USING GPU FOR FAST BLOCK-MATCHING

Sebastien Maza, Jean-Luc Dugelay, and Renaud Pacalet

Multimedia Department, Eurecom Institute GET / Telecom Paris - CNRS LTCI,

2229, route des Cretes, 46, rue Barrault,
06560 Sophia-Antipolis, FRANCE 75634 Paris Cedex 13, FRANCE
email: {mazare, dugelay@eurecom.fr email: renaud.pacalet@enst.fr
ABSTRACT 2. GRAPHICS HARDWARE AS A DIGITAL SIGNAL
COPROCESSOR

more and more useful and required for numerous emergin
services and applications but is often too computational e
pensive to reach real time. Within the context of GPGPbi
(General Purpose GPU), we propose in this paper a possi : ; .)
implementatign ofa block—ma[t)chirl)wg algorithn[]). gome zignif-. being still possible as a particular case of 3D. The follow-
icant results are obtained in terms of acceleration and qual?9 dataflow is illustrated by figure 1.
ity. Based on our experiments on Block-Matching within the 1. In the common case, all raw images needed during the
context of video compression, we finally underline some ex- processing are sent to the GPU and stored in its texture
isting limitations of using GPUs beyond graphics for image ~ memory. Then a geometrical and command flow is sent
and video processing even if this concept remains attractive. to the GPU. This flow contains all information on how
the rendering shall be performed, and all geometrical in-
formation, represented by vertices.
1. INTRODUCTION 2. Then, a first set of parallel and programmable proces-
' sors, the/ertex Processorstransforms all characteristic

- oints of the scene, usually performing a projection from
Originally dedicated to 3D graphics, Graphical Processing tphe absolute 3D world degceibed in tﬁe gPLJJ to the tar-

Units (GPUs) became more and more powerful, evolving g0 q hoint of view. This way, any important point has its
faster than moore’s law. This evolution has been made possi- Jcfinitive on-screen position set. Input and output struc-

ble by a market lead by video games, where more and more tures are both Vertices.
impressive visual effects are required. In order to allow fast These transformed vertices are then assembled in geo-
and customizable real-time rendering, some sections of thesg o v in trianal ified b ﬂ
chips became programmable, offering several dedicated and metrlcrf)rlmltlv?s, usua 3(/1.'” trlar?g Es'l as spe%l led by t g
parallelized processors. An optimal and efficient use of all %I(D:tl.c-l;m?]gtetb% %egéeif)i(ég i':?ﬁé é‘tpue q’%?st?etagssf:)meo? _'
these processors provides a peak performance in floating- . . . : 'S 10 poly
point operations that is far above CPUs gons, lines or simple points. The next step is the ras-
In this paper, we intend to use this computational power for gzrl'é%t'gr}’r;vrrféita?g pgr?:;gﬁéu;;rifsp&zzln'igégﬁo%gggrt{
more generic applications, such as Digital Signal Processing 9 5 1S g '
All values belonging to these fragmenésg. color, tex-

Applications. Block-matching is a very interesting example ture coordinates, are interpolated from the values belong-
to implement on GPU: this task has already been widely stud- ing to each vertex of the object.

ied to reduce its complexity while keeping good results, in
particular by using sophisticated predictors [1, 2, 3, 4]. In#- Another set of programmable processors,Fragment
Processors executes a short section of code on each

some other words, GPU can be seen as a new element to)

consider when looking for optimization of image and video ~ ragment, performing all texture memory accesses ac-
processing tasks and a possible source to save execution time. cordingly to this code. This code is usually designed to
Besides utilization of multiprocessors or clusters, dedicated COMPute each pixel color from textures, lighting informa-
hardware €.g. DSP), or/and algorithmic simplications, GPU _ tion, transparency... _

may offer new possibilities associated with differents pros®- Finally, the depth is compared to the Z-Buffer to discard
and cons. any fragment too far or behind an existing pixel. On the
But this approach requires a knowledge of GPU architecture ©Other fragments, some optional processing is performed
and programming interfaces. A quite restricted set of highly- and pixels are updated in the framebuffer, which is the
parallelizable tasks may be implemented. We decided to memory section displayed on-screen.

