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Abstract— Since the introduction of the diversity-rate tradeoff
by Zheng and Tse for ML reception in frequency-flat MIMO
channels, some results have been obtained also for the diversity
behavior of suboptimal receivers such as linear and decision-
feedback equalizers for frequency-selective SIMO channels. How-
ever, these results are limited to infinite length equalizers.
Furthermore, so far attention has focused mostly on just diversity
order aspects of diversity. In this paper we analyze the diversity
of more practical FIR equalizers. We show in particular that
in the case of multiple subchannels, the diversity of infinite
length filters can also be attained by FIR equalizers of sufficient
length. Increasing the filter lengths improves the coding gain
though. Whereas the diversity order determines the slope of the
asymptote at high SNR, the coding gain determines its position.

I. INTRODUCTION

Consider a linear modulation scheme and single-carrier
transmission over a Single Input Single Output (SISO) or Mul-
tiple Output (SIMO) linear channel with additive white noise.
The multiple (subchannel) outputs will be mainly thought of
as corresponding to multiple receive antennas. After a Rx filter
(possibly noise whitening), we sample the received signal to
obtain a discrete-time system at symbol rate1. After stacking
the samples corresponding to multiple subchannels in column
vectors, the discrete-time communication system is described
by

yk︸︷︷︸
p×1

= h[q]︸︷︷︸
p×1

ak︸︷︷︸
1×1

+ vk︸︷︷︸
p×1

(1)

where p is the number of subchannels, the noise power spectral
density matrix is Svv(z) = σ2

v I , q−1 is the unit sample delay

operator: q−1 ak = ak−1, and h[z] =

L∑

i=0

hi z−i is the channel

transfer function in the z domain. The channel delay spread
is L symbol periods. In the Fourier domain we get the vector
transfer function h(f) = h[ej2πf ].

Let h = [hT
0 · · · hT

L]T contain all channel elements. As-
sume the energy normalization tr{Rhh} = p with Rhh =
E {hhH} (.H denotes Hermitian transpose). By default we

1In the case of additional oversampling with integer factor, we would
vectorize the samples to get a per antenna vector received signal sequence
at symbol rate.

shall assume the i.i.d. complex Gaussian channel model: h ∼
CN (0, 1

L+1Ip(L+1)) so that spatio-temporal diversity of order
p(L+1) is available. The average per subchannel SNR is ρ =
σ2

a

σ2
v

. In this paper we consider full channel state information
at the receiver (Rx) (CSIR) and none at the transmitter (Tx)
(CSIT).

Whereas in non-fading channels, probability of error Pe

decreases exponentially with SNR, for a given symbol con-
stellation, in fading channels the probability of error averaged
over the channel distribution Pe ∼ ρ−d for large SNR ρ,
where d is the diversity order. On the other hand, at high SNR
the channel capacity increases with SNR as log ρ, which can
be achieved with adaptive modulation. In [1] it was shown
however that both benefits at high SNR cannot be attained
simultaneously and a compromise has to be accepted. In
[1] the frequency-flat MIMO channel was considered. These
results were extended to the frequency-selective SISO channel
in [2] and the frequency-selective MIMO channel in [3]. In
[4], it was shown for the frequency-selective SIMO channel
that a Decision-Feedback Equalizer (DFE) with unconstrained
feedforward filter allows to attain the optimum diversity and
similar results for the MIMO frequency-flat channel case, with
a linear MIMO prefilter and a MMSE MIMO DFE appears in
[5]. These last results confirm the interpretation of the DFE
as canonical Rx [6].

In practice also the Linear Equalizer (LE) is used often
since its settings are easier to compute and there is no error
propagation. Also in practice, for both LE and DFE, only
a limited degree of non-causality (delay) can be used and
the filters are usually of finite length (FIR). Some initial
investigation via simulations into the diversity aspects of FIR
LE Rx’s appears in [7]. Analytical investigations into the
diversity for SISO with LEs are much more recent, see [8]
for linearly precoded OFDM and [9] for Single-Carrier with
Cyclic Prefix (SC-CP). Earlier on the mean LE SINR for
broadband SIMO was investigated in [10]. The use of the
DFE appears in [11] (FIR) and [12],[13] (SC-CP) where in the
last two references diversity behavior is investigated through
simulations.



To describe transmission over frequency-selective channels
with time-invariant filters and frequency-domain formulas
implies the use of infinite block lengths. This represents of
course a strong simplification in the context of time-varying
wireless systems. In practice time-invariant filters can be used
over finite block lengths if guard intervals or prefixes are
introduced, or the exact treatment of transmission over finite
blocks requires time-varying operators.

