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Abstract— We study joint optimization of transmit
power and scheduling in a multicell wireless network.
Despite promising significant gains, this problem is known
to be NP-hard and thus difficult to tackle in practice.
However, we show that this problem lends itself to analysis
for large wireless networks which allows simpler modeling
of inter-cell interference. We introduce a low complexity
greedy algorithm that is efficient for large networks. As the
number of users per cell increases, the solution converges
to all cells being active and employing maximum SINR
scheduling, which can be implemented in a distributed
manner. Using simulation parameters equivalent to those
used in realistic wireless networks we show that the
scheme, though simple, exhibits substantial gains over
existing resource allocation schemes.

I. INTRODUCTION

Full reuse of spectrum, in any of the dimensions
allowed by multiple access schemes (time or frequency
slots, codes etc.), is envisioned to offer much greater
capacity in wireless data networks. System level perfor-
mance, however, is adversely affected by an increased,
sometimes unbearable, level of interference due to ag-
gressive reuse of the spectral resource. Inter-cell inter-
ference mitigation through smart power allocation will
therefore play an important role in realizing the benefits
of full spectrum reuse. Similarly, recently developed dy-
namic resource management techniques exploiting multi-
user diversity [1] will also offer increased system capac-
ity. Clearly multi-user diversity gain is achieved at the
expense of throughput fairness, which may be restored
by modifying the scheduling criteria in one of several
possible manners [2]. It is evident that allocating power
and scheduling users jointly is the key to achieving the
maximum gain.

A fundamental point in the joint multicell power

allocation and scheduling problem is that a huge number
of degrees of freedom (governed by the number of users
times the number of possible power allocations) can
be potentially used to maximize the network capacity
in an interference-limited setting. However, despite the
potential of significant gains, this problem is NP-hard.
An optimal solution will involve finding the power vector
and set of scheduled users that will maximize network
capacity.

A number of approaches to this problem can be en-
visioned which may be either centralized or distributed.
Attempting to find the optimal solution, e.g. through an
exhaustive search, requires centralized processing with
knowledge of the complete system parameters. This
is not a trivial task given the enormous size of the
optimization space. Alternatively, by reformulating the
objective function, convex optimization techniques may
be applied [3], though this is still centralized and not
optimal with respect to system capacity. A completely
distributed approach can also be considered [4] which
requires knowledge of local channel information. The
point is that one can approach this problem in many
different ways with varying degrees of complexity to
obtain different amounts of capacity gain.

In this paper we use the interference-ideal network
model [5] and recent results [6] to propose a greedy
algorithm for power allocation and user scheduling with
the goal of maximizing the network capacity. The al-
gorithm is based on the idea of switching off some
cells to decrease system interference and thus obtain a
system-wide gain. Simulation results show that as the
number of users increases, the solution converges to
transmitting with full power in all cells, and scheduling
the user with best SINR in each cell. The advantage
of this result is that it provides a distributed solution



to the joint power allocation and scheduling problem
for networks with many users. The proposed scheme is
simple in nature, and by using simulation parameters
equivalent to those in realistic wireless networks our
scheme exhibits substantial gains over existing resource
allocation schemes.

In Section II we outline the system model. We then
proceed to formulate the joint power allocation and
scheduling problem in Section III, and give the objective
function we wish to optimize. In Section IV previous
results are extended and a greedy algorithm for power
allocation and user scheduling is proposed. The paper is
concluded in Section V with numerical results comparing
the performance of the greedy algorithm with traditional
reuse and full reuse schemes.

II. SYSTEM MODEL

We consider a multicell system in which many access
points (APs) communicate with user terminals (UTs)
over a coverage area. We are particularly interested in the
downlink in which the APs send data to the UTs. We as-
sume that the system employs the same spectral resource
in each cell, giving rise to an interference-limited system
(Fig. 1), and power control is used in the network in an
effort to preserve power and limit interference and fading
effects. This results in a peak power constraint Pmax

at each AP. Within each cell, we consider a multiple
access scheme in which an orthogonally divided resource
(e.g. codes, time, frequency etc.) is used to separate the
transmissions to the cell users. Each cell user is allocated
an intra-cell orthogonal resource slot, but due to full
reuse the user “sees” interference from all neighboring
co-channel cells.

