A peer-to-peer normative system to achieve
social order

Amandine Grizard!, Laurent Vercouter?, Tiberiu Stratulat?, and Guillaume
Muller?

! Institut Eurecom, Affective Social Computing Lab.,

2229 routes des crétes, BP 193, F-06904 Sophia Antipolis, France
grizard@eurecom.fr

2 Ecole N.S. des Mines de Saint—Etienne, Multi-Agent System Dpt

158 cours Fauriel, F-42023 Saint-Etienne Cedex 02, France
{vercouter,muller}@emse.fr
3 LIRMM
161 rue Ada, F-34392 Montpellier Cedex 5, France

stratulat@lirmm.fr

Abstract. Social order in distributed descentralised systems is claimed
to be obtained by using social norms and social control. This paper
presents a normative P2P architecture to obtain social order in multi-
agent systems. We propose the use of two types of norms that coexist:
rules and conventions. Rules describe the global normative constraints
on autonomous agents, whilst conventions are local norms. Social control
is obtained by providing a non-intrusive control infrastructure that helps
the agents build reputation values based on their respect of norms. Some
experiments are presented that show how communities are dynamically
formed and how bad agents are socially excluded.

Introduction

In multi-agent systems the execution of global tasks strongly differs according
to the centralised or decentralised nature of the system. Decentralisation im-
plies that information, resources and agent capacities are distributed among the
agents of the system and hence an agent cannot perform alone a global task.
The most popular examples of decentralised multi-agent systems are peer-to-
peer (P2P) networks used for file sharing. In such applications, agents must
collaborate to index shared files and propagate queries for given files. It is also
essential that all agents use compatible strategies for propagation (in most of
the cases they use the same strategy) to ensure the correct termination of search
algorithms.

Peer-to-peer systems illustrate how important it is in decentralised systems
that each agent behaves well, that is to be compliant to some expected ”good”
behaviour, in order to cooperate with the others. If not, the activities of other
agents can be blocked or corrupted. In peer-to-peer systems we usually consider
that the agents have been downloaded from the same place and are coded by



the same developers. It is then natural to consider that the agents will behave
the same as expected. But if we consider decentralised multi-agent systems in
general, this assumption is not realistic. Heterogeneity and autonomy are the
required properties of the agents to build open and flexible systems and they
rule out any assumption concerning the way they are constructed and behave.
Moreover, the agents can no longer be controlled by central institutions which
supervise their behavior since we consider decentralised systems.

C. Castelfranchi [1] also claimed that, in decentralised system, Social Order
is achieved by the use of norms as rules of good behaviour and through Social
Control. In order to preserve the openness and the flexibility of the system,
norms are only external representations that should not be hard coded into the
agents, since they are supposed to be dynamically created or modified. Norms
also preserve the autonomy of the agents, since smart agents can reason on them,
decide autonomously to respect or violate them and observe the behaviour of
other agents if they are norm compliant. Social Control mainly refers to the
fact that each agent is observed and controled by some other agents from the
same system. However in the literature we find mainly trust mechanisms that are
proposed to achieve it [2-4]. According to these works agents with bad behaviors
are punished by social sanctions, get bad reputations and are excluded from the
society.

In this paper we propose a peer to peer normative architecture to obtain
social order in a decentralised system. The main contribution of our proposition
is not on the formalism used to represent the norms nor on the representation
and calculation of reputation but rather on the integration of norms within a
trust model that allows agents to perform Social Control. We also provide some
mechanisms to update existing norms when groups of agents feel the need for
the system to evolve. The next section defines the concepts of norms used in
this article and describe their formalization. Section 2 describes the architecture
of a decentralised multi-agent system that performs social control and some ex-
perimental results are presented in section 3. Finally, we propose in section 4 a
mechanism to adapt the content of some specific types of norms, called conven-
tions and we conclude in the last section.

1 Norms and control

In the area of agent-based systems, two important contradictory properties are
needed: autonomy and control. Autonomy abstracts out the way an agent be-
haves when asked to solve a problem or execute a task. Control is necessary to
be sure that autonomous agents behave according to the specifications formu-
lated by someone on their behavior. In terms of degrees of freedom, the former
relieves, the latter constrains.