II. SINR OF OPTIMAL AND INFINITE-LENGTH
NON-CAUSAL SUBOPTIMAL RECEIVERS

We get for the Matched Filter Bound (MFB)

MFB = ρ ‖h‖2 , ρ =
σ2

a

σ2
v

, ‖h‖2 =
L∑

i=0

‖hi‖
2
2 =

∫ 0.5

−0.5

‖h(f)‖2
2 df

where e.g. ‖hi‖2
2 = hH

i hi and h†[z] = hH [1/z∗] denotes the
paraconjugate (matched filter) (.∗ denotes complex conjugate).
The MFB corresponds to Maximum Ratio Combining (MRC)
of all energy in the spatio-temporal channel. The MFB is
a close approximation (up to a propagation of errors type
of deviation) for the performance of Maximum Likelihood
Sequence Detection (MLSD). In fact [14], MFB =

σ2
a

CRBa

in
which appears the Cramer-Rao Bound (CRB) for estimating
the symbol of interest without any constraint on this symbol,
and with finite alphabet constraints on all other symbols. In
practice one is often forced to resort to suboptimal Rx’s when
the delay spread and or the constellation size get large. Two
popular classes of suboptimal Rx’s are linear and decision-
feedback equalizers (LE and DFE). Both types of equalizers
are in fact linear estimators of the transmitted symbol se-
quence, one is based on the received signal only whereas the
other is also based on the past decisions.

The goal of these suboptimal Rx’s is to transform the
frequency-selective channel into a frequency-flat channel the
performance of which depends on the Signal-to-Interference-
plus-Noise Ratio (SINR) at its output. For Mutual Information
(C) purposes, the channel-equalizer cascade is treated as an
AWGN channel, hence C = log(1 + SINR). The MFB can
alternatively be interpreted as the SINR at the output of an
unbiased MMSE (UMMSE) non-causal DFE, in which the
feedback involves all other symbols but the symbol of interest
[15], a Rx structure that is now standard in turbo equalization.
In the SIMO multichannel context considered here, a zero-
forcing (ZF) LE is not unique, since h(f) has a non-empty
orthogonal complement. Among all the ZF equalizers, there is
one that will minimize the noise enhancement (MSE), which
hence can be called the MMSE-ZF design. For a DFE, which
has a feedforward and a feedback filter, this non-uniqueness
already arises for a SISO channel. To simplify notation, we
shall henceforth refer to the MMSE-ZF design as the ZF
design. Introduce

δ =

{
0 , MMSE-ZF design,
1 , MMSE design. (2)

For infinite-length non-causal (feedforward) filters, we get the
following SINR results

• MFB = ρ
∫ 1

2

− 1
2

‖h(f)‖2
df = ρ

∫ 1
2

− 1
2

(‖h(f)‖2
+ δ

ρ ) df − δ

arithmetic average
• SINRδ

DFE = ρ exp
[∫ 1

2

− 1
2

log(‖h(f)‖2
+ δ

ρ ) df
]

− δ

geometric average

• SINRδ
LE = ρ

[∫ 1
2

− 1
2

(‖h(f)‖2
+ δ

ρ )−1 df
]−1

− δ

harmonic average
with inequalities

SINRδ
LE ≤ SINRδ

DFE ≤ MFB , SINR0 ≤ SINR1 (3)

where the last inequality holds for either LE or DFE. For the
case of MMSE design, the SINR here corresponds to the SINR
computed correctly (SINR =

σ2
a

MSE −1) which might be more
easily interpreted in terms of Unbiased MMSE (UMMSE)
design [6].

III. OUTAGE-RATE TRADEOFF

The SINR is random due to its dependence on the random
channel h. In [16], it was demonstrated that at high SNR
outage only depends on the SINR distribution behavior near
zero (this was also observed in [1]). This result is quite
immediate. Indeed, let us introduced the normalized SINR γ
through SINR = ρ γ and consider the dominating term in the
cumulative distribution function (cdf) of γ:

Prob{γ ≤ ε} = c εk (4)

for small ε > 0. Then the outage probability for a certain
outage threshold α is

Prob{SINR ≤ α} = c

(
α

ρ

)k

=

(
α

g ρ

)k

(5)

from which we see that k is the diversity order and g = c−1/k

is the coding gain (reduction in SNR required for identical
outage probability).

