) generate the most probable phonetic string M `

c (still
parameterized by Θ) associated with each utterance. We then (3) parametrize the resulting HMM topologies M `

c with the
parameter set λ, corresponding to speaker-independent GMMs, resulting in left-to-right speaker-independent HMM/GMM
models (M`

c , λ) which will be used as background models for likelihood normalization. Finally, (4) a MAP adaptation
procedure is applied to (M`

c , λ) to create the speaker-dependent HMM/GMM model (M `
c , λc).

PTs should almost be the same for all utterances of the same password, but in practice, this

is never the case. Hence, we have to pick the one that best represents the enrollment data or

find ways to consolidate all resulting PTs. In our case, the HMM inference is performed using a

speaker-independent hybrid HMM/MLP system (Bourlard and Morgan, 1994). In this system, the

Multi-Layer Perceptron (MLP) is used to estimate HMM states posterior probabilities (or scaled

likelihoods) of an ergodic lexical model to map each of the enrollment utterance into a phonetic

sequence. The HMM/MLP systems are successfully used in speech recognition and are known to

usually yield better performance at the frame level compared to other systems like HMM/GMM,

thus being better suited to recognize utterances in terms of phone sequences.

2. Speaker adaptation: Having inferred the HMM topology associated with the password, the next step

is to create the customer specific acoustic model. Since in the UCP-SV the amount of enrollment

data is very limited, a model adaptation techniques are used. The adaptation process requires us

to consider an appropriate parameter adaptation scheme as well as the number of parameters to

be adapted. If we stick to hybrid HMM/MLP model, we have to adapt the MLP parameters.

In (BenZeghiba et al., 2001), we reported all the attempts we made to adapt the parameters of
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the SI-MLP for each new customer, where we tried different adaptation techniques based on the

training of a small linear input transformation (Neto et al., 1995). However, none of the tested

techniques were satisfactory enough for such small amounts of adaptation data. Consequently, we

decided to parametrize the resulting HMM models in terms of speaker-independent GMMs, which

are then used as a priori distribution for Maximum A Posteriori (MAP) adaptation (Gauvain and

Lee, 1994), yielding the customer and password specific acoustic model.

3. Likelihood normalization: Speaker verification is an hypothesis testing, usually casted in terms of

a likelihood ratio test. That is the likelihood estimated by the speaker model is normalized by the

likelihood estimated by a background model (a model representing all other possible speakers). This

is still the case with UCP-SV systems, except that the hypothesis to test is whether we have the right

speaker pronouncing the right password. The background model should be determined in such a way

that the discriminant capability of the system against impostor accesses will improve. Empirical

studies, suggest that a background model which is close to the target speaker is a reasonable

choice (Rosenberg and Parthasarathy, 1996). This statement makes the design of such a model in

UCP-SV systems more difficult, since there is no a priori knowledge available about the phonetic

coverage of the customer password. This will be the main investigation of this paper.

In this paper, we first describe and evaluate a baseline UCP-SV system similar to the one presented

in (Rosenberg and Parthasarathy, 1997) for an open set speaker identification. This baseline system

uses the best inferred PT to create the customer password HMM model. A comparison with a reference

TD-SV system that uses the correct PT of the password (given by a dictionary) shows that the main

difficulty in UCP-SV system lies in the background model.

The main contribution of this paper is then to improve the performance of this baseline system

using multiple reference models for customer acoustic modeling and multiple background models for

likelihood normalization. That is for each inferred PT, a customer and a background HMM models are

created. The different inferred PTs provide us with information about how customer pronounces his/her

password. This information can be used to improve the performance of the UCP-SV system1. This

paper will demonstrate that the use of multiple reference and background models allows us to select an

appropriate customer and background models in terms of customer and password characteristics with

respect to the test utterance.

1SuperSID project at the JHU summer workshop, 2002, http://www.clsp.jhu.edu/ws2002/groups/supersid
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4 HMM inference

The goal of this step is to infer the speaker-independent password HMM. For this purpose, we have

used an ergodic speaker-independent HMM/MLP system with a set of MLP parameters Θ to map each

of the enrollment utterances X`
c into a phonetic sequence. More precisely, for each acoustic sequence

X`
c =

{
x`

(1,c), x
`
(2,c), ..., x

`
(T,c)

}
associated with each utterance of the customer password, the MLP outputs

provide, for each acoustic frame x`
(t,c) at its input, an estimate of the posterior probabilities p(qt

k|x
`
(t,c), Θ)

of phones qk, with k = 1, ..., K and, where K is the total number of phones. These posterior probabilities

are then converted to scaled likelihood using Bayes rule2. Using these phone likelihoods and an ergodic

HMM model M with minimum state duration constraints equal to 3 and phone transition probability3 set

to 0.5, a simple dynamic programming algorithm (Bourlard et al., 1985) is applied to estimate the best

phonetic sequence. This results in L phonetic transcriptions M `
c (with 1 ≤ ` ≤ L and L is the number of

enrollment utterances) which are still parameterized with Θ. Once the PTs have been inferred, we then

aim to create the customer-dependent password HMM/GMM, that best represents the lexical content of

the password. In this work, we have investigated two approaches: single reference modeling approach

and multiple reference modeling approach.