Norms have been recently considered as being good candidate tools to design
agent-based system and also to solve the paradoxical problem that confronts the
preservation of the autonomy of the agents and the need of control. Getting
its inspiration from social sciences, a norm is mainly a description of an (ideal)



behavior that an agent or a group of agents is expected to display. The normative
behavior is generally described by using deontic constraints, such as obligations,
permissions and interdictions. Although there is no complete agreement on how
to use norms in artificial systems, there are however two main trends [5]. The
first considers a norm as a sort of specification of good behavior that, once
identified, should be hard coded directly into the agents. The agents are by
construction norm compliant or ”"regimented”. The second trend adopts a more
flexible perspective, where norms are considered as being only indications of an
ideal behavior that could be adopted or not by an agent. In the case where the
norm is not respected we talk about violation. In order to avoid the proliferation
of unexpected behavior and therefore the chaos in the system, some of the works
adopting the second perspective suggest the use of various structures that allow
to sanction the deviating behavior and hence to ”control” the agents.

In the literature two main categories of control structures are described:
internal and external. Internal control is where an agent is able to identify by
itself which is the good behavior to adopt according to an external reference. In
this type of scenario we count on the agents’ cognitive and learning capacities
to understand and evaluate the normative behavior.

External control is where some external or institutional structures can in-
terfere (even physically) with the agent and hence influence it to display the
normative behavior. The behavior of an agent is interpreted and evaluated by
others (authorities, group of agents, etc.) according to the norms governing the
system wherein the agent acts.

1.1 Social Norms revisited

In the domain of social sciences, R. Tuomela proposed a theory of social norms
that characterizes communities in human societies [6]. For him a social norm has
the form ” An agent of the kind F' in group G ought to perform task 7' in situation
C”. Such norms are further divided into rules (r-norms) and proper social norms
(s-norms). The r-norms are the norms created by an authority or a body of
agents that are authorized to represent the group. The obedience to the rules is
made on an agreement-making basis and their violation is explicitly sanctioned.
The governmental laws are examples of r-norms. The s-norms represent the
conventions or the mutual beliefs about the right thing to do in a community.
An agent obeys also to an s-norm because it believes that the other members of
the community expect that. The sanction of an s-norm is only social: approval
or disapproval and it can not be decided in advance.

The definition of both types of norms is given in terms of certain conditions.
For instance a norm N of obligation which says ” Everyone in G ought to perform
task T when in situation C” is considered an r-norm iff the following conditions
are satisfied (see [6] for a detailed discussion):

— promulgation condition: N has been issued by an authority;
— accessibility condition: the agents are aware that N is in force;
— pervasiveness condition: many members of G perform T in C;



— motivational condition: some of the agents that perform T do that because
they believe that they ought to perform 7T in C;
— sanction condition: there are sanctions applied when N is violated.

In the case of an s-norm, the following conditions should be satisfied:

— acceptance condition: there is a mutual belief in G to the effect that the
members of G ought to perform T in situation C;

— pervasiveness condition: many members of G perform T in C;

— motivational condition: some of the agents that perform T do that because
they believe that they ought to perform T in C and that is what is expected
by other members of G;

— recognized sanction condition: there are social sanctions applied when N is
violated.

There are two main cases where s-norms and r-norms coexist: parallel norms
(norms with the same content) and conflicting norms (norms with conflicting
content). Tuomela considers that in both cases r-norms override s-norms but
which one or ones of these kinds of social norms wins empirically is a factual
issue not to be decided a priori.

Tuomela shows further that s-norms characterize the high-trust societies
whereas r-norms are norms for low-trust, or business-like societies.

Since Tuomela’s theory of social norms stands for human societies we will try
to adapt it to be applied to artificial societies of agents. Therefore we propose
in this article to use two different but coexisting settings that correspond to the
use of r-norms and s-norms.

