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Abstract

The FNTF algorithm starts from the RLS algorithm
for adapting FIR �lters. The FNTF algorithm approx-
imates the Kalman gain by replacing the sample co-
variance matrix inverse by a banded matrix (AR(M)
assumption for the input signal). The approximate
Kalman gain can still be computed using an exact re-
cursion that involves the prediction parts of two Fast
Transversal Filter (FTF) algorithms of order M. Here
we introduce the Subsampled Updating (SU) approach
in which the FNTF �lter estimate and Kalman gain
are provided at a subsampled rate, say every L sam-
ples. The low-complexity prediction part is kept and a
Schur type algorithm is used to compute a priori �l-
tering errors at the intermediate time instants, while
some convolutions are carried out with the FFT. This
leads to the FSU FNTF algorithm which has a low
computational complexity for relatively long �lters.

1 Introduction

We present a new fast algorithm for Recursive Least
Squares (RLS) adaptive �ltering. The Fast Subsam-
pled Updating Fast Newton Transversal Filter (FSU
FNTF) algorithm is derived from the Fast Newton
Transversal Filter (FNTF) algorithm. The FNTF al-
gorithmdeparts from the Fast Transversal �lter (FTF)
algorithm which e�ciently exploits the displacement
structure of the inverse of the sample covariance ma-
trix appearing in the RLS algorithm to reduce its
computational complexity from O(N2) for the RLS
algorithm (N is the length of the adaptive �lter) to
7N in the most e�cient version [1]. The FNTF al-
gorithm uses the approximation that when dealing
with Auto-Regressive signals, the prediction part of
the FTF algorithm can be limited to prediction �lters
and Kalman gain of length M , the order of the AR
model [3]. In fact, in the FNTF algorithm the inverse
of the sample covariance matrix is approximated by

a banded matrix of total bandwidth 2M + 1. This
fact allows the reduction of the complexity to O(2N ).
However, this �rst version su�ers from the need for
signi�cant data storage. In [4], this problem was over-
come by using two prediction part FTF algorithms.
In [5],[6], we have pursued an alternative way to re-
duce the complexity of RLS adaptive �ltering algo-
rithms. The approach consists of subsampling the �l-
ter adaptation, i.e. the LS �lter estimate is no longer
provided every sample but every L � 1 samples (sub-
sampling factor L). This strategy has led us to derive
new RLS algorithms that are the FSU RLS and FSU
SFTF algorithms which present a reduced complex-
ity when dealing with long �lters. Here, we apply
the subsampled updating strategy to the FNTF algo-
rithm. In this approach, we keep the prediction part of
the FNTF algorithm and compute the FNTF Kalman
gain and the �lter estimate from quantities that were
available L instants before. It turns out that the suc-
cessive a priori �ltering errors can be computed ef-
�ciently by using a Schur type algorithm while some
convolutions are done with the Fast Fourier Transform
(FFT) technique. This leads to a new algorithm with
a reduced computational complexity, rendering it es-
pecially suited for adapting very long �lters such as in
the acoustic echo cancellation problem.

2 The FSU FNTF Algorithm

2.1 The RLS Algorithm

An adaptive transversal �lter WN;k forms a lin-
ear combination of N consecutive input samples
fx(i�n) ; n = 0; : : : ; N�1g to approximate (the nega-
tive of) the desired-response signal d(i). The resulting
error signal is given by

�N (ijk)=d(i) +WN;k XN (i)=d(i) +

N�1X
n=0

Wn
N;k x(i�n) ; (1)

where XN (i) =
�
xH(i) xH(i�1) � � �xH(i�N+1)

�H
is the in-

put data vector and superscript H denotes Hermi-



tian (complex conjugate) transpose. In the RLS al-
gorithm, the set of N transversal �lter coe�cients
WN;k =

�
W 0
N;k

� � �WN�1
N;k

�
are adapted so as to minimize

recursively the following LS criterion

�N(k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN(i)k2

)