5 Single reference approach

5.1 HMM/GMM parameterization

In this case, we simply select the phonetic transcription M̂c yielding the highest normalized (by the

number of frames) likelihood over all the enrollment utterances using forced alignment technique, i.e.:

M̂c = argmax

1 ≤ ` ≤ L

[
I∑

i=1

log P (X i
c|M

`
c , Θ)

]
(1)

2 P (qt
k|xt)

P (qk)
=

p(xt|q
t
k)

P (xt)
.

3Several of the values have been tested, including 1
K

(K is the number of phones). We have observed that this probability
has no significant effect on the topology of the model. We thus chose 0.5 as a uniform value for transition probabilities.
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where I = L, the number of enrollment utterances (hence phonetic transcriptions), and log P (X i
c|M

`
c , Θ)

is defined as follows:

log P (X i
c|M

`
c , Θ) =

1

Ti

Ti∑

t=1

log


P (q

(t,`)
k |xi

(t,c), Θ)

P (qk)


 (2)

where
P (q

(t,`)
k

|xi
(t,c),Θ)

P (qk) is the local scaled likelihood of the decoded phone q
(t,`)
k using forced Viterbi align-

ment on the inferred model M `
c at time t associated with the frame xi

(t,c) of the ith enrollment utterance,

and Ti is the length of the utterance Xi without silence frames.

The HMM password model is then built-up by strictly concatenating left-to-right (with only loops and

skips to the next state) HMM phone models from λ 4 corresponding to each of the phones in the above

“optimal” phonetic sequence M̂c. This results in an HMM model (M̂c, λ) which is lexically customer-

dependent but acoustically speaker-independent. The HMM model (M̂c, λ) will be used as background

model for likelihood normalization.

5.2 Speaker adaptation

Once the speaker-independent password models (M̂c, λ) has been inferred, a MAP adaptation proce-

dure (Gauvain and Lee, 1994) is then performed using the enrollment data to estimate (M̂c, λc), where

λc represents the set of speaker adapted phonetic HMM/GMM parameters. This procedure consists

of adapting the mean of state Gaussians of (M̂c, λ) models. We have used a modified version of the

adaptation formula:

µ̂qi

jc
= αµqi

jλ
+ (1 − α)

∑T

t=1 P (j, qi|xt)xt∑T

t=1 P (j, qi|xt)
(3)

where µ̂qi

jc
is the new mean of the j-th Gaussian in the state qi for client Sc, µqi

jλ
is the corresponding

mean in the model (M̂c, λ), P (j, qi|xt) is the joint posteriori probability of the state qi and the Gaussian

j and α is the adaptation rate.

4A context-independent and speaker-independent phonemes HMM speech recognizer (see Section 9.2 for more details).
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6 Multiple reference approach

Using the above selection criterion (1), the resulted customer dependent password HMM (M̂c, λc) might

match well with the speaker enrollment data, but it does not mean that during the access to the system

(test): (1) this model will be lexically the most likely during verification and (2) the associated background

model (M̂c, λ) will be lexically5 the appropriate model for likelihood normalization. To alleviate these two

problems, we propose the use of multiple reference and background modeling approach. In this approach,

for each phonetic transcription, we create a customer password and a background models, using the same

procedure described above in single reference approach. This results in a set of L customer dependent

password HMMs (M `
c , λc) and a set of L background models (M `

c , λ).

7 Decision Rules

In speaker verification, the decision that a test speaker S is indeed verified as the claimed identity Sc can

be expressed as follows:

S = Sc if CS ≥ ∆ (4)

where CS is the estimated confidence score representing the reliability that the speech segment comes

from the claimed identity and ∆ is a speaker-independent threshold.

In UCP-SV system, we should verify both the identity of the speaker, as well as the validity of

the pronounced password. Formally, we are interested in estimating P (Mc, Sc|X), representing the joint

posteriori probability that the customer Sc has pronounced the expected password Mc given the observed

acoustic vector X . During verification, this probability is compared to (1) P (Mc, Sc|X), representing

the joint posterior probability that any other speaker (impostor) Sc may have pronounced the expected

password Mc, and (2) P (Mc, S|X), representing the joint posterior probability that any speaker (impostor

or customer) S may have pronounced any other password Mc. Hence, the decision rules can be formulated

5In text-dependent speaker verification, the lexical content of the background model is important.
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as follows:

(S, M) = (Sc, Mc) if P (Mc, Sc|X) ≥ P (Mc, Sc|X) (5)

and P (Mc, Sc|X) ≥ P (Mc, S|X) (6)

Using Bayes’ rule, and assuming that the joint a priori probability of any speaker and any word is equal

for all combinations of speakers and words, decision rules (5) and (6) can be rewritten as follows:

p(X |Mc, Sc)

p(X |Mc, Sc)
≥

P (Mc, Sc)