The first setting is related to the use of r-norms. We will reconsider the
definition of an r-norm, that we will call simply a rule in the rest of the article.
A rule R of obligation is described by using the following notation:

rule(C,T,S4+,5_)

which says that in the context described by C, T ought to be executed. If T is
the case the agent is rewarded with S, otherwise it gets sanctioned with S_.
In addition to the adoption of such a notation for rules, the setting we propose
should satisfy the other conditions given in the definition of an r-norm. The
architecture we describe in the following section contains as main ingredients:

1. authorities responsible to create independent sound sets of norms (promul-
gation condition) and to inform the autonomous agents about them (acces-
sibility condition);

2. ordinary autonomous agents that receive the norms and that are observed
and controlled if they are norm compliant;

3. monitoring or control structures that evaluate the behavior of the agents
and sanction or reward them according to the normative content (sanction
condition).



The pervasiveness condition in the definition of an r-norm accounts for the sup-
posed fact that people in human societies tend to obey the norms. In the setting
we propose, the pervasiveness condition is relaxed and is sometimes obtained by
applying the sanctions. But it is not guaranteed because of the hypothesis we
made to respect the autonomy of the agents. The motivational condition is also
very strong, because it considers that i) the agents have cognitive abilities and
that ii) they adopt the normative behavior rationally. The hypothesis we adopt
on the agents we use is hence that they are autonomous decision-makers able to
decide by themselves what to do next, given their internal state, the normative
information and the current state of their environment.

The second setting is about s-norms. In a similar way, we propose to re-adapt
the definition of an s-norm that we will simply call convention. The notation we
use for the conventions of obligation is as follows:

convention(C,T)

This notation says that in the context where C' is true an agent ought to do the
task T

As in the case of rules, the setting we propose should allow a community of
agents to create and manipulate conventions. The conditions that define an s-
norm are therefore partially preserved. For instance, the acceptance condition is
obtained by introducing a protocol that allows some agents to exchange informa-
tion about the current mutual convention. Concerning the recognized sanction
condition, since this setting coexists with the setting for rules, we will use the
same monitoring structures to help an agent observe the behavior of the other
agents. However, the decision on how to sanction or reward the others is made
only by the concerned agent, and can not be known in advance. For the per-
vasiveness and motivational conditions, we make the same hypothesis that we
made for rules.

1.2 Reputation as sanction or reward

One of the differences existing between rules and conventions consists in the
application of sanctions. As shown above, two explicit sanctions are defined in
the specification of a rule: a positive sanction applied when an agent respects
the deontic constraint and a negative sanction applied in the contrary case. In
most of normative systems, these sanctions are material, for instance a fee. In
our case, we do not use material sanctions because it implies that there is a way
to enforce an agent to pay a fee or at least a physical means of pressure on the
agent. This assumption is contradictory with the property of autonomy claimed
for agents and it is even more the case for decentralised systems because agents
may be deployed on different platforms.

We propose to describe sanctions as a positive or negative influence on the
reputation of an agent. Agent reputation is a concept that has been studied
in several works [7,2,3,8,4] with different approaches but also with different
semantics attached to reputation. The word “reputation” does not have exactly



the same meaning depending on the considered approach. Some authors consider
that an agent has only one reputation maintained globally by the system [9],
whereas others think that two agents can have a different opinion about the
reputation of an agent [2,8,4]. Moreover, some works consider that reputation
should be relative to a given context [7], to the sources used to build it [10], to the
nature of its target [10], to the estimated facet of the agent [2,11], ... A unified
view of all these aspects has recently been proposed in a functional ontology of
reputation [12]. However, we consider reputation more generally in this paper.
Since our contribution is not on the reputation model but on the integration of
the concepts of reputation and of norms in a peer-to-peer environment, we only
represent reputation by a simple plain value. We will consider using more precise
concepts of reputation in future works. The only property that is important here
is that two agents can maintain different reputation values for a same target as
there is no global view or control of the system.

Thus, reputations are values maintained by other agents and are external to
the sanctionned agent. The violation of a rule will cause a decrease of the agent’s
reputation whereas positive sanction may cause its increase. Sanctions in term
of reputation are still an incentive to respect the rules for the agents because
one of the consequences of a low reputation for an agent could be the refuse of
certain other agents to interact with it (social exclusion). Such sanctions can be
viewed as social constraints on the agents.

