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Motivation and outline of this work

We consider the uplink and the downlink of a multiuser
wireless system with one base station andK user termi-
nals (single-cell case). Each user is affected by a position-
dependent path loss, fixed in time, and by a slowly time-
varying frequency-selective fading channel modeled asM par-
allel block-fading channels. We study the system throughput
(sum rate) versusEb/N0 under hard fairness and proportional
fairness constraints.

By “hard fairness” we mean a system where each user
transmits at its own desired rate in every channel condition.
This corresponds to the so-calleddelay-limited capacity of
fading multi-access channels [1]. When no fairness is imposed,
the notion of throughput (or ergodic) capacity region [2]
becomes relevant: this is the long-term average rate region
achievable when the users adapt their rate and power according
to the instantaneous channel conditions.1 It is well-known
that the maximumlong-term averagethroughput is achieved
by letting only the user with the best channel transmit on
each time-frequency coding interval (referred to as ‘slot”in
the following) [3], [2]. However, in a cellular environment
where users are at different distance from the base station,
this strategy would result in a very unfair resource allocation:
basically, only the users closest to the base station would
be allowed to transmit. Hence, various scheduling algorithms
aiming at maximizing the long-term average throughput sub-
ject to some fairness constraint have been proposed. Among
these, the Proportional Fair Scheduling (PFS) algorithm [4]
enjoys many desirable properties and was adopted in some
evolutionary 3G wireless communication standards [5] for
delay-tolerant data-oriented communications.

Our analysis allows us to quantify the effect of im-
posing “hard-fairness” (the delay-limited setting) versus
“proportional-fairness” (the delay-tolerant setting) ina cellular
environment, for givenM , K and channel statistics. For finite
K, we find simple iterative resource allocation algorithms that
provably converge to the optimal delay-limited throughput.

1When coding over an arbitrarily large number of fading blocks is allowed,
the same ergodic capacity region can be achieved by fixed-ratevariable-power
transmission. However, due to our assumption of block-fadingchannel, in this
work we assume that a coding interval spans a single fading realization. Hence,
the variable rate and power scheme is in place.

Also, in the limit of very largeK and finiteM we find closed-
form expressions for the delay-limited throughput. We show
that, for both optimal and orthogonal signaling, the optimal
strategy in the limit of largeK consists of letting the users
transmit on their own best subchannel only, irrespectivelyof
the other users. This result suggests a system where the users
are able to “listen wideband”, i.e., measure their channel gain
on all theM subchannels, and “talk narrowband”, i.e., they
will transmit only on their best subchannel. This feature is
sometimes referred to as “Cognitive Radio”, a technology that
is gaining an increasing interest also in the standardization
environment.

In the case of PFS, we find a simple closed-form expression
for the throughput in the considered cellular environment that
holds for anyK andM .

Finally, we carry out a closed-form analysis of the through-
put versus systemEb/N0 in the high and low spectral ef-
ficiency regions, for all systems under consideration. Our
analysis shows that, in the high spectral efficiency (high-
SNR) region, the penalty incurred by imposing hard-fairness
is generally small. Furthermore, in some cases of practical
interest (with reasonably large but finiteK), the optimal
delay-limited system may outperform PFS for high spectral
efficiency. On the contrary, the gain of PFS overany delay-
limited system can be significant in the low spectral efficiency
region (low SNR).

Due to the strict pages limitations of this extended abstract
submission, our results shall be only outlined and all proofs
and many formulas shall be omitted. They can be found in
[6], available from the authors upon request.