study a Block-Matching motion estimation algorithm. OnceThis highly dedicated hardware has an incredible power be-
implemented on the GPU, it has been used from a softwareind it. For instance, we used a nVidia 6800GT that provides
MPEG-encoder, in order to validate the Digital Signal Co-six Vertex Processors and sixteen Fragment Processors. Any
processor concept and to compare algorithmical qualities. processor is able to perform the common operations in di-

a software Graphical or 3D API (Applications Programming
nterface), usually OpenGL or Direct3D. The whole Graph-
| Processor is designed in order to optimize 3D graphics,

few samples or results of the preceeding steps. As fetching
too much texture elements in a single execution may lead to
a drop in performance, such sections are divided into several
steps, gathering locally the data and computing intermediate
values, which are gathered again. An example of gathering
is the computation of an average over thousands of samples:
it may be preferable to average them per set of four, and then
to average these results per set of four, and so on until there
is just one result.
But as fragment processors cannot modify the location of
the current fragment, it is difficult to write only in a given
location which has to be computed onboard. This problem
[Programmable | [Non-Programmable | is known as scattering, and depending on the density of lo-
cations to be written in an area of texture memory, several
methods allow this. For instance, it is possible to use Ver-
tex Processors to create simple points, thanks to the intrinsic
goal of vertex processors which is to compute the position of
mension 4 and in 32 bits floating point precision in a :singlethe current vertex. If simple points are expected, we use no
cycle, even two per cycles in particular cases. Memory aCr_asterlzatlon and the fragment processors get only the output
' y f the vertex processors. Such a way of using the GPU is re-

ce_ssgs from tfégtf_ragmenélprt()cessors are cachfed inﬂ?n op, 'ITy expensive, but may prevent moving back to the CPU for
mized way, and it is possible to access memory from the verz . ' M-
tex processors despite a higher cost. Running at 450 MHE specific step, thereby contributing to good performances.

; . on-familiar readers may get more information on both
this leads to a peak performance far above classical CPU&PU-Gems books [5, 6]. Now we know how to use this

Igéifr \li\g;ysg:sg?:gzslqaearfsttlimtf;riiittgitﬁrzu as a Copropargware as a coprocessor, we may consider the class of al-
' gorithms we decided to implement on a GPU.

o>
> 39
=iE
=]
<5
0 <

Rasterization
Interpolation
FrameBuffer

Figure 1: The Graphical Pipeline

2.2 General Purpose and Digital Processing Program- 3. BLOCK-MATCHING. A VIDEO PROCESSING
ming APPLICATION

This hardware as it has been described is usable besides g, iy 4 100k at expensive algorithms in the field of Video
case of real-time graphics. In fact, it is possible to read bac rocessing, Motion-Estimation appear to be a basic but ex-
the framebuffer from the CPU, thereby allowing a feedbf.icqii—)ﬁensive component for which real time implies poor algo-
of the processing done. The API provides a set of extensiongy nica) results. We focused more on Block-Matching al-
that yields rendering to a texture instead of the framebuffer orithms, dedicated to block-based motion. Such algorithms
offering the use of a rendered image as a texture in a futu Ee mostly used in video encoding.

step. It becomes possible to do several processings onboar

and to get the final result, limiting therefore the use of the3_1 Fundamentals

communication bus. Now that we know this possible, it may

be interesting to see how a general purpose application c&ponsidering two images, a current oBeand the previous

fit in this highly specialized pipeline and to widen the rangeone, called the Referenc® we partition the current one
of possible applications [10]. in adjacent square blocks and for each of these, we look in
The classical use of the pipeline for general purpose compthe previous image for the most similar block. The notion
tation relies on a simple dataflow model that can be complexef similarity is given through a distance function which the
ified [8, 9]. Textures may be seen as Sample Arrays in the belgorithm tries to minimize among all considered blocks.
ginning, and they may also contain intermediate data durinfirst, we may define @lock of an image A by its top-
the whole processing if this is necessary. Fragment procefsftmost pixel(i, j), thereby using the notatioB';, and as
sors may be used and programmed to fetch several samplaswo-dimentional array of pixels. Accessing pixelj) in

