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Abstract— In recently introduced “multi-cell access”
schemes, cells (rather than users) compete for the spectral
resource. In a previous paper [1], a framework for such
a scheme was proposed, using only local channel infor-
mation. In the framework each cell competes for access
through a credit that is a function of the signal to noise
ratio of its scheduled user. Access is then given to a cell
with a probability dependent on the access function. In [1]
an ad-hoc choice of function was formulated. In this work
we investigate which access function actually optimizes
the system capacity, utilizing a numerical optimization
procedure. We obtain a surprsingly simple solution which
also corroborates previous results. For a realistic path loss
model we find that our multicell distributed access scheme
gives a 19% gain compared to having all cells on, and
more than a 50% increase in system capacity compared
to keeping a traditional static spectral reuse scheme.

I. INTRODUCTION

Spectral reuse planning plays an important role in
mitigating co-channel interference, which limits link
capacity of every transmit-receiver pair. This enables
links to operate at an acceptable signal to noise plus
interference ratio (SINR). However, such static reuse
schemes are not very efficient since they do not exploit
information available on variations in the underlying
physical layer to fully exploit the achievable capacity
gains. Clearly, by exploiting some form of coordination
between the different cells occupying the same spectral
resource, significant capacity gains can be attained.

Coordination usually implies communication of in-
formation to a centralized entity. In this case, channel
gain information of all users in all cells is collected by
a centralized controller that schedules co-channel users
on a given resource while incurring the least loss of
capacity due to inter-cell interference. This gives an in-
teresting trade-off between multi-user diversity [2] due to
intra-cell gain maximization and co-channel interference

minimization. Various approaches for exploiting inter-
cell coordination exist. In the downlink of CDMA data
networks, using a binary power allocation is shown to
provide gains over intermediate power alllocation [3]. In
[4], a centralized heuristic algorithm works by inserting
co-channel users one by one, as long as the channel
throughput increases. In [5] power-profile shaping based
resource assignment allows the access point (AP) to
transmit with varying power in different portions of
the frame and users are allotted slots according to the
amount of interference tolerated. Centralized, yet much
simplified schemes, have also been proposed, see e.g. [6].
However, even there a central network controller needs
to collect quite a lot of multi-cell channel state infor-
mation for all users. The idea behind these approaches
is that substantial gains can be achieved by switching
off transmission in cells which do not contribute enough
to the capacity to outweigh the interference degradation
caused by them to the rest of the network. However, in
a realistic network centralized multi-cell coordination is
hard to realize, especially in fast fading environments.

In this paper we address the problem of fully dis-
tributed coordination, and use the concept of multi-
cell access (MCA) schemes introduced in [1]. In MCA
schemes, network cells (rather than the users) directly
compete for access to the spectral resource. Thus, at
any given scheduling period, only a subset of the total
number of cells are active simultaneously. The other cells
stay silent for that scheduling period, but can compete
again during the next scheduling period. The difference
between MCA schemes and traditional cellular networks
is that the pattern of on-cells and off-cells is highly
irregular (cfr. Figure 1) from one scheduling period to
the next, depending on the channel state information of
the users. This dynamic aspect of the reuse allows for
significant capacity gains at network level.

MCA schemes are somewhat similar to the modified
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Fig. 1. Possible irregular reuse pattern at a given scheduling period
due to multi-cell access.

ALOHA protocol proposed in [7], where the uplink
transmit probability of users in the ALOHA protocol is
adapted to exploit multi-user diversity to maximize the
system throughput. Even though the goal of increased
capacity is the same, the modified ALOHA protocol is
for one common receiver (single-cell). MCA schemes,
on the other hand, consider concurrent interfering trans-
missions (multi-cell), and do not only exploit multiuser
diversity but also employ interference mitigation to ob-
tain network capacity gains. Similarly, [8] proposes a
framework for exploiting channel state information for
slotted ALOHA. The goal is achieving stable throughput,
again by optimizing the single-cell uplink access proba-
bility.