Summary of the results

Because of uplink-downlink duality [7], our results apply
to both uplink (multi-access channel) and downlink (broadcast
channel). This statement is proved formally in [6]. Here, we
focus on the notation for the MAC without loss of generality.
We consider the channel model

Y m =

K
∑

k=1

√

dm
k Xm

k + Nm, m = 1, . . . ,M (1)

where m is the sub-band index, andNm ∼ CN(0, N0).
This is an accurate model for a slowly-varying MAC with



fading where the system bandwidth isM times larger than the
channel coherence bandwidth. We study the systemspectral
efficiency, is given by

C =
Γ

M
(2)

and expressed in bit/s/Hz, versus the systemEb/N0, defined
as

(

Eb

N0

)

sys

=

∑K
k=1 Ek

N0

∑K
k=1 Rk

(3)

where Ek is the total transmit energy of userk, and Rk

denotes the total number of bit per one use of theM parallel
channels (bits perM dimensions). The quantity

(

Eb

N0

)

sys
is

relevant in the case where there is a total sum-power constraint
(downlink), or when the users are statistically symmetric
(uplink).

Channel statistics.In cellular communications, signal prop-
agation is characterized by a frequency flat factor that depends
on the distance between the user terminal and the base station
(path loss), and by a frequency selective “small scale” fading
that depends on the local scattering environment around the
user terminal. The path loss varies so slowly in time with
respect to the signal bandwidth that it can be considered
constant forever. This corresponds to the realistic assumption
that users do not change significantly their distance from the
base station during a large number of consecutive slots. On
the contrary, the small-scale fading changes in time depending
on the channel Doppler bandwidth. In practice, its coherence
time is such that it can be considered constant on each slot,
but changing according to some stationary ergodic (possibly
correlated) process from slot to slot. This model is referred to
as block-fading.

We take into account these two effects by lettingdm
k =

skfm
k , wheresk denotes the path loss of userk (symbol s

stands for “slow”) andfm
k is the frequency-selective block

fading of userk in channelm (symbol f stands for “fast”).
Clearly, sk and fm

k are mutually statistically independent, as
they are due to completely different propagation effects.

We shall assume that the users are uniformly distributed in
the unit-circle cell, but for a forbidden circular region ofradius
δ centered around the base station, where0 < δ < 1 is a fixed
system constant. We consider a normalization such that the
loss at the cell border is equal to 1 (clearly, all results canbe
scaled by a constant factor equal to the loss at the cell border,
for a given cell size and loss exponent). It will appear in the
following that a key role in performance analysis is played by
the cdf of the random variablesmax{f1, . . . , fn}, wheres is
distributed as the path loss of a random user, andfi are i.i.d.
small-scale fading variables, distributed asexp(−z), z ≥ 0,
(i.e., chi-squared with 2-degrees of freedom). The relevant cdf,
denoted byFs max{f},n(x), is given by

Fs max{f},n(x) =
1

1 − δ2

1

x2/α

∫ x2/α

x2/αδ2

(

1 − e−yα/2
)n

dy

(4)

whereα ≥ 2 is referred to as “path-loss exponent”. Remark-
ably, Fs max{f},n(x) can be given in closed form in several
cases of interest (see [6]).

Results for finite K and M . The aggregate rate and
aggregate energy per symbol of userk are given by

Rk =

M
∑

m=1

Rm
k , k = 1, . . . ,K (5)

Ek =

M
∑

m=1

Em
k , k = 1, . . . ,K (6)

respectively, whereRm
k and Em

k denote the rate and the
energy per symbol allocated by userk on subchannelm.
For orthogonal multiple-access, we letΘ

m = (Θm
1 , . . . ,Θm

K),
whereΘm

k denotes the resource-sharing fraction of userk over
channelm.

In a “hard-fainess” (delay-limited) situation, the ratesRk

are fixed a priori, and the system has to allocate transmit
energies in order to let the rateK-tuple inside the achievable
rate region. We wish to find the partial rates allocation (andthe
resource-sharing fractions in the case of orthogonal signaling)
in order to minimize the required(Eb/N0)sys to maintain a
given rateK-tuple.