or data and to create a new piece of data in another sectidgmageA is written A(i, j). Writing p = (px, py) and among

of texture memory. It is important to note that all fragmentclassical distances that may be used, we decided to use the
processors have the same code and behavior, and that thiejlowing one:

are launched on a set of fragments (usually, rendering a rect-

angle is enough to generate a large set) that will each contairul(B%’ B(F;) = z IC(px+i,py+ i) —R(ax+i,ay+j)| (1)

a result after execution. There is no control of the order in (i.77eb
which the fragments are processed. Therefore a pass cannot . i .
use its own results. with b being the square representation of a block of side

As mentioned, the simplest way to generate and to use a--n[*>. This may be written in a more explicit way using the
these fragments is to provide the GPU with four vertices reporiginal block and a motion between both blocks:
resenting a rectangle. We use the interpolation of a variable

like the texture coordinates to let the fragment processors be c(Bp,V) = d(Bj, B},) (2)
aware of where the current fragment is and where data has to
be fetched. with d standing for a distance. This explicits that for one

Thus, a processing step has to be the generation of a setlabck in imageC, we consider the block at the position trans-
data, each piece being computed easily on its own using lated byV in R. As in an optimal case, the vect@points to

the previous position of the same object, it might be seen aat the half-resolution. Then, for each block, whose size

the opposite of a motion. is now 8 by 8, we consider up to thirty six vectors: four
It is possible to elaborate different Block-Matching algo- predictors plus all their neighbourge. the set of vec-
rithms depending oeand how it is scanned. tors {2 x B + {—1,0,1}?}. Among these 36 possibilites,
we still take the four best, leading to four new predictors
3.2 Classical Block-Matching Algorithms (B))i=o.3. Moving back to the full-resolution follows ex-

Having introduced these notations, we can complete the d&Stly t/he same pr|£10|ple, considering a new set of vectors
scription of most classical Block-Matching algorithms. 2x B +{-1,0,1}*}, and we only keep the best result at
Full Exhaustive: It consists of scanning all possible blocks. this step. This processing is summarized in figure 2.
In terms of motion vectors, the sgts the set of all pos-
sible vectors such that the translated block is still in-
side the image. For &es by Yres resolution and for
a 16 by 16 block at(px, py), S may be writtensy =
[— Px; Xres— 16— px] X [— Py, Yres— 16— py]. Scanning any
possibility, this provides the best results but at a consid-
erable processing cost even if highly parallelizable. For
a VGA (640 by 480), 30 fps video stream, for instance,
the cost isnvpg = 6 Tops where the elementary operation
is an 8 bits add.
Restricted Exhaustive: In order to reduce the amount of

P1 Exhaustive

P2 <J_ Search

2{ps} *+ (-1,0,1}2]

work required by the Full Exhaustive Search, we may Half-Res

try to reduce the search to vectors within a given range. refinement | ¥
Specifying a maximum amplitude @af; in the horizon- P1

tal and ofay in the vertical, we haves = [—ay,ay] X P2
[—av,av]Nso. Intersecting withsy ensures[that the] mo- [2(ps} + (-1,0,1)7] P3
tion won't move the block out of the image. Cost: P4
We = 343 Gops for a-64 x +64 search window. r;‘l‘r"'e::t >

Logarithmic: This logarithmic search is a popular method
used for fast motion-estimation. It will be used as a ref-
erence in this work. Specifying a maximal excursion Image Reduction
it starts by scanning the set of vectdrsm/2,0,m/2}2.
Getting a first result callegredictor, it proceeds again
around that predictopy and in a smaller area, scanning
the set{ po + {—m/4,0,m/4}?}, gettingp;. Having py, _ _ _ - _ .
following step is to check i py + {—m/8,0,m/8}2}. This provides us with a good algorithmic quality for a still
And s0 on up to a set which can not be reduced anymordéasonable computation coshrvp = 2.27 Gops for a
Obviously an error at the first step may lead to poor re-£64>x £64 window. The algorithm is almost regular enough
sults anyway, and even if the vectors are accurate enoudf fit in the GPU datastream model.