In [1], the proposed multi-cell access schemes works
by comparing the signal to noise ratio (SNR) of the best
user in each cell with a pre-given threshold. If the gain
falls below the threshold, the cell stays silent for that
period. Otherwise the APs transmits at full power. In
this work, we attempt to generalize the MCA scheme
by optimizing the probability of access as a function of
the SNR. Surprisingly, our results tend to fully justify
the use of the threshold function for the probability of
access function. We compare system capacity for the new
scheme with keeping all cells on, and fixed reuse pat-
terns. We show capacity gains of almost 20 % compared
to keeping all cells on, and over 50 % compared to fixed
reuse patterns.

II. SYSTEM MODEL

Consider a multicell system in which a set of APs
communicate with user terminals (UTs), all using the
same spectral resource.

A. Signal Model

We consider the downlink of an N cell system with Un

users distributed randomly in each cell n. The received
signal at user un is given by

Yun
=
√

Gun,nXun
+

N
∑

i=1
i6=n

√

Gun,iXui
+ Zun

,

where Gun,i is the channel gain between any arbitrary
AP i and user un in cell n, and Xun

is the signal from the
serving AP. The noise Zun

is additive white Gaussian.
The signal to interference-plus-noise ratio (SINR) is then
given by

Γun
=

Gun,nPun

N0 +
N
∑

i=1
i6=n

Gun,iPui

,

where Pui
= E[|Xui

|2] and N0 = E[|Zun
|2] is the ther-

mal noise power. Using the Shannon capacity, summing
over all the cells, we can express the network capacity
of the system (in bits/Hz/sec/cell) as

C =
1

N

N
∑

n=1

log2 (1 + Γun
) . (1)

III. ACCESS SCHEME

We now proceed to present the MCA scheme based on
a random access mechanism requiring only local channel
information. This enables us to find the expected network
capacity for such a system. Furthermore, we show how to
optimize this expected network capacity, given only the
fading statistics, through optimization of the probability
of access function.

In the proposed MCA scheme, a cell obtains permis-
sion to transmit when it has enough credit. To keep the
algorithm distributed, the credit is only based on the
intra-cell channel state information. The credit measures
how worthwhile to the overall network capacity a given
cell is at a given instant of time.

In this paper, the credit measure for each cell is given
by the SNR of the scheduled user. The scheduled user
is picked at random, and the long-term fairness of the
system is thus equivalent to round-robin scheduling.

A. Probabilistic access

In the proposed framework we further extend the
random access protocol idea to the multi-cell scenario,
i.e. a cell will be transmitting to its best user with
a probability derived from the credit. Thus, the MCA



scheme here lets the access point transmit to its user
with the best channel gain, with a given probability P(g),
where g is the channel gain of the user. The function
P(g) can take on any shape as long as it satisfies:

0 ≤ P(g) ≤ 1, g > 0, (2)

P(g2) ≥ P(g1), g2 > g1. (3)

B. Expected Network Capacity

In view of the random access mechanism described
above, we wish to evaluate the multi-cell network ca-
pacity. First, the expectation of a cell being activated is
given by

F =

∫ ∞

0
P(g)fG(g) d g,

where P(g) is the probability of cell activation for a cell
whose best user exhibits a channel gain g, and fG(g) is
the corresponding pdf for the distribution of the channel
gain of the cell users. For simplicity, and for creating
user fairness, we assume that the scheduled user in each
cell is picked at random. This gives an approximation to
round-robin scheduling.

1) Interference modeling: To allow a decentralized
algorithm, we model the interference so that it is in-
dependent of the individual realizations of the inter-cell
channel gains.

To this end we use the interference-ideal network
model, valid for large full reuse networks [9], which
states that the total interference that the users receive
is weakly dependent on its location in the cell if many
sources of interference are present (dense network).

Thus we obtain, for large N ,

N
∑

i=1
i6=n

Gun,iPui
≈ GI

N
∑

i=1
i6=n

Pui
, (4)

where GI is the average interference gain value.
Monte-Carlo simulations of the distribution of the

out-of-cell interference in a finite network show this
to be good approximation [9], where the variation in
the interference from the boundary of the cell to the
center is small. Note that this model is employed in this
paper only to obtain a simplified algorithm, and not for
numerical results: The numerical results are based on a
realistic channel model for all AP-UT links.