For optimal signaling, lettingπm denote the permutation
that sorts the gainsdm

k in increasing order, the required
transmit energy per symbol of userπm

k in channelm is given
by

Em
πm

k
=

N0

dm
πm

k



exp





∑

i≤k

Rm
πm

i



− exp

(

∑

i<k

Rm
πm

i

)



 (7)

Optimizing the partial ratesRm
k in order to minimize

(Eb/N0)sys is a convex minimization problem that can be
solved with standard tools. In particular, in [6] we give a sim-
ple iterative block-coordinate descent algorithm that provably
converges to the optimum.

For orthogonal signaling, the transmit energy per symbol of
userk in subchannelm is given by

Em
k = Θm

k

N0

dm
k

(exp(Rm
k /Θm

k ) − 1) (8)

The minimization of(Eb/N0)sys with respect to{Θm,Rm :
m = 1, . . . ,M} is also a convex optimization problem. In
fact, it can be checked that the functiong(x, y) = x exp(x/y)
is convex. Since the constraints

M
∑

m=1

Rm
k ≥ Rk, k = 1, . . . ,K

and
K
∑

k=1

Θm
k ≤ 1, m = 1, . . . ,M

with Rm
k ≥ 0 andΘm

k > 0 are also separable, we can use again
a block-coordinate descent algorithm and have a convergent
iterative optimization.



In a delay-tolerant situation, the user rates can be adapted
according to their instantaneous channel conditions. We let
SNR = Etot/N0 denote the transmit SNR in each slot, where
Etot is the total transmit energy. We assume that the channel
gains are independent but not necessarily identically dis-
tributed across the users, and symmetrically distributed across
the channels, that is, for any permutationπ of {1, . . . ,M},
the joint cdf of the channel gains satisfiesF (d1

k, . . . , dM
k ) =

F (dπ1

k , . . . , dπM

k ), for all k. This means that no subchannel
is statistically worse or better than any other. However, the
users might have different channel gain distributions, i.e., our
analysis is not restricted to the case of symmetric users, asin
[3], [4].

In order to cope with users in different propagation con-
ditions (here, specifically, at different distance from thebase
station) the PFS algorithm has been proposed [4]. In the limit
of large fairness interval (i.e., when the interval over which
fairness is imposed grows to infinity) we have the following
result:

Theorem 1:For any givenK and fixed path loss com-
ponentss = (s1, . . . , sK), under the channel gain statistics
defined above, the long-term average throughputT achieved
by PFS is given by

T =
M

K

K
∑

k=1

∫ ∞

0

log(1 + skxSNR)dFmax{f},K(x) (9)

whereFmax{f},K(x) is the cdf ofmax{fm
1 , . . . , fm

K }, inde-
pendent ofm by the symmetry assumption. �

As a corollary, it follows that the average spectral efficiency
C as a function of(Eb/N0)sys, where expectation is taken also
with respect to the (random) path loss, is given implicitly by

C =

∫ ∞

0

log2(1 + xSNR)dFs max{f},K(x)

(

Eb

N0

)PFS

sys

=
SNR

C
(10)

Figs. 1 and 2 compare the spectral efficiency achieved by
PFS and delay-limited systems for finite number of usersK =
10, 20, 30, 50, 100 (in Fig.2 we show only the caseK = 10
andK = ∞ for the optimized-orthogonal system for the sake
of clarity). In all cases, spectral efficiency improves withK.
This effect is known asmultiuser diversity. However, the effect
of multiuser diversity is quite different in the delay-limited
and delay-tolerant setting. While for the delay-tolerant systems
increasingK yields a gain in terms of(Eb/N0)sys for all
spectral efficiencies (roughly, an horizontal shift of theC vs.
(Eb/N0)sys curve), for the delay-limited systems increasingK
yields a change only for large spectral efficiency. This effect
will be analyzed in depth in the asymptotic case ofK → ∞,
as seen next.