We consider that the sanction for a rule is defined in terms of reputation and
we formalize it as follows:

sanction(Applier, Sanctioned, Weight)

where Applier is the agent applying the sanction, Sanctioned is the agent sanc-
tioned and Weight represents generally the value of the sanction. We use the
last parameter to affect the reputation of an agent according to a mechanism
which is explained in latter sections.

In the case of conventions, the sanction is not represented explicitly because
it can not be known a priori. It depends on the agent in cause and it is the
expression of an approval or disapproval of the actual behavior. It is up to an
agent to sanction or not other agents that violate or respect its own conventions.
These sanctions may also impact reputation values but these values should be
maintained locally by the owner of the convention. In this case the scope of the
sanctions does not cover the whole society but only the relation between one
agent and another agent or group of agents.

2 An overlay system to sanction the violation of rules

Since agents are autonomous, we can not assume that they will respect the rules
of their system. There must be a way to observe their behavior, their compliance
to the rules and to sanction the violations. If such a mechanism exists and is
efficient, rational agents are more motivated to respect the rules in order to avoid
being sanctionned. This is achieved by a social control of the system if it is the



e Y0 P9
- == > Y Overlay
= Q Q L System
i (0@ i / P
— i oY) s
N ¢ — ! — -7 !
@@/ Q"/l i
; Fele i - i
: \‘\“~——»,,¢,7—»/1"'<’7_ : i
i i i i

i
_i- I
_ i ®® i AN
--" i — ! = " Applicative
i ! ' Peer-to-peer
i : / /7 system

—
Controller agent < »  Neighbourhood link between two agents
=

Applicative agent Q Observation link between an applicative agent ans its controller

Fig. 1. Overview of the overlay system

society of agents that supervises and sanctions its members. Then, there is a need
for a control system that can be integrated to an existing multi-agent system.
This integration can only be effective if the control system takes into account the
specific features of a multi-agent system, in particular the decentralised nature
of the system and the autonomy of the agents.

In this section, we propose and describe such a control system for a P2P sys-
tem of application agents in order to control the respect of the rules governing
the system. To comply to the features quoted above, the control system is also
a multi-agent system where each controller agent is associated to an application
peer of the controlled P2P system (see Figure 1). The control system is an over-
lay system in which each controller agent has a partial view of the interactions
inside the P2P system. Based on observations on the application agents, a con-
troler agent detects rule violations and cooperates with other controller agents
in order to sanction the violators in the P2P system. This solution keeps the
decentralised nature of the whole system and is not intrusive for the peers. By
“non-intrustive” , we mean that there is no constraint on the agent’s internal im-
plementation. The observation of the agent’s communication is not an intrusion
since communications are sent and transit through an interaction medium and
we assume that this medium can be observed. This assumption remains realistic
because one of the property of communications is that they are public as claimed
in [13].

Reputation is used as a mean to sanction the application agents. Thus the
reputation of an application agent that violated a rule will decrease for each
other controller agent that has observed and detected the violation. Then, the
controller agent can share its reputation models with other controller agents or



even with its application agent to which it is connected. The reputation of the
application agents is hence locally propagated and application agents that do not
respect the rules can get bad reputations and be excluded by other application
agents from future interactions. We consider that the overlay system performs
a social control over the application P2P system and that it aims at excluding
the application agents that violate the rules.

2.1 Application agents

The tasks performed by application agents are completely dependent of the kind
of P2P system considered. For instance, in the case of P2P networks used for file
sharing, application agents possess some files to share and are able to formulate
queries for given files or answer to or propagate the queries from other agents.
The behavior of application agents is application-dependent and, since they are
autonomous, we do not make any assumption on it. However, inside the system,
an application agent may behave or not as it is expected by other application
agents.

The goal of the overlay system is to control that application agents respect
the rules of the system. The rules only focus on the communicative behavior of
application agents. Application agents should be considered as black boxes and
there is no way to observe their internal functioning to check if they comply to
the rules. The only thing we can control are the external actions of an application
agent, which correspond to the interactions with other agents. We therefore make
the assumptions that (i) interactions between application agents can be observed
by some controller agents; (ii) there exists some rules, formalised as described in
section 1, that application agents must respect; (iii) these rules are available for
both application and controller agents.