A. Signal Model

The downlink of the multicell system above is con-
sidered, with N cells and Un users randomly distributed
over each cell n. To simplify notation we focus on the
single antenna case. Denoting the channel gain between
any arbitrary AP i and user un in cell n by Gun,i ∈ R

+,
and assuming perfect channel state information (CSI) at
the receiver, the received signal Yun

at the user is given
by

Yun
=
√

Gun,nXun
+

N
∑

i6=n

√

Gun,iXui
+ Zun

where Xun
is the signal from the serving AP,

∑N
i6=n

√

Gun,iXui
is the sum of interfering signals from

other cells, and Zun
is additive white Gaussian noise.
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Fig. 1. An interference limited cellular system employing full
resource reuse

The signal to interference-plus-noise ratio (SINR) is
given by

Γun
=

Gun,nE|Xun
|2

E|Zun
|2 +

N
∑

i6=n

Gun,iE|Xui
|2

Denoting the transmit power used by an AP to serve
a user un by Pun

, we have E|Xun
|2 = Pun

. We also
assume E|Zun

|2 = σ2. Note that Gun,i reflects the
composite channel gain, possibly including fast fading.

III. JOINT POWER ALLOCATION AND SCHEDULING

PROBLEM

The joint power allocation and scheduling problem
consists of finding the power allocation vector and
scheduling vector that will maximize the chosen utility
function: network capacity. To facilitate the formulation
of the problem, we state the following definitions:

Definition 1: A scheduling vector U contains the set
of users simultaneously scheduled across all cells:

U =
[

u1 · · · un · · · uN

]

,

where [U ]n = un. Noting that 1 ≤ un ≤ Un, where
Un is the number of users in cell n, the feasible set of
scheduling vectors is given by

U = {U | 1 ≤ un ≤ Un}.
Definition 2: A transmit power vector P contains the

transmit power values used by each AP to communicate
with their respective user:

P =
[

Pu1
· · · Pun

· · · PuN

]

,



where [P ]n = Pun
. Due to a peak power constraint,

0 ≤ Pun
≤ Pmax,

the feasible set of transmit power vectors is given by

P = {P | 0 ≤ Pun
≤ Pmax}.

A. System Performance

The SINR for scheduled users will depend on the
scheduling vector U , as well as on the transmit power
vector P . We can express the SINR in cell n as

Γ([U ]n, P ) =
Gun,nPun

σ2 +
N
∑

i6=n

Gun,iPui

.

Assuming an ideal link adaptation protocol and perfect
CSI at the transmitter, the per-cell network capacity will
be a function of the scheduling vector and transmit power
vector. This can be expressed in bits/sec/Hz/cell using the
Shannon capacity,

C(U , P ) ,
1

N

N
∑

n=1

log (1 + Γ([U ]n, P )) . (1)

B. Optimal Power Allocation and Scheduling

Taking (1) as the objective function we want to
maximize, the optimal power allocation and scheduling
problem can be formulated as follows:

(U∗, P
∗) = arg max

U∈U
P∈P

C(U , P ). (2)

This consists of finding the optimal scheduling vector
U

∗ and transmit power vector P
∗ which maximize the

network capacity. However, the solution is hard to realize
due to the non-convexity of the problem. Indeed, some
efforts have been made in this regard by modifying the
objective function to make it convex [3], but compre-
hensive results for this problem still remains an open
issue.