Results for K → ∞ and finite M . Under mild conditions
(given in [6]) on the fading and path-loss distributions, satisfied
by the model introduced before, the performance of delay-
limited systems in the limit of large number of users is given
by the following results.
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Fig. 1. Spectral efficiency vs. systemEb/N0 for PFS and optimal delay-
limited signaling. The curve for conventional TDMA/FDMA andK = ∞

users is shown for comparison. The channel parameters areM = 10, path
loss exponentα = 2 and radius of the forbidden regionδ = 0.01.
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Fig. 2. Spectral efficiency vs. systemEb/N0 for PFS and optimized-
orthogonal delay-limited signaling. The curve for conventional TDMA/FDMA
and K = ∞ users is shown for comparison. The channel parameters are
M = 10, path loss exponentα = 2 and radius of the forbidden region
δ = 0.01.

Theorem 2:As K → ∞ the minimum (Eb/N0)sys for
given system spectral efficiencyC is given by
(

Eb

N0

)

sys

= log(2)

∫ ∞

0

2CFs max{f},M (x) dFs max{f},M (x)

x
(11)

This is achieved by letting each user transmit on its best
subchannel only, and by using superposition coding and suc-
cessive decoding on each subchannel. �

Theorem 3:As K → ∞ the minimum (Eb/N0)sys for
given spectral efficiencyC achieved by orthogonal signaling
is given by
(

Eb

N0

)

sys

= log(2)

∫ ∞

0

exp
(

1 + W
(

µx−1
e

))

− 1

1 + W
(

µx−1
e

)

dFs max{f},M (x)

x
(12)

where W (x) is Lambert’s W function and whereµ is the
solution of

∫ ∞

0

dFs max{f},M (x)

1 + W
(

µx−1
e

) =
1

C log(2)
(13)

This is achieved by letting each user transmit on its own



best subchannel only, and by using orthogonal signaling with
optimized fractions on each subchannel. �

We shall compare the optimal and the optimized-orthogonal
delay-limited systems of Theorems 2 and 3 with a conventional
TDMA/FDMA system, where each user chooses its own best
channel to transmit, but resource allocation (the fractionsΘ

m)
are proportional to the users’ requested rates, disregarding
the actual channel gains. The performance of conventional
TDMA/FDMA is given by

Theorem 4:As K → ∞ the (Eb/N0)sys for given system
spectral efficiencyC, achieved by letting each user transmit on
its best subchannel only and allocating a fraction of channel
uses proportional to its individual rate, is given by

(

Eb

N0

)

sys

=
2C − 1

C

∫ ∞

0

dFs max{f},M (x)

x
(14)

�

Low and High spectral efficiency behaviors.Our compar-
ison is based on the asymptotics of spectral efficiencyC as a
function of (Eb/N0)sys. In general, the low spectral efficiency
behavior (C ↓ 0) is characterized by the minimum system
Eb/N0, denoted by(Eb/N0)min and thewideband slopeS0

(see definitions in [8]). The high spectral efficiency behavior
(C → ∞) is characterized by the high-SNR slopeS∞ and by
the horizontal dB penaltyL∞ (see definitions in [9]).

All the delay-limited systems achieve the same(Eb/N0)min,
given by

(

Eb

N0

)

min

= log(2)

∫ ∞

0

dFs max{f},M (x)

x
(15)

The advantage of optimal over conventional delay-limited
signaling is evidenced by the wideband slope, provided by

Theorem 5:As K → ∞ the wideband slopeS0 (in
bit/dimension/3dB) of the spectral efficiency vs.(Eb/N0)sys

curve for the delay-limited systems is given by

S
optimal
0 =

∫ dFs max{f},M (x)

x
∫ Fs max{f},M (x)

x dFs max{f},M (x)
(16)

S
opt.orthogonal
0 =

2
∫ dFs max{f},M (x)

x
(

∫

1√
x
dFs max{f},M (x)

)2 (17)

S
conv.tdma/fdma
0 = 2 (18)

�

The low spectral efficiency behavior of the PFS system is
easily obtained and we have

(

Eb

N0

)PFS

min

=
log(2)

∫∞
0

x dFs max{f},K(x)
(19)

Notice that, under mild conditions on the fading distribution,
(Eb/N0)

PFS
min goes to zero asK → ∞. Using extremal

statistics theory, we can easily show that
(

Eb

N0

)PFS

min
goes to

zero asO( 1
log K ).