The neighborhood of an application agent is composed of other application
agents. We do not study the reason why some application agents are neighbors
or not (it also depends on the application) and we note Neighbors(App;) the
set of neighbors of the application agent App;.

2.2 Controller agents

The overlay system is composed of controller agents. A controller agent has the
capacity to observe the interactions of an application agent, that is the messages
sent and received by this agent. It also knows the rules that must be respected
by application agents and can detect violations by comparing its observations to
the rules. At last, a controller agent has the capacity to sanction an application
agent, and to do so, it may have to collaborate with other controller agents. We
should also note that we assumed that the controller agents are deployed by a
trusted third party and that they are trustworthy.

Each application agent is associated to a unique controller agent in the over-
lay system described here. This association preserves the autonomy of the ap-
plication agent and is not very constraining for the P2P system. For example,
we can imagine in a P2P file sharing system that controller agents are hosted



by internet providers and that they can observe the messages exchanged. From
the point of view of an application agent, the existence of a controller is a real
advantage since it provides the information about the reputation of the other
application agents in its neighborhood. Then the application agent can use this
information to choose to cooperate with application agents with good reputation.

The system we propose is caracterized by the fact that for an application
agent App; the neighbors of the associated controller Cont; is the set of con-
trollers associated to the neighbors of agent App;:

App; € Neighbors(App;) = Cont; € Neighbors(Cont;)

The reputation model used by a controller agent considers the reputation
value for each application agent in the neighborhood of its application agent.
We note Rep! the reputation of an agent App; € Neighbors(App;) computed
by the controller Cont;.

2.3 Interaction between agents

between application agents An application agent interacts with its neighbors
(other application agents). The nature and the content of these interactions
depends on the application and we do not make any assumption over them.
However, application agents should respect the rules of the system if they do
not want to be sanctionned.

between application and controller agents An application agent inter-
acts with its own controller agent and can not interact with other controller
agents. Such interactions are used by an application agent to get some infor-
mation related to norms or reputation. Application agents may ask two types
of information to their controller agent: (i) the rules that they must respect in
their interaction with other application agents; (ii) the reputation value of one
or several of its neighbors. These interactions are only possible and not required.
Application agents are autonomous and we can not assume that they will in-
teract in a given way with the controller. This possibility of interaction enables
an application agent that could reason on norms and reputation to get the in-
formation necessary for its reasoning. However, it is also possible to consider
different application agents that do not interact with their controller but, if the
respect of norms is not hardcoded in their implementation, they are likely to be
sanctionned. A controller agent does not need to interact with its application
agent but it is able to oversee its interactions and check for violations.

between controller agents A controller agent interacts with other controller
agents to inform them when its application agent violated a rule or behaved
well. For instance, when a controller agent detects that its application agent
has violated a rule, it sends a message to its neighbors that are concerned by
the violation in order to ask them to sanction its application agent using the



negative sanction field of the rule. At the opposite, it can also ask its neighbors
to apply the positive sanction if the application agent has respected the rule.

3 Experimental results

The normative system presented here has been implemented and tested on a
scenario of a P2P file sharing network.

3.1 The scenario of P2P file sharing

We consider a P2P system where each application agent possesses some files to
share with other agents and needs to download some files that may be contained
by other peers. For simplicity, we used a gnutella-like [14] protocol. According
to this protocol, an agent that requests a file formulates a query with the file
name and sends this query to each of its neighbors. Each neighbor looks if it
owns a file that matches the query. If it does, it responds positively to the agent
requester. If not, it does not respond. Then, each neighbor propagates further
the query to its own neighbors.

To avoid flooding the network, the queries are enriched with two fields. First,
the queries have an unique ID so that an agent does not have to handle twice
the same query. The second field is called TTL (Time To Live). The TTL cor-
responds to the depth of propagation of the query in the network. For example
a query with a TTL of 3 will be propagated to the neighbors of the neighbors of
the neighbors of the requester but not further. When an agent receives a query,
it decreases its TTL and it propagates it to its neighbors only if the value of the
TTL is at least 1.