One way to simplify this problem is by first adopting
a power control policy and then scheduling the users
to maximize capacity. Thus, if we assume a received
signal-level based power control policy [7], where the
AP adjusts its transmit power so that the user attains
a target received power, the scheduling vector can be
calculated based on this knowledge. If we denote the
target received power as R∗ then we have the transmit
power used to communicate for each user,

Pun
= min

{

R∗

Gun,nPmax

, 1

}

· Pmax,

and the new feasible set becomes

PR =

{

Pu1
, . . . , PuN

| Pun
∈

[

R∗

Gun,n

, Pmax

]}

.

The problem then transforms to

(U∗, P
∗) = arg max

U∈U
P∈PR

C(U , P )

For this problem a surprisingly simple and optimal
(under the proposed received signal-level policy) solution
is obtained [5].

Lemma 1: In a large full reuse network employing a
received signal-level power control policy, the optimal
scheduling vector consists of users with the highest intra-
cell channel gain Gun,n.

Proof: Refer to [5].
We draw the reader’s attention however to the fact that
extracting the maximum capacity gain in general will
involve joint optimization of user scheduling and the
power control policy. This will be discussed in the next
section.

IV. BINARY POWER ALLOCATION AND SCHEDULING

An interesting result pertaining to problem (2) for the
two cell case is presented in [6]. It is shown that in
this case the optimal power allocation for any scheduling
vector lies in the binary feasible set

PB = {Pu1
, . . . , PuN

| Pun
= 0 or Pun

= Pmax}.

Moreover, it is suggested by simulations that with a
greater number of cells this binary allocation is close
to optimal for the majority of the cases. This motivates
the adoption of the binary feasible set of transmit powers,
PB also for an arbitrary number of cells, and allows us
to restate the optimization problem as

(U∗, P
∗) = arg max

U∈U
P∈PB

C(U , P ) (3)

It is interesting to note that this problem can be in-
terpreted as a dynamic version of frequency reuse pat-
terns. A solution to this problem will adjust the reuse
pattern by switching on and off cells as required so
that system capacity is maximized. We notice that since
the optimization variables have a discrete domain, an
optimal solution can in principle be obtained through an
exhaustive search. However, this proves to be impractical
due to the size of the search space: |U| = UN , where
U is the number of users in each of the N cells, and
|PB| = (2N − 1).



Intuitively, as the number of users in each cell in-
creases, the probability of finding a user having a high in-
cell channel gain, while being sufficiently protected from
inter-cell interference, increases. As the number of users
increases, this will result in the following scheduling
and power allocation vectors, as also later suggested by
numerical results in Section V:

[P ∗]n = Pmax

[U∗]n = arg max
un

Γ(un, P
∗).

In this scheme all cells will be on and the user with the
best SINR is scheduled; we thus call this scheme MAX-
SINR-ON. Note however, that with a small number of
users, or an alternate user scheduling policy, capacity
gains may be achieved by deactivating cells which do
not offer enough capacity to outweigh the degradation
caused through interference to the system. In what fol-
lows, using an assumption on the interference, we will
develope a low-complexity algorithm which determines
which (if any) cells are to be deactivated.

A. Low-Complexity Greedy Algorithm for Power Alloca-
tion and Scheduling

Using results for large idealized networks [5], we can
simplify the objective function given in (1) to propose
a low-complexity greedy algorithm for choosing which
cells (if any) to deactivate.

1) Interference-Ideal Networks: Full spectral reuse
has benefits in terms of increased spectral efficiency, but
excess interference diminishes the gain associated with
increasing reuse. Fortunately, full reuse networks lend
themselves to simpler modeling of the total interference
experienced by the user, due mostly to the large number
of interference sources adding up and averaging at the
receiver.

To obtain this simplified model we define the concept
of an interference-ideal network, as one in which for any
cell user, the total interference received by this user is
independent of its location in the cell. Mathematically,
a network with Non active cells is interference-ideal if,
for any user un and cell n ∈ Non,

Non
∑

i6=n

Gun,iPui
= G

Non
∑

i6=n

Pui
,

where G does not depend on the location of un. For-
tunately, the interference-ideal network is a good model

for a full reuse network with a large number of cells. For
large Non with all cells transmitting at Pmax, we have:

Non
∑

i6=n

Gun,iPmax ≈ 1/Non

Non
∑

i 6=n

Gun,i

Non
∑

i6=n

Pmax

where 1/Non

Non
∑

i6=n

Gun,i ≈ G, for large Non,

thus
Non
∑

i6=n

Gun,iPmax ≈ G(Non − 1)Pmax.