Thus, for a network with a large number of cells, the
expected value of the interference becomes

I = GI(N − 1)FPmax.

The expected network capacity of the system is then

E[C] =

∫ ∞

0
P(g̃)fG(g̃)

· log2

(

1 +
g̃Pmax

N0 + I

)

d g̃.

(5)

IV. OPTIMIZATION OF NETWORK CAPACITY

The problem now is to find the function P(g) satis-
fying criteria (2) and (3) which maximizes the excepted
network capacity, i.e. finding C∗ that solves the problem:

C∗ = max
P(g̃)

{E[C]}. (6)

Although the problem in (5) is a difficult one in
general, the advantage of this particular MCA scheme
lies in the possibility of doing off-line optimization of
the function P(g). Once determined, this function can
be used by each individual AP to determine if it will be
active or not. The problem now is that optimizing the ca-
pacity with respect to the access probability distribution
is very difficult to solve analytically. Differentiating (5),
setting the derivative equal to zero, and solving for P(g)
can not be done for realistic fG(g), or without severely
restricting P(g).

Due to the difficulty in finding the optimal solution
for many optimization problems, algorithms that can find
near-optimal solutions have received a lot of attention.
These heuristic algorithms do not guarantee the quality
of the solution found. Though, in practice many have
shown to be sufficient for a wide range of purposes,
finding near-optimal solutions bounded by a polynomial
time of low order. Simulated annealing (SA) is one
such heuristic, addressing combinatorial optimization
problems. It has found its way into many areas. Amongst
these are the traveling salesman problem, antenna array
optimization, image processing, and physical design of
computers

A. Simlated Annealing

Simulated annealing is a method that came out of
statistical physics [10], where it is desirable that melted
solids reach low-energy states by lowering the temper-
ature slowly through several stages. To simulate this
process a simple Monte Carlo method was set forth in
[11] to model the solidifying process as follows: The
solid is characterized by the positions of its particles.
A randomly chosen particle is given a small random
displacement, and ∆Eij is the difference in energy
between the perturbed state j and the previous state
i. If ∆Eij < 0 the perturbed state is kept. If not the



perturbed state is kept with probability e−∆Eij/T (this
term relates to the Boltzmann distribution). This is done
by picking a random number from a uniform distribution
on the interval (0, 1), and comparing this to P(∆Eij).
If the number is less than P(∆Eij) the perturbed state
is kept, otherwise the original state is used. As opposed
to iterative improvement, the probabilistic behavior of
simulated annealing gives the algorithm a chance to
escape local minima. However, it is important that the
cooling is sufficiently, slow so that the solid reaches
thermal equilibrium at each stage. If not defects can
be frozen into the solid, and it does not reach the
minimum energy state. The rate at which the temperature
is lowered, as well as how many random displacements
are made at each temperature level, is given by the
cooling schedule. The algorithm written in pseudo-code
can be found in e.g. [12].

B. Adaptation to Multiple Access Scheme

We start by discretisizing the probability of access
function P(g), transforming the problem given in (6) into
a combinatorial one. Let the channel gains be discreti-
sized into the V values g1, . . . , gV , and the function
values be discretisized into the W values P1, . . . , PW

so that P(gv) ∈ {Pw}. Applying this to the constraints
in (2) and (3) we get

0 ≤ P(gv) ≤ 1 (7)

P(gv) ≥ P(gv−1). (8)

For optimization by simulated annealing we let the
capacity C correspond to the energy function and {Pw}
represent the states of the system. A small random
displacement is given as one where, picking one of the gv

values at random, the corresponding Pw value is changed
randomly so that {Pw} still satisfies the constraints given
in (7) and (8).

The initial input to the SA algorithm should be a ran-
dom function, which in practice is difficult to generate.
A generating function must only satisfy the constraints
given in (2) and (3). We found that a simple ad-hoc
solution to this problem is the function {P (gv)} found
by running Algorithm 1. The idea is for each choice of
P (gv) to have an average derivative αv which changes
as v increases, with α1 and αV chosen from a uniform
distribution U , with added randomness to it.

In Algorithm 1 the function linspace generates a vec-
tor α of V linearly equally spaced numbers between α1

and α2, rand is a function returning numbers uniformly
distributed between zero and one, round(R) rounds R
to the nearest integer, and P = [P (g1), . . . , P (gV )].