3.2 Rules of the scenario

The correct functionning of a P2P file sharing system requires that the agents
propagate the queries of other agents. This is a cooperative behavior, but selfish
agents may not behave like this because it would cost them some ressources (CPU
time) consumed for the benefit of others. We propose to define the following rule
as an incentive to behave cooperatively:

rule(asked(Id, TT L, Appy, Apps, App,, file) NTTL > 1 A trusted(Apps),
asked-neighbors(Id, TTL — 1, App,),
0,
sanction(Cont,, App,, Higher Rep(Conts, S+), Lower Rep(Conts, S_)))

This rule is an obligation in the context asked(Id, TT L, Appy, Apps, App,, file)
representing that a query about the file file initiated by the agent App, with
the id Id has been received by the agent App, from the agent Apps with a TTL
greater than 1. This context also requires that the sender of the query App; is
trustworthy. This condition is necessary to avoid that an agent that do not want



to interact with untrusted neighbors is sanctionned by its controller. The trusted
or untrusted nature of a neighbor can be deduced by the controller according to
its reputation about Apps, and it may be communicated to App, if it requests
it.

In this context, a task must be achieved to obtain asked_neighbors(Id, TTL—
1, App,, file) that means that the query Id should be propagated to the neigh-
bours of App, with a TTL decreased by 1. If this obligation is respected the
positive sanction indicates that the controller Cont, will ask to the controller
Conts to increase the reputation of App, by a value S;. Otherwise the negative
sanction sanction(Cont,, App,, Lower Rep(Conts, S_)) is applied. This negative
sanction indicates that the controller Cont, will sanction its application agent
App, by asking to the controller Cont, to lower the reputation of App, by a
value S_.

3.3 Experiments

Some experiments have been done to observe how the reputation of an agent
evolves if it does not respect the rules. We used PeerSim simulator [15] to simu-
late the P2P protocols, Java to implement the agents and Prolog with JPL [16]
to code and interpret the rules.

The tests have been done on a set of 50 agents. Each agent owns from 5 to 10
files taken from a global set of 100 different files. The agents are connected in a
network such that each agent has a minimum of 2 and a maximum of 5 neighbors.
The simulation lasts 15 cycles. At each cycle an agent formulates from 3 to 5
queries for a file (randomly chosen) and sends on query to its neighbors with
a TTL of 2. All queries are propagated according to the gnutella protocol and
the agents that own a file matching a received query, answer positively to the
requester.

The controller of an agent computes the reputation of the neighbors of its
agent by using values in the domain [0:1] with an initial value of 0.8. The positive
and negative sanctions associated to the rule are S, = 0.01 and S_ = —0.02.
Initially, all the agents behave well and respect the rule. After 5 cycles, one agent
(the agent 0 in the figures) changes its behavior: it will not respect systematically
the rule and in 50% of the cases, it does not propagate the queries from its
neighbors. This violation of the rule is detected by its controller which applies the
negative sanction. The impact of the sanction is shown in figure 2 representing
the average value of the reputation value of agent 0 kept by the controllers of its
neighbors.

The reputation value of an agent is used by an application agent to remove
that agent from its neighborhood, for instance, when it has a low reputation.
Removal of a neighbor means that queries from it will no longer be considered
(neither answered, nor propagated) and that queries from other agents will not
be sent further to the neighbor with a bad reputation. This is equivalent to
an irrevocable social exclusion, since the removed neighbor will not have the
possibility to get positive sanctions and then to recover an acceptable reputation.



// \
os ¢ J
06 | \
\

04 B

Average of reputation of agent 0

02 B

0 L L L L L L L
0 2 4 6 8 10 12 14

Cycles

Fig. 2. Average of the reputation of an agent (violations occur at step 5)

If we wanted to keep the possibility to “forgive” to an agent, we may have kept
the possibility for it to get positive sanctions.