Intuitively the approximation above can be explained as
follows: No matter where the user is, within his cell, the
interference is the sum of all co-channel terms, each of
them with a power that depends on the distance from
the user to the co-channel APs. Because the user is
constrained in his cell and there are a large number
of isotropically distributed interferers, the sum power
depends little on the location of the user within his cell.
Moreover, the variation of the interference from the cell
center to the boundary in a dense network can be shown
to be quite small [5] and from an algorithmic design
point of view, G can be considered as the worst case,
best case or average out-of-cell channel gain. Note that
this model is employed in this paper only to obtain a
simplified algorithm, and not for the numerical results:
The numerical results presented in Section V are based
on a realistic channel model for all AP-UT links.

Under this idealized approach, if N is the set of active
cells the objective function from (1) simplifies to

Ĉ =
1

N

∑

n∈N

log

(

1 +
Gun,nPun

σ2 + (|N | − 1)GPmax

)

, (4)

and the optimization problem becomes,

(Û , P̂ ) = arg max
U∈U

P∈PB

Ĉ(U , P ). (5)

The procedure for finding an algorithm to solve the
problem in (3) is simplified by using (4). Later in Sec-
tion V numerical results obtained using realistic models
verify robustness of these algorithms with respect to our
assumption.

From (4) we find that no matter how many APs
transmit with full power all users see the same inter-
ference from individual APs. Thus, assuming that all
APs transmit at Pmax, complexity can be reduced by
employing the maximum SINR scheduler to obtain the
scheduling vector Û . Initially, letting

[P ′]n = Pmax,



then
Û = arg max

un

Γ(un, P
′).

As we assume that the interference received by any
AP is the same, a search can then be done over all
possible transmit power vectors to maximize network
capacity. However, even for this algorithm the search
over all possible transmit vectors (2N − 1) still poses a
major computational problem. Fortunately, the simplified
problem in (5) allows us to avoid searching over all
power vectors. We start by keeping all cells on, avoiding
unnecessary calculations if there are a sufficient number
of users and there is no need to turn off any cells.
According to (4), starting with [P ]n = Pmax and turning
off any cell will result in the same amount of reduction in
interference to the other cells. However, the decrease in
capacity depends on which cell is turned off. Therefore,
the user (cell) with the least SINR (which contributes the
least to capacity) can be allocated zero transmit power to
see if the gain in network capacity due to reduced inter-
ference is more than the capacity lost by turning the cell
off. If there is a gain, the cell is allocated 0 in the transmit
power vector and the same procedure is repeated with
the cell having the least SINR from the remaining cells.
When there is a loss in network capacity the procedure
is stopped, since turning off any of the remaining cells
will always result in a decrease in network capacity. The
pseudo-code for the low-complexity greedy approach is
detailed in Algorithm 1.

Even though a centralized entity is needed, from an
implementation point of view this algorithm significantly
reduces the combinations of transmit power vectors that
need to be examined from 2N − 1 to at worst N .
Furthermore, as users are scheduled on the basis of
SINR, this avoids having to do calculations over UN user
combinations. Compared to the full exhaustive search
required for the problem in (3), this algorithm requires
channel knowledge only pertaining to the scheduling
vector Û , which translates into significantly less signal-
ing overhead than gathering data on all users. Moreover,
there is no need for updating channel information at
every iteration (provided that the coherence time is more
than the run time of the algorithm).