Algorithm 1 Generating Random Function
1: Initialize α1, αV ∼ U(0.5 + ε, 1)
2: α = linspace(α1, αV , V )
3: P (g1) = 1
4: for v = 2 to V do
5: R = αv · rand
6: P (gv) = P (gv−1) + round(R)
7: end for
8: P = dP /PV e

The function d·e denotes the ceiling function. Running
Algorithm 1 several times showed that it served its
purpose, yielding probability of access functions ranging
from being nearly equivalent to having all cells on (gv =
1 for v = 1, . . . , V ) to those having most cells turned
off (gv = 0 for v = 1, . . . , V ).

The SA algorithm cools down through K temperature
levels. A cooling schedule with the temperature at the
kth level being T = T0/k was found to ensure a “liquid”
state in the beginning, but convergence to a solid state
for the last part of the iterations. At each temperature
level the algorithm goes through L permutations. As
K becomes smaller the algorithm converges towards
a solution for the probability of access function P(g)
yielding a “low energy” / high capacity state. This gives
the SA algorithm for our optimization problem shown in
Algorithm 2.

Algorithm 2 Simulated Annealing Algorithm
1: Initialize {P(gv)}i and T0

2: for k = 1 to K do
3: Tk = Tk/k
4: for l = 1 to L do
5: {P(gv)}j = P({P(gv)}i)
6: ∆C = C({P(gv)}j) − C({P(gv)}i)
7: if ∆C > 0 or e−∆C/Tk > rnd(0, 1) then
8: {P(gv)}i = {P(gv)}j

9: end if
10: end for
11: end for

V. SIMULATIONS

A hexagonal cellular system (cfr. Figure 1) functioning
at 1800 MHz is considered, consisting of N = 19 cells of
1 km radius. The users in each cell are randomly placed
according to a uniform distribution. Channel gains for
both inter-cell and intra-cell AP-UT links are based on
a COST 231 path loss model [13] including log-normal



10−2 100 102 104 106 108 1010

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal to noise ratio

P
ro

ba
bi

lit
y 

of
 a

cc
es

s

Fig. 2. Optimized probability of access function for N = 19 cells.

shadowing plus fast-fading. Log-normal shadowing is
a zero mean Gaussian distributed random variable in
dB with a standard deviation of 10 dB. Fast-fading
is modeled by i.i.d. CN (0, 1) random variables and
PMAX = 1 W.

For the simulated annealing we choose an initial
temperature of T0 = 1. For the initial probability of
access function a choice of ε = 0.05 in Algorithm 1
gave a wide range of functions. The number of iterations
in Algorithm 2 was K = 250 · 103, and the number of
permutations for each iteration was 103. These choices
ensure a liquid state in the beginning, and no new
solutions being accepted at the end.

Surprisingly, the SA algorithm converged to a binary
probability of access function P(g) = u(g − T ), where
u(g) is the unit step function and T = 7.5. This solution
is shown in Figure 2. We then ran the simlations 10
more times, having a range of functions for the initial
configuration, and the result was validated with conver-
gence to the same solution every time. This is actually
quite a powerful result, since off-line optimization of
the probability of access function P(g) can be done
based only on the fading statistics. During operation each
individual AP then can use P(g) to determine if it will
be active or not.

We compared this with simulations of the capacity of
a realistic wireless system, using (1). The performance
evaluation is based on Monte Carlo simulations running
over 10 000 random channel realizations, using the same
path loss model as for the expected capacity calculations.
This resulted in a capacity of 3.95 bits/sec/Hz/cell.
Compared to having all cells on, the gain of the MCA

scheme was 19 %. The gain over the static reuse schemes
with factor three and four were a superior 55 % and 70 %,
respectively.

VI. CONCLUSION

In this work we have studied the optimization of
a fully decentralized framework for multi-cell access
schemes. The path loss model used for the simulations is
based on realistic wireless networks. Through numerical
optimization it has been found that a binary probability
of access function optimizes the system capacity, yield-
ing a significant increase compared to traditional static
reuse schemes, and corroborating previously reported
results.
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