Now consider outage in terms of outage capacity. Since at
high SNR the SINR will tend to be proportional to ρ, the
mutual information C = log(1 + SINR) will tend to be log ρ.
So consider the rate R = r log ρ (in nats, assuming natural
logarithm) where r ∈ [0, 1] is the normalized rate. Then the
outage probability at high SNR is

Po = Prob{C < R} = Prob{log(1 + SINR) < log(ρr)}

= Prob{ργ < ρr − 1} = Prob{γ < 1
ρ(1−r)

− 1
ρ}

= Prob{γ < 1
ρ(1−r)

} , for r > 0

= c
1

ρ(1−r)k
=

1

(g ρ)(1−r)k

(6)
Hence for the system with the SINR considered, we get for
r ∈ (0, 1]:

d(r) = (1 − r) k , g(r)(dB) = −
10

(1 − r)k
log10 c (7)

where d(r) is the diversity(order)-rate tradeoff and g(r) is the
tradeoff dependent coding gain. As c > 1 usually, the coding
gain is actually a coding loss that decreases with increasing



diversity order k and decreasing rate r. The case r = 0 (fixed
rate) requires separate investigation. The above picture may be
somewhat oversimplified since possibly γ = γ(ρ) and in the
tradeoff analysis, ε = ε(ρ). As a result it may happen that c
and k vary with r also. This occurs in the MIMO case [1] but
does not appear to occur in the single stream case considered
here.

The mutual information for the frequency-selective channel
with white Gaussian input is

∫ 1
2

− 1
2

log(‖h(f)‖2
+

δ

ρ
) df = log(1 + SINRMMSE

DFE ) (8)

which reconfirms that canonical character of the MMSE DFE
Rx. In [4] it was shown that SINRMMSE

DFE ≥ β MFB for some
constant β that only depends on the delay spread L. As a
result we have (4) with k = p(L+1) and we get the optimal
tradeoff

d∗(r) = (1 − r) p (L + 1) , r ∈ [0, 1] (9)

which will be valid for any distribution of h that has finite
positive density everywhere (e.g. Gaussian with non-singular
covariance matrix Rhh). This tradeoff can be achieved by
transmitting i.i.d. QAM symbols from a constellation of size
eR = ρr and using a MMSE DFE Rx. As shown in [5],
at high SNR the probability of (symbol or frame) error is
dominated by the outage probability (see also [1]). In [5]
it is also shown that residual inter-symbol interference (ISI)
component in the MSE of a MMSE DFE design at high
SNR becomes negligible compared to the noise component.
Finally, (8) assumes a DFE with ideal error-free feedback. The
error propagation in an actual DFE can be either ignored by
considering frame error (as in [5]), can be mitigated by multi-
block coding as in [17], or can be accepted since according
to [18] it leads to an increase in probability of error by at
most a factor L+1 and hence it only leads to coding loss.
The performance of an ideal DFE can only be approximated
though since an infinitely long non-causal feedforward filter
would be required. The optimal tradeoff can also be attained by
transmitting the same QAM symbol sequence and performing
ML reception. Indeed, the optimal tradeoff is clearly attained
when substituting SINR by MFB in (6). The deviation of the
ML performance from the MFB is limited to a coding gain
loss, as can be inferred from [19]. Since no Tx/Rx system can
do better than the channel’s outage capacity, this ML coding
loss must exceed the difference in coding gain between the
MFB and SINRMMSE

DFE . Of course, using QAM constellations
instead of Gaussian constellation leads to an additional coding
(shaping) loss.

The coding gain also depends on the channel distribution.
For instance for a non i.i.d. Gaussian distribution with covari-
ance matrix Rhh, the coefficient c gets reduced by a factor

det(Rhh)

( 1
p(L+1) tr{Rhh})p(L+1)

, see e.g. [20] (at least, this is correct

for the MFB).
The analysis of the coding gain allows to compare and

classify schemes that have an identical diversity-rate tradeoff.

Diversity order and coding gain may e.g. depend on the
filter lengths and delay used in LE and DFE. At high SNR,
the outage behavior is dominated by the diversity order. At
moderate SNRs however, it is possible that a scheme with
a worse tradeoff but a much better coding gain can perform
better.

IV. OUTAGE ANALYSIS OF SUBOPTIMAL RECEIVER SINR

A perfect outage occurs when SINR = 0. For the MFB this
can only occur if h = 0. For a suboptimal Rx however (or
also the MI), the SINR can vanish for any h on the Outage
Manifold M = {h : SINR(h) = 0}. At fixed rate R, the
diversity order is the codimension of (the tangent subspace
of) the outage manifold, assuming this codimension is constant
almost everywhere and assuming a channel distribution with
finite positive density everywhere (e.g. Gaussian with non-
singular convariance matrix). For example, for the MFB the
outage manifold is the origin, the codimension of which is the
total size of h. The codimension is the (minimum) number of
complex constraints imposed on the complex elements of h
by putting SINR(h) = 0. Some care has to be excercised with
complex numbers. Valid complex constraints (which imply
two real constraints) are such that their number becomes an
equal number of real constraints if the channel coefficients
were to be real. A constraint on a coefficient magnitude
however, which is in principle only one real constraint, counts
as a valid complex constraint (at least if the channel coefficient
distributions are insensitive to phase changes). Examples will
follow. An actual outage occurs whenever h lies in the Outage
Shell, a (thin) shell containing the outage manifold. The
thickness of this shell shrinks as the rate increases.