P (Mc, Sc)
= ∆1 (7)

p(X |Mc, Sc)

p(X |Mc, S)
≥

P (M c, S)

P (Mc, Sc)
= ∆2 (8)

where ∆1 and ∆2 are the decision thresholds. The normalization models (Mc, Sc) and (M c, S) in (7)

and (8) used to estimate the normalization scores p(X |Mc, Sc) and p(X |Mc, S), respectively, have two

different roles. The first normalization model (Mc, Sc) is supposed to represent the correctly pronounced

password. So, it is used to discriminate between the customer and impostors pronouncing the expected

password. This likelihood normalization model will be referred to as background model and the decision

using (7) to as speaker verification decision. If the speech content of the test utterance is different from the

expected password, both customer and background models in (7) will have a poor individual likelihood

which might result in a good likelihood ratio and leads to the acceptance of an impostor. A solution to this

problem is to make a speech recognition or utterance verification step to recognize or to verify the lexical

content of the pronounced word. This is the role of the second likelihood normalization model in (8).

This model is supposed to represent the incorrectly pronounced password. This likelihood normalization

model will be referred to as world model and the decision using (8) to as utterance verification decision.

The speaker is then, accepted if the two scores in (7) and (8) exceed their respective thresholds ∆1 and

∆2 simultaneously. It has been found (Rodriguez-Linares et al., 2003) that the combination of these

two scores can significantly improves the performance of the system. In this paper, a weighted sum

combination technique is used. The confidence score CS in (4) is then defined as follows:

CS = α LLRs + (1 − α) LLRu (9)
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with 0 ≤ α ≤ 1. LLRs is the normalized speaker verification log likelihood ratio, estimated as:

LLRs =
1

T
log

»
p(X|Mc, Sc)

p(X|Mc, Sc)

–
(10)

and LLRu is the normalized utterance verification log likelihood ratio, estimated as:

LLRu =
1

T
log

»
p(X|Mc, Sc)

p(X|Mc, S)

–
(11)

We used 1
T

to normalize the two log likelihood ratio for test utterance duration, where T is the length of

the test utterance after having removed the silence frames.

8 Speaker verification

8.1 Score normalization

To verify the identity of the speaker, we need to define the world model (M c, S) and the background

model (Mc, Sc) to estimate LLRs and LLRu. If we have some a priori knowledge about the content of

the password, this can help us in designing effective score normalization models for both speaker and

utterance verification parts. Unfortunately, in UCP-SV, such information is not available.

For the utterance verification part, the world model should represent all the words but the customer’s

password. Training a model satisfying this condition is a very difficult task (actually impossible). In this

work, we have used a general speech Gaussian mixture model (GMM) with a set of parameters Λ.

For the speaker verification part, A straightforward way to define a background model in UCP-SV

system is to use the inferred speaker-independent password HMM. However, this model might not be

optimal. To improve the competitiveness of this model, a previous study (Hebert and Peters, 2001)

proposed the use of a modified normalizing model (MNM) determined by perturbing the inferred back-

ground model using the enrollment data to reflect the lexical content of the speaker’s password. In another

study (Siohan et al., 1999), the authors proposed the use of the speaker enrollment data to (1) train a

background model with fewer number of parameters compared to the speaker model or (2) perturbing

the temporal information by reversing the state order of the previously trained background model. In the

work reported here, we will demonstrate that the use of multiple background models, corresponding to

the inferred speaker-independent password HMM models can improve the performance of the UCP-SV
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system.

8.2 Single reference approach

In single reference modeling approach, the two log likelihood ratios LLRs in (10) and LLRu in (11) are

estimated as follows:

LLRs =
1

T
log

"
p(X|cMc, λc)

p(X|cMc, λ)

#
(12)

LLRu =
1

T
log

"
p(X|cMc, λc)

p(X|Λ)

#
(13)

During the forced Viterbi decoding (Viterbi, 1967), a silence phone model is applied at the beginning

and the end of the customer model (M̂c,λc) to detect the silence frames and ignore them during the log

likelihood estimation. The resulted speech/silence segmentation is used to estimate the log likelihoods

p(X |M̂c, λ) and p(X |Λ).

8.3 Multiple reference approach

Given a set of customer specific HMM models and a set of background models, the CS is now estimated

by selecting (1) the customer model that best represents the test utterance, and (2) the background

model that best competes with the customer model.

There are two possible solutions to that problem. The first solution consists in dynamically selecting

during the access to the system the customer and the background models that satisfy some “optimal”

criteria. Such techniques will be referred hereafter to as dynamic model selection (DMS) techniques. The

second solution is to fuse the confidence scores or the partial decisions estimated/made by each individual

subsystem 6 to derive the final score. Such techniques will be referred hereafter to as confidence score

fusion and partial decision fusion, respectively.