=

kX
i=1

�k�i k�N (ijk)k2 ; (2)

where � 2 (0; 1] is the exponential forgetting factor.
The RLS algorithm is given byeCN;k = �XH

N (k)��1R�1
N;k�1 (3)



�1
N

(k) = 1� eCN;kXN (k) (4)

R
�1
N;k

= ��1R
�1
N;k�1 � eCHN;k
N (k)eCN;k (5)

�
p
N
(k) = �N (kjk�1) = d(k) +WN;k�1XN (k) (6)

�N (k) = �N (kjk) = �
p

N
(k) 
N (k) (7)

WN;k = WN;k�1 + �N (k)eCN;k ; (8)

where �pN (k) and �N (k) are the a priori and a posteri-
ori �ltering errors, which are related by the likelihood
variable 
N (k) (7) and eCN;k is the Kalman gain. The
updating of the (N � N ) inverse covariance matrix
R�1N;k is done via the Ricatti equation (5) in O(N2)
operations. Eqs. (3),(4) and (5) constitute the pre-
diction part whereas the set of eqs. (6),(7) and (8) are
called the joint-process.
Fast versions of the RLS algorithm have been derived
by using the displacement structure of the covariance
matrix and leads to algorithms such as the FTF which
computational complexity is 7N .

2.2 The FNTF Algorithm

In the FTF algorithm, the Kalman gain and the
likelihood variable are computed in the prediction part
of the algorithm where the update of the sample in-
verse covariance is replaced by the update of its gen-
erators which are the optimal forward and backward
prediction �lters and the Kalman gain of order N (plus
the update of other scalar quantities). The FNTF al-
gorithm is an approximation to the FTF algorithm.
It uses the fact that for Auto-Regressive signals of
order M , the inverse covariance matrix is a banded
matrix of bandwith 2M + 1, This fact allows to use
prediction �lters of order M in the FTF scheme and
Kalman gain and the likelihood variable of order N
are computed by using the property that for AR(M)
processes, forward and backward prediction �lters of
order N are obtained from those of order M by �lling
with zeros. This is interesting when the input signal is
speech as is the case for acoustic echo cancellation ap-
plications. The key ingredient of the FNTF algorithm
is the extrapolatation of the Kalman gain eCN;M;k and
the likelihood variable 
N;M (k) of order N from quanti-
ties computed in the prediction part of order M . The

�rst version of the FNTF algorithm [3] su�erred from
the need for a signi�cant data storage. This drawback
was overcome by using two FTF prediction parts, the
second one being the delayed version of the �rst one
with a delay of N �M samples [4] . In what follows,
we will consider this last version which uses two FTF
prediction parts of order M running in parallel. The
FNTF algorithm can be described in the following way
which emphasizes its rotational structure:ePk = �p(k) Pk�1

kd = k �N +MePkd = �p(kd) Pkd�1� �eCN;M;k 0
��

WN;k 0
� �

= �(k)

264
[Pk�1 0N�M ]�
0N�M Pkd�1

��
0 eCN;M;k�1

��
WN;k�1 0

�
375
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(i)
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N;M (k) = 
N;M (k�1)+eS0M+1;ke
p

M
(k)� eUM

M+1;kd
r
pf

M
(kd)

�N (k) = 
N;M (k)�p
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where

ePk =

" �eCM;k 0
�

AM;k

BM;k

#
; Pk =

" �
0 eCM;k

�
AM;k

BM;k

#
(10)

�p(k) = �p2(k) �
p
1(k)

=

"
1 0 0
0 1 0

r1
M

(k) 0 1

# "
1 a �eCM

M+1;k
eM (k) 1 0

0 0 1

#
a = �ep

M
(k)��1��1

M
(k) (11)

�(k) = �2(k) �1(k) =h
1 0

�N (k) 1

i �
0 �eC0

M+1;k 0 0 0 b 1 0

0 0 0 0 0 0 0 1

�
b = r

pf
M

(kd)�
�1 �M (kd�1) : (12)