for some encoding applications, precision and quality are
rough. Costw_ = 1.11 Gops. 4. IMPLEMENTATION SPECIFICITIES

This being considered, we moved to another algorithm baseghg first particularity of a GPU implementation of a complex
on a processing at different resolutions and on the use of seiiqorithm is that it has to be cut into several steps, each step

eral predictors. being seen as a computational kernel applied to a large set of
. . . - . data. This computational kernel may also be seen as a loop
3.3 Multiresolution and Multiprediction Algorithm body, the loop being controlled by the API and through the
We now consider 640 by 480 images and blocks of size 1Gasterization of all fragments. All kernels have to perform a
We only use the luminance, so it is preferable to reduce thimited amount of computations and memory accesses.
image to a single channel as soon as possible. Our algorith@n the implementation side, image reduction may be per-
uses several images at different resolutions. Each image hemed automatically by the GPU. In order to control the fil-
to be filtered and downsampled by a factor of two in eacher and to be sure of the result, we implemented these steps
dimension, leading to a 320 by 24M@lf resolution image ourselves. The whole reduction process is done in four one-
Applying this again leads to a 160 by 180arter resolution dimension reductions, one horizontal and one vertical lead-
image In order to reduce processing time, it is convenient tdng to the half-resolution, and again to the quarter-resolution.
apply a separable filter. Moving to the quarter-resolution, all values of th&inction

The first step is to compute the functienfor any block are computed at once, generating a set of 673.000 distances -
and any possible vector in the rangel6,16] x [—8,8] (i.e. one per couple block / vector, with 40 by 30 blocks and 33 by
+64 x +32 at full resolution) at the quarter-resolution, lead-17 vectors. Then, another set of fragment programs gathers
ing to amotion cost table Then, among all these results, in several steps all these results in order to find the minimum
we select the four best per block, keeping four predictorsvalue per block among all possible vectors. This leads to a set
(P)i=o.3. Considering 4 by 4 blocks, this may be seen af 40 by 30 values: all the best vectors. These results are read
an exhaustive search for a list of the 4 best vectors. and the corresponding entries in the distance table overwrit-
All these predictors are multiplied by two before using themten by the vertex processors, setting them to the maximum.

Processing| [Intermediate
Step data

Figure 2: Multiresolution Multiprediction Algorithm

This way, gathering again the results leads to the second beastise ratio, we got a 10-15% reduction in file sizes, thereby
vectors. This is performed twice again in order to get fourvalidating the algorithmical quality of our method.

vectors. It is interesting to note that getting all vectors may

have been implemented in a single pass. But this would have 6. CONCLUSION

reduced flexibility and the performance gain would not haVﬁ{29 this contribution, we have shown that the processing

been that obvious: each gathering step would have been dopower of the GPU can be used to off-load the CPU. Graphics

between eight valuegge. gathering the results of two execu- e L .
tions at once, then sorting these eight values would have be&jfrdware can be used efficiently as a Digital Signal Copro-
ssor, thanks to their massively parallel architecture. As the

necessary. Sorting is an expensive task on the GPU, mostly ™ till has t ; trol. the GPU b
due to the fact that the fragment processors are almost SIM lain processor still has to periorm control, the can be

This implies that in if-cases, both branches are executed edasa coprocessor only. .
all processors. This penalty is to be added to the expensive? Prove this concept, we successfully implemented a Block-
overhead of such structures atching motion estimator whose speed has been increased

: - y a factor of more than 10 when compared to its CPU imple-
Then, having all these predictors, we may move back to th%entation. Then, we tested this for MPEG Encoding. It lead

half-resolution. This is first performed by a fragment pro-, = . ificant | s | field h q
gram that fetches predictors, computes the memory locatiglf Significant improvements in several fields such as speed,
rocessor load and algorithmic quality.