8.3.1 Dynamic Model Selection techniques

In multiple reference modeling approach, the confidence score in (4) will be estimated as follows:

CS = αCSs + (1 − α)CSu (14)

6In a subsystem, both the customer and background models have the same pronunciation model.
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where CSs and CSu are the confidence scores of the speaker verification and the utterance verification

parts, respectively.

• Utterance verification part:

The performance of the utterance verification part will largely depend on how good the customer

model matches the test utterance, since the estimation of CSu uses a GMM as a score normalization

model. The optimal criterion, with respect to the role of the world model, is probably to select the

most likely customer model (M̂ `
c , λc). That is:

(cM `
c , λc) = argmax

1 ≤ ` ≤ L

1

T
log p(X|M `

c , λc) (15)

The CSu in (14) is then estimated as follows:

CSu =
1

T
log

"
p(X|cM `

c , λc)

p(X|Λ)

#
(16)

• Speaker verification part:

The performance of the speaker verification part does not depend only on how good the customer

model matches the test utterance, but also on how well the background model competes lexically

(as all of them are speaker-independent) with the customer model. Consequently:

– If we assume that (M `
c , λc) and (M `

c , λ) are statistically independent, then both customer and

background models may have different model selection criteria to optimize CSs.

– If we assume that (M `
c , λc) and (M `

c , λ) are statistically dependent7, then the selection criterion

might depend on some statistics applied directly to the LLRs estimated by each subsystem.

In this work, three different criteria are tested. They are presented below according to the compet-

itiveness of the background model to the customer model from low to high level:

1. Maximizing p(X |M `
c , λc): Using this criterion, the background model associated with the

best customer model selected according to (15), is used for likelihood normalization. The CSs

in (14) is then estimated as follows:

CSs = LLR
cM`

c
s =

1

T
log

"
p(X|cM `

c , λc)

p(X|cM `
c , λ)

#
(17)

7At least they have the same topology and (M `
c , λc) is adapted from (M`

c , λ).
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However, this criterion might not be a good criterion for the speaker verification part with

respect to the competitiveness constraint. As we will see in the results, a good customer model

might have a poor associated background model.

2. Maximizing p(X |M `
c , λ): While keeping the same customer HMM model selection crite-

rion (15) as before, maximizing p(X |M `
c , λ) aims to make the background model more com-

petitive by selecting the one that best matches the test utterance X as follows:

(cM `′

c , λ) = argmax

1 ≤ ` ≤ L

1

T
log p(X|M `

c , λ) (18)

Thus the CSs in (14) will be estimated as follows:

CSs =
1

T
log

"
p(X|cM `

c , λc)

p(X|cM `′
c , λ)

#
(19)

It might happen that both customer and background models will have the same topology

(i.e., ` = `′). In this case, this criterion will be equivalent to the previous one.

3. Minimizing LLR
M`

c
s : Because (M `

c , λc) is derived from (M `
c , λ) by adapting only the mean

of state GMMs, hence (M `
c , λ) is probably, the most appropriate background model for the

customer model (M `
c , λc). Consequently, it might be better if the model selection criterion

for the speaker verification part will be applied directly to the LLR
M`

c
s , with respect to the

competitiveness constraint. That is the background model should be close to the customer

model. The criterion proposed here, selects the phonetic transcription M `
c that minimizes the

LLR
M`

c
s . Hence, the CSs in (14) will be estimated as follows:

CSs = min
1≤`≤L

„
1

T
log

»
p(X|M `

c , λc)

p(X|M `
c , λ)

–«
(20)

The drawback of dynamic model selection criteria though is that there is no guarantee that the selected

set of parameters (customer and background models) are “optimal” in the sense of yielding the optimal

EER.

8.3.2 Confidence score fusion

In confidence score fusion, the inputs to the fusion system are the individual confidence scores estimated

by each subsystem, and the outputs are the average of LLR
M`

c
s and LLR

M`
c

u over all subsystems. The
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confidence scores CSs and CSu are then estimated as follows:

CSs =
1

L

"
LX

`=1

LLR
M`

c
s

#
(21)

and

CSu =
1

L

"
LX

`=1

LLR
M`

c
u

#
(22)

where L is the number of subsystems. The final confidence score CS is then a weighted sum of CSs and

CSu:

CS = αCSs + (1 − α)CSu (23)

The use of the average criterion prevents us from the choose of a poor set of parameters (subsystem) to

estimate CSu and CSs.

8.3.3 Partial decision fusion

In partial decision fusion, the inputs to the fusion system are the individual decisions made by each

subsystem and the output is the final confidence score. The fusion system uses a majority voting technique,

as suggested in (Li et al., 2000). The CS in (4) is then defined as follows:

CS =
1

L

LX

`=1

f(cs`) (24)

where

f(cs`) =

8
><
>:

1, if cs` ≥ δ(c,`)

0, otherwise
(25)

(26)

with cs` being the combined individual confidence score estimated using the phonetic transcription M `
c ,

and δ(c,`) being a local speaker and model dependent threshold. This CS, which belongs to the [0, 1]

interval, can be interpreted as a percentage of times that the local confidence score cs` exceeded its local

threshold δ(c,`).