AM;k and BM;k are the forward and backward predic-
tion �lters, ep

M
(k) and eM(k) are the a priori and a



posteriori forward prediction errors, rpM(k) and rM(k)
are the a priori and a posteriori backward predition
errors, eCM+1;k =

� eC0
M+1;k � � � eCM

M+1;k

�
and �M(k) and

�M (k) are the forward and backward prediction error
variances. K1 = 1:5 and K2 = 2:5 are the optimal
feedback gains that ensure the stability of the dynam-
ics of the accumulated round-o� errors in the predic-
tion part [2].
The prediction part of the FNTF has a computational
complexity of 12M and the joint-process takes 2N op-
erations. In order to reduce the amount of compu-
tations, we use a subsampled updating strategy. This
idea comes from the fact that when one deals with rel-
atively long adaptive �lters, it is not necessary to up-
date the �lter at each new input sample because there
is not a signi�cant change in the �lter coe�cients after
one update. Hence, the subsampled updating strategy
combined with fast convolution techniques can help
to reduce the complexity. In the FNTF algorithm,
the prediction part is not computationally demand-
ing. Hence, we will apply the subsampled updating
just for the �ltering part of the FNTF and the predic-
tion part remains unchanged. Henceforth, the objec-
tive is to compute at time k the extrapolated Kalman
gain eCN;M;k of order N and the �lter WN;k from their
values at time k� L. First, a Schur procedure can be
used to compute the di�erent �lter outputs appearing
in the FNTF algorithm, and in particular, the L suc-
cessive a priori �ltering errors without updating the
adaptive �lters at these instants.

2.3 The Schur-FNTF algorithm

Let us introduce the negative of the �lter outputbd p
N
(k) = d (k)� �

p
N
(k) ; bdN (k) = d (k)� �N (k) ; (13)

and consider the following set of �ltering operations

FL (k)
4

=

2664
gH
L
(k)

gH
L
(kd)

�H
N;L;k

�bd p H

N;L;k

3775 4

=

264
[Pk�L 0N�M ]�
0N�MPkd�L

��
0 eCN;M;k�L

��
WN;k�L 0

�
375XH

N+1;L;k

gHL (k)
4

=

264 �H
M;L;k

e
p H

M;L;k

r
pf H
M;L;k

375 : (14)

where

XN+1;L;k = [XN+1(k�L+1) � � �XN+1(k)]
H ; (15)

is the (L� (N+1)) Toeplitz input data matrix. FL(k)
is a (8� L) matrix whose rows are the output of the
di�erent �lters appearing in the FNTF algorithm. In
particular the last row of FL(k) corresponds to the

(multi-step ahead predicted) adaptive �lter outputs

bd p
N;L;k

= dL;k � �
p

N;L;k
=

24 dH(k�L+1)
.
..

dH(k)

35 (16)

�

24 �H
N
(k�L+1jk�L)

...
�H
N
(kjk�L)

35 =

264 bd H
N

(k�L+1jk�L)
...bd H

N
(kjk�L)

375 :

The �rst column of FL (k) is

FL(k)uL;1=
�
pT(k) pT(kd) 1�
�1

N
(k�L) � bd p

N
(k�L+1)

�T
pT(k)=

�
1�
�1

M
(k�L) e

p

M
(k�L+1) r

pf

M
(k�L+1)

�
: (17)

where uL;n is the L�1 vector with 1 at the nth position
and 0 elsewhere.
The updating scheme of the FNTF algorithm can be
written as2664

�ePk 0N�M
��

0N�M ePkd ��eCN;M;k 0
��

WN;k 0
�

3775 = �k

264
[Pk�1 0N�M ]�
0N�M Pkd�1

��
0 eCN;M;k�1

��
WN;k�1 0

�
375 ; (18)

where �k is a (8� 8) matrix given by

�k =

"
I3 0 0
0 I3 0
0 0 �2(k)

# "
�p2(k) 0 0

0 �p2(kd) 0
0 0 I2

#
"

�p1(k) 0 0
0 �p1(kd) 0

�1(k) I2

#
: (19)

Hence, if we rotate both expressions for FL(k) in (14)
with �k�L+1, we obtain �k�L+1FL(k) which equals2664