V. LINEAR EQUALIZATION (LE) IN SINGLE CARRIER
CYCLIC PREFIX (SC-CP) SYSTEMS

The diversity of LE for SC-CP systems has been studied in
[9] for the SISO case with i.i.d. Gaussian channel elements,
fixed rate R and block size N = L+1. Consider a block of
N symbol periods preceded by a cyclic prefix (CP) of length
L (as a result of the CP insertion, actual rates are reduced by

a factor
N

N + L
). The channel input-output relation over one

block can be written as

Y = H A + V (10)

where Y = Yk = [yT
k yT

k+1 · · · yT
k+N−1]

T etc. and H is the
banded block-circulant matrix appearing in (13). Now apply an
N -point DFT (with matrix FN ) to each subchannel received
signal, then we get

FN,pY︸ ︷︷ ︸
U

= FN,pH F−1
N︸ ︷︷ ︸

H

FN A︸ ︷︷ ︸
X

+ FN,pV︸ ︷︷ ︸
W

(11)

where FN,p = FN ⊗Ip (Kronecker product: A⊗B = [aijB]),
H = blockdiag{h0, . . . , hN−1} with hn = h(fn), the p × 1
channel transfer function at tone n: fn = n

N , at which we
have

un = hn xn + wn . (12)



The xn are i.i.d. and independent of the i.i.d. wn with σ2
x =

N σ2
a, σ2

w = N σ2
v .

H =




h0 hL · · · h1... h0
. . .

...... hL

hL

...
hL

. . .

. . .
hL · · · h0




(13)

A ZF (δ = 0) or MMSE (δ = 1) LE produces per tone x̂ =
(hHh + δ

ρ )−1hHu from which â is obtained after IDFT with

SINRδ
CP−LE = ρ

(
1

N

N−1∑

n=0

(‖hn‖
2 +

δ

ρ
)−1

)−1

− δ . (14)

Consider now the case N = L+1. If the elements of h are
i.i.d. Gaussian, then so are the elements in h0:L. For i.i.d.
αn = ‖hn‖2, we have for sufficiently small ε > 0

Prob{
1

∑N−1
n=0

1
αn

≤ ε} = N Prob{α0 ≤ 0} = Prob{αmin ≤ 0}

from which one can derive

dCP−LE(r) = (1 − r) p , r ∈ (0, 1] (15)

and the coding gain. (15) holds for both ZF and MMSE. It also
holds for ZF for r = 0. So the LE, be it ZF or MMSE, has only
spatial diversity for any normalized rate r > 0, any frequency
diversity is lost! For the MMSE however, one can show (for
any N , and also for the other LE’s to be considered below) that
dMMSE

CP−LE(0) = p (L + 1). So the MMSE LE has full diversity
at constant rate R. Since this holds for any r � 1

log ρ , one can
expect that at finite SNR the MMSE LE may show significant
diversity over a limited range of rates R as the simulations in
[9] show.

These diversity order results (15) hold immediately also
for arbitrary N ≥ L+1. Indeed, the outage manifold is the
collection of manifolds for which hn = 0 for some n. As a
result the codimension is p.

VI. NON-CAUSAL INFINITE LENGTH LINEAR EQUALIZER

For the infinite length (ZF) LE case, the outage manifold
is clearly {h : h(f) = 0 for any f}. For any given f the
codimension is again p. In spite of the ambiguity on f , the
diversity order is p. Consider e.g. the case L = 1: {h : h0 =
h1 e−j(2πf+π)} which for the SISO case becomes |ho| = |h1|,
for which it is easy to verify that the diversity order is 1.

VII. FIR LINEAR EQUALIZATION

Consider now the use of an FIR LE of length N . For SIMO
channels, there exist indeed FIR equalizers for FIR channels,
due to the Bezout identity [21], as long as N ≥ L

p−1 . The LE
design is based on a banded block Toeplitz input-output matrix
H which can be obtained by starting from a block circulant H

as in (13) of size N+L and removing the top L block rows.
We obtain for a certain equalizer delay

SINRδ
FIR−LE + δ =

ρ

eH(HHH + δ
ρ )−1e

=
ρ∑

i
1

λi+
δ
ρ

|Vi,d|2

(16)
where e is a standard unit vector containing a 1 in the
position corresponding to the delay and zeros elsewhere, and
we introduced the SVD HHH = V ΛV H =

∑
i λiViV

H
i .