One difficulty that can make the use of this technique undesirable in real application is the estimation
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of the local threshold δ(c,`) for each speaker’s subsystem. Indeed, it is desirable to have a local threshold

that:

1. Is customer and model independent (δ(c,`) = δ), hence, it can be determined a priori on separate

data.

2. Is interpretable and adjustable, so it can easily be adjusted according to the application require-

ments.

3. Allows the parameter α to be optimized independently on the subsystem.

LLR
M`

c
s and LLR

M`
c

u have a large dynamic range, theoretically belonging to ] − ∞, +∞[ interval. To

satisfy the above conditions, we introduce the normalized log likelihood ratio (NLLR) that transforms

LLR
M`

c
s and LLR

M`
c

u into more interpretable scores. The normalized log likelihood ratio uses the log

likelihood ratio of the train data to normalize the log likelihood ratio of the test data, and it is based on

the following assumption:

LLR(test)

LLR(train)
≤ 1 (27)

which states that the log likelihood ratio estimated using the train data is the best log likelihood ratio we

can get. We have used this assumption to normalize the LLR
M`

c
s and LLR

M`
c

u . Given a customer model

(M `
c , λc), the NLLR

M`
c

s can be defined as:

NLLR
M`

c
s =

LLR
M`

c
s

1
I

PI

i=1
1

Ti
log

h
p(Xi

c|M
`
c ,λc)

p(Xi
c|M

`
c ,λ)

i (28)

and NLLR
M`

c
u as:

NLLR
M`

c
u =

LLR
M`

c
u

1
I

PI

i=1
1

Ti
log

h
p(Xi

c|M
`
c ,λc)

p(Xi
c|Λ)

i (29)

where I is the number of enrollment utterances for the speaker Sc. The denominators in (28) and (29)

are the average log likelihood ratio estimated over all the enrollment data.

The new confidence score cs` in (25) will be estimated as:

cs` = α NLLR
M`

c
s + (1 − α) NLLR

M`
c

u (30)

Using (28) and (29), together with the assumption (27):
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• The NLLR
M`

c
u and NLLR

M`
c

s will have, theoretically, a limited dynamic range with an upper bound

equal to 1. Consequently, the cs` in (30) will be bounded by 1. The value NLLR
M`

c
s and NLLR

M`
c

u

indicate how probable the test utterance belongs to the claimed identity. Closer are NLLR
M`

c
u and

NLLR
M`

c
s to 1, more probable the claimed identity is to be valid.

• The search for a local speaker and subsystem independent threshold δ will be in a fixed range [0, 1].

So, depending on the application requirements, we can adjust the threshold without difficulty.

Note that in this approach we now have two thresholds, a local threshold δ and a global threshold ∆.

9 Databases and Experimental Set-up

In this work, we have used two databases, the PolyPhone (Chollet et al., 1996) database to train differ-

ent speaker-independent models, and the PolyVar (Chollet et al., 1996) database to perform customer

enrollment and verification test.

9.1 PolyPhone database

The Swiss-French PolyPhone databases (Chollet et al., 1996) contains telephone calls from about 4, 500

speakers recorded over the Swiss telephone network. The calling sheets were made up of 38 prompted

items and questions. Among other items, each speaker was invited to read 10 sentences selected from

different corpora to ensure good phonetic coverage for the resulting database. Different kinds of irregu-

larities (i.e; noise in the recording, strange utterances) were discovered, and the training set was finally

reduced to 3, 272 sentences, corresponding to approximately 5 hours of speech.

9.2 PolyVar database

The PolyVar database was recorded and designed at IDIAP as a complement to the PolyPhone database

to address the intra-speaker variability. This database comprises telephone recordings from about 143

speakers (85 male and 58 female speakers). Each speaker recorded between 1 and 229 sessions. Several

speakers pronounced the same set of 17 words several times, which makes this database particularly well

suited to test UCP-SV systems. i.e.,

• Assigning each of the words to one specific customer
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• Providing enrollment utterances for each of those words, test utterances, as well as many impostor

utterances pronouncing the right password.

• Providing several utterances associated with words different than the chosen password, from both

the customer and potential impostors.

A set of 38 speakers (24 males and 14 female) who have more than 26 sessions were selected. The set

of 17 words is divided into data1 and data2 with 14 and 3 words, respectively. For each speaker and

each word in data1, the first 5 utterances (corresponding to the first 5 sessions) of the word are used for

training, to create the customer-dependent password HMM. For testing, two protocols are defined:

1. Protocol P1:

In this protocol (summarized in Table 1), between 18 and 22 utterances of the same word are used

as a customer accesses with the expected password. Each speaker has a subset of 18 speakers as

impostors (11 males and 7 females if the user is a male and 6 females and 12 males if the customer

is a female). Each impostor has two accesses with the expected password. Each speaker, including

customers and impostors, has 3 accesses with three different words taken from data2 to simulate

the case where speaker pronounces wrong password.