�ePk�L+1 0N�M
��

0N�M ePkd�L+1��eCN;M;k�L+1 0
��

WN;k�L+1 0
�

3775XH
N+1;L;k =

26664
qL(k)
qL(kd)

�H
N;L�1;k �

�bdN (k�L+1) �bd p H

N;L�1;k

37775 (20)

where qL(k) =

26664
�H
M;L�1;k �

eM (k�L+1) e
p H
M;L�1;k

r
f
M
(k�L+1) r

pf H

M;L�1;k

37775 : (21)

We can see from the above that the transformation of
FL(k) by the application of the matrix �k�L+1 pro-
vides quantities (in boxes) that are the di�erent rows
of FL�1(k). This can be written more compactly as

S (�k�L+1FL(k)) = FL�1(k) ; (22)



where the operator S(M ) stands for: shift the �rst,
the fourth and the seventh rows of the matrix M one
position to the right and drop the �rst column of the
matrix thus obtained. Now this process can be re-
peated until we get F0(k) which is a matrix with no
dimensions. So the same rotations that apply to the
�lters at times k�l; l = L�1; : : : ; 0, also apply to the
set of �ltering error vectors Fl(k) over the same time
span. Furthermore, at each application instance, the
di�erent parameters of the next transformation ma-
trix can be calculated from the �rst column of Fl(k).
In particular, the successive a priori error �ltering are
hence computed over the block data without updating
the adaptive �lter. Now, since it is possible to com-
pute the parameters of the successive matrices �k,
it su�ces to accumulate them and apply the result-
ing matrix to the �lters in order to update them. In
fact, it turns out that because of the shift operation of
the Kalman gain, the accumulated matrix is a poly-
nomial matrix and hence, the updating of the �lters
is done via convolutions. This technique has already
been applied to the FTF algorithm leading to what we
have called the Schur-FTF algorithm [6]. This proce-
dure was the key ingredient for the derivation of the
FSU SFTF algorithm that presents a reduced com-
putational complexity when adapting long FIR �lters.
In the present case where the complexity of the pre-
diction part is small (12 M ), the Schur-FNTF pro-
cedure will be only used for the computation of the
successive a priori error �ltering. Thus, the two pre-
diction part FTF algorithms of order M are kept. A
remarkable property of the Schur-FNTF procedure is
the removal of the long-term round-o� error instabil-
ity due to the recursive computation of the likelihood
variable 
N;M (k). The recursions are interrupted since
the likelihood variable is computed at each new block
of data via an inner product (17). This fact has a big
importance for the real time implementation of the al-
gorithm.
Taking into account that �k in its factorized form (19)
has 11 non-trivial elements, the FNTF-Schur proce-
dure takes only 5:5L multiplications per sample. In-
ner products (�ltering operations) are only needed
for the initialization (computation of FL(k)). This is
the FNTF-Schur algorithm, which contrasts with the
Levinson-style FNTF algorithm in (9).

2.4 The FSU FNTF algorithm

Having computed the successive a priori error �lter-
ing, the issue now is the computation of the estimated
�lter at time k from its value L instants before.

One �nds straightforwardly�
WN;k 0

�
=
�
WN;k�L 0

�
+ �HN;L;k

�eCN;M;k 0
�
; (23)

where

�HN;L;k = [�N (k�L+1) � � � �N (k)]

eCN;M;k =

264 eCN;M;k�L+1

...eCN;M;k

375 : (24)

As was shown in the previous section, �HN;L;k is com-
puted with the Schur-FNTF algorithm. On the other
hand, the extrapolated Kalman gain is given by� eCN;M;k 0

�
=

� eCN;M;k�1 0
�
�
� eSM+1;k 0N�M

�
+

�
0N�M eUM+1;kd

�
: (25)

From the above equation, it is easy to see that
for i = 1; : : : ; L :�eCN;M;k�L+i 0

�
=
�
0i eC0:N�i

N;M;k�L

�
(26)