The exclusion of agent 0 can be seen on figures 3 and 4. Figure 3 represents
the number of queries sent by agent 0 that are propagated by the rest of the
network. We can see that this number decreases when other agents begin to
remove agent 0 from their neighborhood (around cycle 9) and that no more
queries from it are considered at cycle 12. Figure 4 shows the percentage of files
received by agent 0 at each cycle. Since its queries are no more considered, this
percentage begins to decrease at cycle 9 and reaches 0 at cycle 11.

The reputation threshold, below which an agent removes a neighbor from its
neighborhood, has been set to 0.5 for the simulations. This explains the fact that
the reputation value of agent 0 does not continue to decrease in figure 2 after
its exclusion, since the agents stop interacting with it and therefore agent 0 can
not violate the rule anymore.

4 Convention dynamics

The control system presented in the section 2 can be used to enforce the respect
of the rules of the system. If an agent does not respect these rules, its reputation
become lower and lower and other agents will stop cooperating with it. In sec-
tion 1, we mentioned the distinction we make between two kinds of norms: rules
and conventions. The main difference is that a rule is shared by the whole system
and its violation should be explicitly sanctionned whereas conventions rather re-
fer to an usage local to a group of agents. Conventions describe the behavior



# of propagated queries from agent 0

Percentage of files obtained by agent 0

800 . ; . T T
500 | |
"JI “I‘I o —
/ \ /SR ata
40 | N\ / \ / X
\‘I \\ / ‘ \"-‘
‘I |, T ¢ \
| \
soo || \
s'
s \
|
200 | | AN
f \
[ \\
100 [ A\
| X
s‘ \
| b
0  § 1 L Il 1 \\l 1
0 2 4 6 8 10 12 14
Cycles
Fig. 3. Number of propagated queries from the agent violator
T T T T T T
11 \ ) \
%) / \
\ / \
\ / A
Y \
\ / \
08 | v \
06 | \
04 \
\
02| \
\
0  § 1 L Il 1 ‘I‘ 1 1
0 2 4 6 8 10 12 14

Cycles

Fig. 4. Percentage of files got by the agent violator




approved and expected by the group. In case of violation of the convention, the
sanction is not explicit.

In the example of file sharing P2P networks, described in section 3, a con-
vention can establish, for instance, the initial value of the TTL of a query. The
higher is the TTL, the better are the chances to get the required file. But higher
values of TTL also means that there will be more communications needed to
propagate the query and that the network will be more loaded and that it will
be slowed. We can continue to imagine that some agents request rare files dif-
ficult to obtain and therefore require a high TTL value, while agents that send
many queries for commonly shared files would prefer a low TTL value.

Therefore, we can have many cases showing different conventions needed
only by some agents that could regroup in small communities according to their
preferences. Our proposal is therefore to use conventions to reorganize the neigh-
borhood links between agents in order to group agents sharing the same conven-
tions. We propose to use the overlay system presented in section 2 to deal with
conventions as it follows:

— an application agent App; sends its own set of conventions Conventions(App;)
to its controller agent Cont;.

— the controller Cont; informs its neighbors (belonging to the set Neighbors(Cont;))
that its application agent has the set of conventions Conventions(App;).

— each controller Cont; € Neighbors(Cont;) keeps this information available
for its application agent App;.

The controller Cont; now observes the behavior of other agents to check if
they violate or not a convention of App;. If a violation occurs, Cont; does not
apply any sanction but inform App; of this violation. The sanction to apply
is up to App;. We suggest that it also maintains a reputation model about its
neighbors. This reputation is attached to conventions and should not replace the
reputation based on the respect of rules. Then, two reputation values co-exist
for each neighbor of App;. A violation of a convention may result in a decrease
of the corresponding reputation value.

The interpretation by App; of its reputation model attached to conventions
is free, but here again we suggest that it uses it to modify its neighborhood.
For instance, App; could remove agents with a low reputation value for con-
ventions, from its neighborhood and then look for other agents to replace them
in its neighborhood. The method used to find new neighbors depends on the
kind of P2P network considered and is anyway out of the scope of this paper.
The modification of the agents’ neighborhood brings a reorganisation of the P2P
system and communities of agents sharing similar conventions should be consti-
tuted. This reorganisation can also be dynamical because an agent can change
its conventions and then progressivly change its neighborhood.