Type of access #nb of accesses

Training 5

Testing: C-EP 18-22
Testing: C-IP 3
Testing: I-EP 36
Testing: I-IP 54

Table 1. Distribution of customer (C) and impostor (I) accesses with expected password (EP) and invalid passwords (IP).

2. Protocol P2:

To evaluate our approach on more difficult conditions, a second protocol P2 where customers and

impostors pronounce only the expected password was defined. There were 12930 customers’ accesses

and 23256 impostors’ accesses.

9.3 Experimental set-up

For acoustic features, 12 MFCCs coefficients with energy complemented by their first derivatives were

calculated every 10 ms over 30 ms window, resulting in 26 coefficients every 10 ms.
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The approach studied here assumes the availability of some a priori speaker-independent acoustic

models for HMM inference, speaker adaptation and score normalization. Three speaker-independent

speech recognizers are trained using PolyPhone databases:

1. A Hybrid HMM/MLP system: The speaker independent MLP (SI-MLP) used for HMM inference

consisted of 234 input units with 9 consecutive 26 dimensional acoustic vectors, 600 hidden units

and 36 outputs, such that each output is associated with a specific phone. The phone level accuracy

obtained by this system on PolyVar using customer enrollment data is 56.6%.

2. A Hidden Markov model with a set of parameter Λ is trained using the segmental K-means algo-

rithm (Rabiner, 1989) followed by EM algorithm. This HMM has 36 context-independent phone

models. The phone models consisted of 3 states left-to-right HMM with 3 mixtures/state. This

HMM is used as a priori distribution for maximum a posteriori (MAP) adaptation.

3. A Gaussian mixture model with a set of parameters Λ is modeled by 240 (diagonal covariance)

Gaussian and trained using the segmental K-means algorithm followed by EM algorithm. This

GMM is used for utterance verification score normalization.

10 Experiments

All experiments described here were conducted using the Torch library (Collobert et al., 2002). For

comparison purposes, results for a SV system uses the correct phonetic transcription of the password given

by a dictionary are also reported. This will be referred to as TD-SV system. The combined parameter α

as well as the speaker-independent decision threshold are determined a posteriori to optimize the Equal

Error Rate (EER). This is not realistic, but it gives a good way to evaluate the discrimination capabilities

of the modeling approach. Note that for the second protocol P2, the evaluation is made using only the

speaker verification part based on LLRs.

10.1 Single reference approach evaluation

The goal of this experiment is to evaluate and analyze the performance of the UCP-SV system using

single reference approach. This system will be referred to as baseline system. The obtained EER is

compared to that obtained by a TD-SV system.
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Figure 2 shows the EER variations of the UCP-SV and the TD-SV systems as a function of the

combined parameter α using the first protocol P1. Table 2 shows the EER for both systems using P1

and P2. It is clear that the use of a priori information about the lexical content of the password helps

in improving the verification performance of a TD-SV system. This performance becomes significant as

the parameter α increases.
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Figure 2. Equal error rate variations of the reference TD-SV and the baseline UCP-SV systems as a function of the
combined parameter α using the first protocol P1.

Protocol System LLRs LLRu EER(α)
α = 1 α = 0

P1
TD-SV 3.6 3.2 3.0 (0.3)
UCP-SV 4.2 3.2 3.1 (0.2)

P2
TD-SV - - 5.3
UCP-SV - - 5.8

Table 2. EER of the UCP-SV and TD-SV systems using both first (P1) and second (P2) protocols.

10.1.1 Analysis

There are two informative values that can help us to analyze the results. These values correspond to the

performance of the two systems for α = 0 and α = 1.

• α = 0: The performance of both TD-SV and UCP-SV systems using the combined confidence

score (9) becomes equal to the performance using only the utterance verification part (LLRu). In

this case, the TD-SV and the UCP-SV systems have the same world model (GMM) for likelihood

normalization, but they use a customer HMM model created from two different PTs. So, if one

of these systems performs better than the other, this should be attributed to the customer HMM
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model. The EERs associated with α = 0 show comparable performance for both TD-SV and

UCP-SV systems. This indicates that the improvement of the TD-SV system cannot be completely

attributed to the fact that this system uses the correct PT to create the customer HMM model

while the UCP-SV uses the inferred PT.

• α = 1: The performance of both TD-SV and UCP-SV systems becomes equal to the performance

using only the speaker verification part (LLRs). Both UCP-SV and TD-SV systems have two

different customer HMM models and two different background models. Within the same system,

the customer and the background models have the same topology (i.e.; the same states and the

same connections between states). In this case, if one system performs better than the other, this

improvement can be attributed either to the customer HMM model or to the background model.