�

iX
l=0

�eSM+1;kl 0N�M
�
Zl +

iX
l=0

�
0N�M eUM+1;kl

�
Zl ;

where Z is the lower (M � M ) shift matrix (ones
on the �rst subdiagonal and zeros elsewhere) and
kl = k�L+i�l. In particular, we see from (26)
that the Kalman gain

�eCN;M;k 0
�

can be obtained

from
�
0L eC0:N�L

N;M;k�L

�
and the eSM+1;k�l; eUM+1;k�l; for

l = 0; : : : ; L. Rewriting (26) for every row gives the
Kalman gain matrix eCN;M;k in term of the Kalman

gain vector eCN;M;k�L�eCN;M;k 0
�

=
��eCN;M;k�L 0

�
Zi
�
i=1:L

�

"
iX

l=0

�eSM+1;kl 0N�L
�
Zl

#
i=1:L

+

"
iX

l=0

�
0N�M eUM+1;kl

�
Zl

#
i=1:L

;(27)

where the notation [ai]i=1:L stands for the matrix in
which the ith row is ai. The �rst term of the right hand
side of (27) is a (L� (N +1)) Toeplitz matrix and the
two others are (L � (N + 1)) sparse matrices. Hence
the product in (23) decomposes in three parts: the
�rst one can be done e�ciently by using fast convolu-
tion techniques. When the �lter to adapt is relatively
large, the convolution is implemented with the FFT
Technique (Overlap-Save method). This is achieved in�
2N+1

L
+ 1

� FFT (2L)
L

+ 2N+1
L

multiplications per sam-
ple, where FFT (m) is the computational complexity
of the Fourier transform of a sequence of length m.
The product of �N;L;k with the second and third ma-
trix of the right hand side of (27) is done straigh-
forwardly with L + 3M multiplications per sample.



Table : FSU FNTF Algorithm

# Computations Cost per L samples

1

26666664
gHL (k)

gHL (kd)

�
p H

N;L;k

�

bd p H

N;L;k

37777775 =

26666664
[Pk�L 0N�M ]

[0N�MPkd�L]h
0 eCN;M;k�L

i
[WN;k�L 0]

37777775 XH
N+1;L;k (3 + 2N+1L )FFT(2L) + 4(N+1)

2 Schur-FNTF Algorithm :

Input: gL(k); gL(kd); �
p

N;L;k ; �
bd p

N;L;k

Output: �k�L+i i = 1; � � � ; L ; �N;L;k 5:5L2

3 Computation of:
heCN;M;k 0

i
; see (27) 2(M+1)L

4 [WN;k 0] = [WN;k�L 0] + �HN;L;k

heCN;M;k 0
i

(1 + 2N+1L )FFT(2L) + 2(N+1) + :5L2 + 2ML

Total cost per sample 4(1 + N+1
L )

FFT(2L)
L + 6N+1L + 6L+ 16M

The computation of the two sums in(27) is done with
2(M+1)L additions. The Overlap-Save method is also
used to compute the product (14) which is needed for
the initialization of the Schur procedure. The result-
ing FSU FNTF algorithm is summarized in Table I.

3 Conclusions

The computational complexity of the FSU FNTF

algorithm is O(4N+1
L

FFT (2L)
L

+ 6N
L
+ 6L+ 16M ) op-

erations per sample. This can be very interesting
for long �lters. For example, when (N;L;M ) =
(4095; 256; 16); (8191;256; 16) and the FFT is done via
the split radix (FFT (2m) = mlog2(2m) real multipli-
cations for real signals) the multiplicative complexity
is respectively 0:6N and 0:4N , compared to 7N for the
FTF algorithm, the currently fastest RLS algorithm,
and 2N for the FNTF algorithm. The number of ad-
ditions is somewhat higher. The cost we pay is a pro-
cessing delay which is of the order of L samples. The
low computational complexity of the FSU FNTF when
dealing with long �lters and its performance capabili-
ties render it very interesting for applications such as
acoustic echo cancellation.
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