The outage manifold is determined (again) by λmin = 0. For
N ≥ L

p−1 , singularity of HHH occurs whenever H loses full
column rank. This occurs whenever h[zo] = 0 for some zo,
in other words, the subchannel transfer functions have a zero
in common. This imposes on the p−1 other subchannels to
have a zero equal to a zero of the first subchannel. Hence the
codimension of the outage manifold is p−1. So

dFIR−LE(r) = (1 − r) (p − 1) , r ∈ (0, 1] (17)

regardless of equalizer delay. For r = 0, the MMSE version
has diversity d = p min{N, L+1} (for appropriately chosen
delay). The eigenvector Vmin associated to λmin = 0 is a
Vandermonde vector built from powers of zo. As can be seen
from (16), there is a weighting with |Vmin,d|2. The reason
why (for r > 0) the diversity jumps from p−1 to p in the
limit as N → ∞ is that with some intermediate delay, and due
to the normalization of the eigenvector energy, as N → ∞,
|Vmin,d|2 → 0 unless |zo| = 1.

VIII. DFE WITH IDEAL FEEDFORWARD AND REDUCED
FEEDBACK FILTERS

So the DFE reaches full diversity as long as the feedback
filter order M = L. Consider the MSE in a DFE design, after
optimization of the unconstrained feedforward filter, with the
feedback filter b(f) still to be designed

MSE = σ2
v

∫ 1
2

− 1
2

|b(f)|2

‖h(f)‖2 + δ
ρ

df (18)

With M = 0 (b(f) = 1), the MSE explodes whenever
h(f) = 0 (outage manifold LE). When M = L, as h(f) = 0
can be zero only in at most L frequencies, the optimized
feedback filter b(f) will put zeros in those frequencies and
hence can always prevent the MSE from exploding. When
M < L, we have an outage whenever h(f) has M+1 zeros.
So the diversity for any M is dZF

DFE(r) = p(M+1)(1−r). See
also [22] for IIR DFE design.

IX. DFE IN SINGLE CARRIER CYCLIC PREFIX SYSTEMS

The problem of infinite length non-causal feedforward filters
(FFFs) in the DFE can be overcome by introducing a CP
and performing the FFF’ing in the frequency domain (SC-CP)
and the feedback filtering in the time domain, see [12],[13]
(where oversampling leads to increased DFT size which is
not necessary). The same expressions as for the infinite length
FFF case are obtained by replacing integration in the frequency
domain by averaging over tones. The same diversity results
hold.



X. FIR DECISION-FEEDBACK EQUALIZATION

Consider now a FFF of length N , M = L and equalization
delay equal to N − 1. For N = 1, dZF (0) = p whereas
dZF (0) = p(L+1) for N → ∞. For intermediate values of N
intermediate diversity orders are obtained. For instance with
L = 1, for N = 2, dZF (0) = 2p−1 and fractional diversities
between 2p−1 and 2p are obtained for N > 2.

XI. CONCLUDING REMARKS

The diversity results reported herein have been confirmed
by simulations. An important question is whether anything can
be done about the bad diversity available in LE’s. In [8] full
diversity even for a MMSE ZF LE is obtained by, on top of the
CP, introducing L guard symbols and linear precoding which
appears to lead to high complexity. It may be important to
look also at finite SNR behavior as in [23]

Looking further at outage analysis, one may distinguish
3 SNR regions. At high SNR, in the diversity-rate tradeoff,
a family of transmit signal constellations is considered, that
varies with SNR and depends on the normalized rate. At any
rate though, the diversity is determined by the distribution of
the MI near zero.

In a medium SNR range, one can apply a Gaussian approx-
imation of SINR, see e.g. [24], or the ”amount of fading” in
[16]. This leads to a case of both additive and multiplicative
noise. See e.g. [10] where for large delay spread L, only
the mean of the SINR is taken into account. Clark obtains
E SINRZF−LE

p = E SINRMFB
p−1 .

At low SNR: by duality, if in the high SNR region Pe

depends on the distribution of the SINR near zero, in the low
SNR region it depends on the tail behavior of the SINR pdf
and hence also on the tail behavior of the distribution of the
channel coefficients. Actually, what counts is the cascade of
input and channel (see e.g. [25]), which leads to the choice of
peaky or low-rank input (decrease of the number of streams
in the MIMO case).
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