This is ongoing work and an implementation of such a control system that
includes conventions is in progress.



5 Conclusion

The work described in this article follows the guideliness proposed by Castel-
franchi in [1] who claims that social order in distributed decentralised systems is
to be obtained by using social norms and social control. Concerning the use of
norms the adaptation of the concepts of social norms proposed by Tuomela (for
human societies) to multi-agent systems seems to satisfy the need of both types
of control, centralised and decentralised. We introduced the concept of rules to
describe the global norms that constrain globally all the agents of a system, and
conventions to describe the rules that could be created and applied locally to a
group of agents by mutual acceptance.

Concerning the manifestation of social control, we showed how to obtain
it in a P2P network of application agents. Each application agent decides au-
tonomously with whom to cooperate based on the reputation values of other
agents. The reputation value depends on the respect or not of the rules and con-
ventions that are currently in force. It is the role of the overlay system to monitor
the behaviours and inform the application agents about the reputation of the
others. The control of the agents is completely non-intrusive and decentralised.

The experiments showed interesting results, notably the fact that agents with
good reputations are rapidly identified and are at the center of communities
of agents with similar behaviour. In future works we would like to study the
dynamics of open systems when agents come and go and when the content of
the norm changes dynamically.

References

1. Castelfranchi, C.: Formalising the informal? dynamic social order, bottom-up social
control, and spontaneous normative relations. Journal of Applied Logic 1 (2003)
47 - 92

2. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In Miiller,
J.P., Andre, E., Sen, S., Frasson, C., eds.: Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, ACM Press (2001) 194-195

3. Conte, R., Paolucci, M.: Reputation in Artificial Societies. Social Beliefs for Social
Order. Volume 6. Springer (2002)

4. Muller, G., Vercouter, L.: Decentralized monitoring of agent communication with a
reputation model. Trusting Agents for trusting Electronic Societies, Lecture Notes
in Computer Science (3577) (2005) 144-161

5. Jones, A.J.I., Sergot, M.: On the characterisation of law and computer systems:
The normative systems perspective. In Meyer, J.J.C., Wieringa, R.J., eds.: Deontic
Logic in Computer Science: Normative System Specification. John Wiley & Sons
(1993)

6. Tuomela, R.: The Importance of Us: A Philosophical Study of Basic Social Norms.
Stanford University Press (1995)

7. Castelfranchi, C., Falcone, R.: Principles of trust in mas: cognitive anatomy, social
importance and quantification. In: ICMAS’98, Paris (1998) 72-79

8. Abdulrahman, A.: A framework for decentralized trust reasoning. PhD thesis,
University of London (2004)



10.

11.

12.

13.

14.

15.
16.

Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms in elec-
tronic market places. In: Proceedings of the 32th Hawaii International Conference
on System Sciences. (1999)

McKnight, D., Chervany, N.: Trust and distrust definitions: One bite at a time. In:
Proceedings of the AAMAS’01 Trust in Cyber-societies workshop, Springler-Verlag
Berlin Heidelberg (2001) 27-54

Wang, Y., Vassileva, J.: Bayesian network-based trust model in peer-to-peer net-
woeks. In: Proceedings of the Workshop on Deception, Fraud and Trust in Agent
Societies. (2003) 57-68

Casare, S., Sichman, J.: Using a functional ontology of reputation to interoperate
different agent reputation models. Journal of the Brazilian Computer Society 11(2)
(2005) 79-94

Singh, M.P.: Agent communication languages: Rethinking the principles. In Huget,
M.P., ed.: Communication in Multiagent Systems. Volume 2650 of Lecture Notes
in Computer Science., Springer (2003) 37-50

Gnutella: Gnutella  0.48  specifications  rfc ~ (2000)  http://rfc-
gnutella.sourceforge.net /developer /stable/.

PeerSim: A peer-to-peer simulator (2005) http://peersim.sourceforge.net/.

JPL: A java  interface to  prolog  (2003)  http://www.swi-
prolog.org/packages/jpl/java_api/.