of the translated block, fetches both blocks and computeE i K includ flexible imol tati ith
partial sums of ouc function. We have to stop at partial sums ¢ uture wor 'nﬁ udes a.tm.ore exile |mp_emekr)1|a Ilfn wi

to prevent a too large amount of memory accesses at oncg’_'nstance the possibliity to parametrize block sizes,
Another fragment program gathers all these results and prd?29€ sizes, half- and full-resolution refinement sets of
vides a half-resolutiows table. Then, as previously, another VECIOS-.. ~Another step will be the integration in the

set of fragment programs is used to gather and compare PUCY framework. _As a part of the Visior}GPU
these results. This leads to the best vector per block. As preroiect (http://picolibre.int-evry.fr/projects/gpucv/), it has

viously again, the Vertex Processors disable correspondi en funded by the french GET (http://www.get-telecom.fr)),

entries and the processing is performed several times aga ,network of Engineering Schools.
leading to thg f)i family of predictors.
Returning to the full resolution lies on the same principles, REFERENCES

except that we stop with the first result instead of looking for[l] V. Bhaskaran and K. Konstantinidiesnage and Video
four. Another difference is the fact that the gathering of par- Compression Standard&luwer Academic Publishers
tial sums has to be performed in two steps as the number of 1997 ’

samples to be fetched increases. The information on select?ﬂ

vectors is then sent back to the CPU. M. I. Sezan and R. L. Lagendijkylotion Analysis and

Image Sequence Processiduwer Academic Publish-
ers, 1993.

5. APPLICATIONS AND RESULTS [3] C. Tziritas and C. LabitMotion Analysis for Image Se-

On its own, our Block-Matching runs at 17.5 fps on a _ dUence Codingflsevier, 1994. ,

6800GT board, compared to 1.61 fps on a dual 3 Gh#4] K. R. Rao and J. J. Hwangechniques & Standards for
Pentium-IV. Using only one predictor when moving from Image, Video & Audio CodindPrentice Hall PTR, 1996.
the half- to the full-resolution yields 27.4 fps. Whatever the[5] GPUGems - Programming Techniques, Tips, and Tricks
number of predictors, the acceleration factor is always more for Real-Time GraphicsnVidia, Inc. 2004.

than ten. A drawback shall be noticed in the setup time f°{6] GPUGems 2 - Programming Techniques for High-

the first couple of images; this represents a few seconds. Performance Graphics and General-Purpose Computa-
As a proof of concept, we decided to use this motion- 54 nvidia. Inc. 2005.

estimator in a video encoder, using thus the GPU as a copro- W -
cessor dedicated to that specific task whereas the CPU had?@ J. Montrym and H. Moreton, “The geForce 6800"Nfi-
handle all other MPEG processings. cro, IEEE vol. 25 iss. 2, pp. 41-51, 2005.

Starting from the Dali library [11] and using their sim- [8] T. Dokken, T. Hagen and J. M. Hjelmervik, “The GPU
ple MPEG-1 encoder example, we replaced the motion- as a high performance computational resourcePrio-
estimation section, adding the same software control that al- ceedings of the 21st Spring Conference on Computer
lows thresholding on the null motion or intra-coding accord- ~ Graphics ACM Press.

ingly to the result quality. The Motion-Estimation used by [9] N. Goodnight, R. Wand and G. Humphreys, “Compu-
Dali is a fast logarithmic search used only after checking that tation on Programmable Graphics Hardware” Qom-
null-motion is not sufficent. We have also separated the APl puter Graphics and Applications, IEERoI. 25 iss. 5,
calls in a separate thread: this lets some MPEG-processing 2005.

be done while waiting for the GPU to finish and for the API [10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
to unlock the execution of its thread. . 'J. Kuger, A. E. Lefohn, and T. J. Purcell, “A survey of
Comparing with the original encoder, the speed has been im- General-Purpose Computation on Graphics Hardware”.

proved by 65%, increasing from 6 to 10 frames per second
on our hardware. On the first experiments, we had neither in- IznlféJlR(Z)oGO?APHICS 2005, State of the Art repopp.

crease in quality nor reduction in mpeg filesize. This was du . :

to the poor quality of the sequences we worked on, Whilell] W.T. Ooi, B. Smith, S. Mukhopadhyay, H.H. Chan, S.
were mpeg-2 classical test sequences. Working on a clean VV€iss, and M. ChiuThe Dali Multimedia Software Li-
succession of images and specifying a constant signal-to- 0rary. December, 1998.