As we have seen in the case of α = 0, the customer model performs comparably in both TD-SV

and UCP-SV systems. Hence, the improvement in the TD-SV system is in great part due to the

background model which -in the case of TD-SV system- is more competitive than the one used in

the UCP-SV system. This explains why the difference between the two EERs obtained by the TD-

SV and the UCP-SV systems increases as the weight given to the speaker verification part increases

and why the TD-SV system performs better than the UCP-SV system using P2.

This is consistent with what has been found in (Rosenberg and Parthasarathy, 1997). One possible

explanation is that the background model should cover as much as possible the acoustic space of how other

speakers pronounce the expected password, and not only how a specific speaker (customer) pronounces

it.

10.2 Multiple reference approach evaluation

10.2.1 Dynamic Model Selection techniques

Tables 3 reports EERs of the speaker verification part (2 column), the utterance verification part (3

column) and the UCP-SV system using DMS criteria and P1. Table 4 reports EERs of the UCP-SV

system using DMS criteria and P2.

10.2.2 Discussion

Several observations can be made from these results:
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DMS criterion CSs CSu EER(α)

Baseline UCP-SV 4.2 3.2 3.1 (0.2)

Max p(X|M `
c , λc) 5.0 3.3 3.3 (0.1)

Max p(X|M `
c , λ) 4.5 3.3 3.3 (0.2)

Min LLR
M`

c
s 3.5 3.3 3.1 (0.5)

Table 3. EER of the UCP-SV system using P1 with different dynamic model selection criteria. The second raw corresponds
to the EER of the UCP-SV Baseline system using single reference model.

DMS criterion EER

Baseline UCP-SV 5.8

Max p(X|M `
c , λc) 6.2

Max p(X|M `
c , λ) 6.0

Min LLR
M`

c
s 5.5

Table 4. EER of the UCP-SV system using P2 with different dynamic model selection criteria, The second raw corresponds
to the EER of the UCP-SV Baseline system using single reference model.

1. Second protocol evaluation:

• The performance using the background model associated with the best customer model (17)

is worse than that obtained with the baseline system. A possible reason is that the (M̂ `
c , λc)

is selected dynamically according to the maximum likelihood criterion. For many impostors,

the alignment of the test utterance against (M̂ `
c , λc) results in a good likelihood score, and

because (M̂ `
c , λ) is not necessarily an appropriate background model, many impostor accesses

will get accepted8.

• The selection of (M̂ `
c , λc) and (M̂ `′

c , λ) separately, according to the maximum likelihood crite-

rion (15) and (18), improved the performance compared to the use of (17). But the obtained

performance is still worse than the baseline system. This indicates that the appropriate selec-

tion criterion might well applied to the LLR
M`

c
s .

• Significant improvement is obtained using the Minimum LLR
M`

c
s as a selection criterion (20).

The EER dropped from 5.8% to 5.5%. As we can see, the performance of the UCP-SV system

is quite competitive with the TD-SV system. We should mentioned here, that the use of (20)

might not be optimal and depends on the experimental set-up, making the selection of the

optimal model not obvious (BenZeghiba and Bourlard, 2004).

2. First protocol evaluation:

8It is worth mentioning that an appropriate background model is useful in reducing the false acceptance rate.
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• The use of (15) to select the customer HMM model did not improve the performance of the

utterance verification part. Taking into account our acoustic modeling approach, it seems that

the value of 3.2% is the best we can achieve.

• Surprisingly, and despite the significant improvement in the speaker verification part (see

Table 3, column 2), no improvement in the performance of the UCP-SV system is obtained

(column 4). A possible reason is that the GMM world model (Λ) is trained with general speech

data from a large set of speakers. It covers the general acoustic space including the customer

password. Hence, it has some acoustic characteristics of the background model (M `
c , λ), making

the amount of new (complementary) information given by the speaker verification part very

low. The correlation coefficients between CSu and CSs for customer and impostor accesses

were found to be 0.90 and 0.80, respectively. This indicates that these two scores are highly

correlated.

10.2.3 Confidence scores fusion

Figure 3 shows the EER variations of the UCP-SV system using (21) and (22) with the first protocol P1

as a function of the combined parameter α. Results of the reference TD-SV and the baseline UCP-SV

systems are also shown. Table 5 reports the EER of the UCP-SV system using P1 and P2. It can be
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Figure 3. ERR variations of the UCP-SV systems as a function of the combined parameter α using the confidence score
fusion technique (21), (22) and (23) with the first protocol P1. Results of the reference TD-SV and the Baseline UCP-SV
systems are also shown.

seen from Table 5 that the use of average confidence score criterion improves the UCP-SV performance.

Figure 3 shows that both systems (i.e., the UCP-SV and the TD-SV) have the same performance for

all the values of the parameter α. Also, It can be noted that the use of average score criterion gives
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Protocol CSs CSu EER(α)

P1 3.6 3.2 3.0(0.2)

P2 - - 5.6

Table 5. EER of the UCP-SV system using confidence score fusion technique (21), (22) and (23) with P1 and P2. For
P2, only CSs are used.

comparable results with those obtained using the best dynamic model selection criteria, i.e., the min

function (20) for CSs estimation and the maximum likelihood criterion (17) for CSu estimation. This

indicates that (20) and (17) are a good criteria.