B. Fairness-Capacity Trade-Off

In resource allocation there is always a trade-off
between fairness and capacity. In this work we address
a scheme for increasing the system capacity by deac-
tivating cells, so it is obvious that fairness issues will
arise. Measures to provide fairness, similar to the case

Algorithm 1 Low-Complexity Greedy Algorithm
1: [P (1)]n = Pmax, ∀ n
2: for n = 1 : N do
3: [U(1)]n = arg max

un

Γ(un, P (1))

4: end for
5: C(0) = 0
6: for i = 1 : N do
7: C(i) = C(U(i), P (i))
8: if C(i) < C(i − 1) then
9: break

10: else
11: P̂ = P (i)
12: [P (i + 1)]arg min

n
SINR([U(i)]n)

= 0

13: remove [U(i + 1)]arg min
n

SINR([U(i)]n)

14: end if
15: end for

of single-cell scheduling, e.g. by use of proportional-fair
type measures [8], can also be considered at the system
level. However, going into detail on this issue is beyond
the scope of this paper.

V. NUMERICAL RESULTS

In this section, we present performance results for
MAX-SINR-ON and the greedy algorithm based on
Monte-Carlo simulations. These algorithms are com-
pared against fixed reuse schemes with cluster size of
3 and 4, in which all cells transmit at Pmax. In order
to ensure a fair comparison, the fixed reuse scheme
selects users based on the maximum SINR rule, as do
MAX-SINR-ON and the greedy algorithm. A hexagonal
cellular system functioning at 1800 MHz is consid-
ered, consisting of 19 cells, each with a radius of 500
meters. Gains for all inter-cell and intra-cell AP-UT
channels are based on the COST-231 [9] path loss model,
including log-normal shadowing plus fast fading and
antenna gains as well. Log-normal shadowing is a zero
mean Gaussian distributed random variable in dB with
a standard deviation of σX dB. The fast fading is i.i.d.
with distribution CN (0, 1). Simulation parameters are
detailed in Table I.

We simulate the variation in network capacity as the
number of users is increased. Figure 2 shows that MAX-
SINR-ON and the greedy algorithm both outperform
fixed reuse, due to both having greater reuse. As the
number of users increases, all schemes improve due
to the multi-user diversity gain. However, MAX-SINR-
ON and the greedy algorithm also have a reuse gain.



TABLE I
SIMULATION PARAMETERS

Parameter Value
σX 10 dB

Transmit antenna gain 16 dB
Receive antenna gain 6 dB

Pmax 1 Watt
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Fig. 2. Network capacity vs. number of users for N = 19. Full
reuse combined with multi-user diversity provide significant gain as
the number of users increases.

When there are only a few users the greedy algorithm
outperforms MAX-SINR-ON because it turns off cells
to improve the network capacity. Note that for just one
user there is no multiuser diversity gain, and therefore
this demonstrates the gain associated with the greedy
approach for a round robin type of scheduling policy.
The network capacity gain of the greedy approach over
MAX-SINR-ON is almost 30%. As the number of
users increases, both MAX-SINR-ON and the greedy
algorithm converge to the same performance due to the
maximum SINR scheduling rule, and it is always best to
keep all cells on. Figure 3 demonstrates this by showing
that even for as few as U = 8 users, more than 95% of
the cells are kept active by the greedy algorithm.

A conclusive result would be comparing against the
optimal scheduling vector and transmit power obtained
through an exhaustive search, but Monte-Carlo simula-
tions prove impractical even for a small network (e.g. if
N = 19 and U = 8 then the number of combinations
are (2N − 1) · UN = 7.6 × 1022).

VI. CONCLUSION

We have addressed the problem of joint power allo-
cation and scheduling for multicell wireless networks.
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Fig. 3. The ratio of cells which transmit increases as the number
of users increases due to the increase in probability of finding a user
robust against interference.

We propose a low-complexity greedy algorithm which
successively turns off cells as long as the network
capacity increases. As the number of users increases,
the solution of the greedy approach results in all cells
being active and employing maximum SINR scheduling.
The proposed scheme exhibits a significantly increased
performance compared to having a fixed reuse pattern.
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