As far asS0 is concerned, we have

S
PFS
0 =

2 (E[s]E[max{fm
1 , . . . , fm

K }])
2

E[s2]E[(max{fm
1 , . . . , fm

K })2]
(20)

Again, from extremal theory we get that

lim
K→∞

S
PFS
0 =

2E[s]2

E[s2]

By comparing (15) and (19) under the cellular channel statis-
tics, we notice that for low specral efficiency the gain of the
opportunistic scheme over the delay-limited scheme is two-
fold: on one hand it achieves larger multiuser diversity as
K ≫ M , on the other hand it achieves a “Jensen’s inequality”
gain due to the convexity of1/x. We conclude that for low
spectral efficiency the cost of imposing a strict constraint
on rate and delay is very high. In fact, the optimal delay-
limited system does not benefit in terms of(Eb/N0)min over
a conventional orthogonal system (or a single-user system). In
this regime, multiuser diversity appears only as a second-order
effect, as a gain in the wideband slope.

Next, we focus on the high spectral efficiency regime. In this
case, the high-spectral efficiency slope is given byS∞ = 1 for
all systems under consideration. However, systems may differ
significantly in their horizontal dB penalty. The conventional
TDMA/FDMA system yields (calculation is immediate)

L
conv.tdma/fdma
∞ = log2

(∫ ∞

0

dFs max{f},M (x)

x

)

(21)

For the optimal delay-limited signaling, we have the following
surprising behavior, already noticed in [10, Section 5.2.2] for
the case of frequency-flat path-loss only:

Theorem 6:As K → ∞ the horizontal dB penalty of the
optimal delay-limited system is given by

L
optimal
∞ = − log2

(

F−1
s max{f},M

(

1 −
1

C

))

+ O(1) (22)

�

In general, in all cases whereFs max{f},M (x) is strictly in-
creasing for all sufficiently largex, the horizontal dB “penalty”
diverges to−∞, indicating that optimal delay-limited sig-
naling yields unbounded dBgain over the corresponding
conventional TDMA/FDMA system. The following result pro-
vides the horizontal dB penalty of optimized-orthogonal delay-
limited signaling.

Theorem 7:As K → ∞ the horizontal dB penalty of the
optimized-orthogonal delay-limited system is given by

L
opt.orthogonal
∞ = −

∫ ∞

0

log2(x)dFs max{f},M (x) (23)

�

Finally, for the opportunistic PFS system we obtain, after
simple direct calculation,

L
PFS
∞ = −

∫ ∞

0

log2(x) dFs,max{f},K(x) (24)

In the limit of large K, we have the behaviorLPFS
∞ =

O(log log K), typical of multiuser diversity systems [4].



Comparing (21), (23) and (24) we notice that
L

conv.tdma/fdma
∞ ≤ L

opt.orthogonal
∞ by Jensen’s inequality. In

the usual case where the number of users is much larger
than the number of subchannels (K ≫ M ) we have that
Lopt.orthogonal

∞ ≤ LPFS
∞ . Note that the gain of PFS comes

only from K > M and the diversity associated with it. ForM
growing large, the gain vanishes. Thus, the wider the band,
the less advantage for PFS in terms of spectral efficiency,
despite the looser delay constraint.
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Fig. 3. Spectral efficiency vs. systemEb/N0 for the optimal, optimized-
orthogonal and conventional TDMA/FDMA delay-limited systems for K =

∞. The channel parameters areM = 10, path loss exponentα = 2 and
radius of the forbidden regionδ = 0.01. The dotted lines correspond to the
low spectral efficiency approximation.
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Figs. 3, 4, 5 and 6 show the low and high spectral efficiency
behavior of all systems considered. In particular, we observe
that, consistently with Theorem 6, the gain of the optimal
delay-limited signaling over orthogonal signaling becomes
unbounded asC → ∞.
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