We should note here, that, for a given customer, the verification score estimated by each subsystem

are not statistically independent. Indeed, all subsystems are trained using the same adaptation data

and the same adaptation procedure, only phonetic transcriptions are different. Consequently, given a

test utterance X , there is a set of optimal parameters corresponding to only one customer HMM model

(M `
c , λc) that gives the best LLR

M`
c

u and a set of optimal parameters corresponding to only one phonetic

transcription M `′

c that gives the best LLR
M`′

c
s . The combination of these two scores will give the best

performance. The use of the other models will be useless as they do not carry any complementary

information. Because the search for these optimal models is not obvious, using the average score will

prevent us from the choose of the poor parameters.

10.2.4 Partial decisions fusion

Table 6 shows the EER of the UCP-SV for both protocols. The global threshold ∆ is set to 0.6. This is

Protocol Loc.thrd Glob.thrd EER(α)
δ ∆

P1 0.28 0.6 3.1 (0.2)

P2 0.25 0.6 5.6

Table 6. EER of the UCP-SV system with its optimal local and global thresholds using partial decision fusion technique (24)
with the first and second protocols.

mean that the speaker is accepted if 3/5 − th of local confidence scores exceeded the local threshold δ.

We can see that we have got an improvement in the performance compared to the baseline system, but

not as significant as in the two previous techniques. For comparison purposes, we also used the original

LLR
M`

c
u and LLR

M`
c

s to estimate the combined score, and we have got the same performance with P1

and P2. The advantage of the NLLR, however, is that the threshold has a meaningful interpretation and
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is easily adjustable according to the application requirements. Another advantage is that the NLLR can

be used as a criterion to select the utterance test that has a high NLLR for incremental adaptation.

10.3 GMM-UBM approach

It can be argued that when a GMM is trained with a limited data that covers a few phonemes (actually

this is our case), the GMM becomes speaker and text dependent. For the sake of comparison, we have

conducted an experiment using the conventional Gaussian Mixture Model-Universal Background Model

(GMM-UBM) text-independent speaker verification approach (Reynolds et al., 2000), where a speaker-

independent GMM referred to as Universal Background Model (UBM) is used as a priori distribution for

speaker adaptation. In the approach tested here, the enrollment step consists of using the 5 repetitions

of the customer’s password for adaptation using MAP adaptation. The UBM consists of 120 mixtures

trained on PolyPhone database. For testing, the usual log likelihood ratio test is used.

Protocol EER

P1 3.5

P2 5.5

Table 7. EER of the UCP-SV system using GMM-UBM approach on both protocols P1 and P2

Table 7 reports the obtained results on both protocols P1 and P2. Compared to the multiple reference

approach, the GMM-UBM approach performs comparably on P2 but poorly on P1. A possible reason

is that, the GMM-UBM system does only speaker verification. In contract, the HMM/GMM system

performs both utterance and speaker verification. Because the protocol P2 contains only accesses with

expected password, we are only interested in verifying the claimed identity, hence, both systems become

equivalent. However, the protocol P1 contains some customer’s accesses with invalid passwords. Hence,

there could be an overlap in the acoustic space between the customer password and customer test accesses

with invalid password. In the case of GMM-UBM system, this might result in a good log likelihood ratio.

Consequently, the customer gets accepted even if the pronounced word is not correct, which is not the

case in HMM/GMM approach.
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11 Conclusion

This paper has developed and compared HMM/GMM based User-customized password speaker verifica-

tion (UCP-SV) systems using single reference and multiple reference approaches. A speaker-independent

HMM/MLP is used to infer the phonetic transcriptions associated with the enrollment utterances. These

phonetic transcriptions are then used to create customer-dependent password HMMs and background

models.

First, a UCP-SV system using single reference approach is developed. This system used the best

phonetic transcription determined during the enrollment step to create the background model which is

then adapted towards customer voice’s characteristics. This system achieved acceptable performances

but not competitive with TD-SV system using the correct phonetic transcription of the password. Our

analysis has revealed that the main reason of this limitation lies in the background model.

Second, to improve the performance of the baseline UCP-SV system, we have investigated the use

of multiple reference approach. Different scoring criteria are proposed and evaluated. Results showed

that significant improvement could be achieved if an appropriate selection criterion of the customer and

background models is used. However, comparable improvement could be obtained by taking the average

log likelihood ratios estimated by each subsystem or fusing partial decisions made by each subsystem.

Finally, a comparative experiments using the conventional GMM-UBM text-independent speaker ver-

ification is conducted. Results showed that under certain conditions, the GMM-UBM approach performs

comparably with multiple reference approach. This indicates that when a GMM is trained (adapted)

with data associated with a short password, the GMM becomes text and speaker dependent, although

the temporal phonetic structure is not preserved.
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