
USING GPU FOR FAST BLOCK-MATCHING

Śebastien Mazaŕe, Jean-Luc Dugelay, and Renaud Pacalet

Multimedia Department, Eurecom Institute
2229, route des Cretes,

06560 Sophia-Antipolis, FRANCE
email:{mazare, dugelay}@eurecom.fr

GET / Télécom Paris - CNRS LTCI,
46, rue Barrault,

75634 Paris Cedex 13, FRANCE
email: renaud.pacalet@enst.fr

ABSTRACT

On the one hand, basic PCs include by default more and
more powerful GPU (Graphics Processing Unit) that some-
times even outperforms CPU (Central Processing Unit) for
some specific tasks. On the other hand, video processing are
more and more useful and required for numerous emerging
services and applications but is often too computational ex-
pensive to reach real time. Within the context of GPGPU
(General Purpose GPU), we propose in this paper a possible
implementation of a block-matching algorithm. Some signif-
icant results are obtained in terms of acceleration and qual-
ity. Based on our experiments on Block-Matching within the
context of video compression, we finally underline some ex-
isting limitations of using GPUs beyond graphics for image
and video processing even if this concept remains attractive.

1. INTRODUCTION

Originally dedicated to 3D graphics, Graphical Processing
Units (GPUs) became more and more powerful, evolving
faster than moore’s law. This evolution has been made possi-
ble by a market lead by video games, where more and more
impressive visual effects are required. In order to allow fast
and customizable real-time rendering, some sections of these
chips became programmable, offering several dedicated and
parallelized processors. An optimal and efficient use of all
these processors provides a peak performance in floating-
point operations that is far above CPUs.
In this paper, we intend to use this computational power for
more generic applications, such as Digital Signal Processing
Applications. Block-matching is a very interesting example
to implement on GPU: this task has already been widely stud-
ied to reduce its complexity while keeping good results, in
particular by using sophisticated predictors [1, 2, 3, 4]. In
some other words, GPU can be seen as a new element to
consider when looking for optimization of image and video
processing tasks and a possible source to save execution time.
Besides utilization of multiprocessors or clusters, dedicated
hardware (e.g.DSP), or/and algorithmic simplications, GPU
may offer new possibilities associated with differents pros
and cons.
But this approach requires a knowledge of GPU architecture
and programming interfaces. A quite restricted set of highly-
parallelizable tasks may be implemented. We decided to
study a Block-Matching motion estimation algorithm. Once
implemented on the GPU, it has been used from a software
MPEG-encoder, in order to validate the Digital Signal Co-
processor concept and to compare algorithmical qualities.

2. GRAPHICS HARDWARE AS A DIGITAL SIGNAL
COPROCESSOR

2.1 The Graphic Pipeline

Modern Graphics Hardware may be seen as an output de-
vice that processes high-level graphical commands sent from
the main processor [7]. These commands are issued using
a software Graphical or 3D API (Applications Programming
Interface), usually OpenGL or Direct3D. The whole Graph-
ical Processor is designed in order to optimize 3D graphics,
2D being still possible as a particular case of 3D. The follow-
ing dataflow is illustrated by figure 1.
1. In the common case, all raw images needed during the

processing are sent to the GPU and stored in its texture
memory. Then a geometrical and command flow is sent
to the GPU. This flow contains all information on how
the rendering shall be performed, and all geometrical in-
formation, represented by vertices.

2. Then, a first set of parallel and programmable proces-
sors, theVertex Processors, transforms all characteristic
points of the scene, usually performing a projection from
the absolute 3D world described in the CPU to the tar-
geted point of view. This way, any important point has its
definitive on-screen position set. Input and output struc-
tures are both Vertices.

3. These transformed vertices are then assembled in geo-
metric primitives, usually in triangles, as specified by the
API. The set of vertex indices that belong to the same ob-
ject cannot be modified in the GPU. This leads to poly-
gons, lines or simple points. The next step is the ras-
terization, where any possible future pixel in the object,
called a fragment, is generated at its definitive location.
All values belonging to these fragments,e.g. color, tex-
ture coordinates, are interpolated from the values belong-
ing to each vertex of the object.

4. Another set of programmable processors, theFragment
Processors, executes a short section of code on each
fragment, performing all texture memory accesses ac-
cordingly to this code. This code is usually designed to
compute each pixel color from textures, lighting informa-
tion, transparency...

5. Finally, the depth is compared to the Z-Buffer to discard
any fragment too far or behind an existing pixel. On the
other fragments, some optional processing is performed
and pixels are updated in the framebuffer, which is the
memory section displayed on-screen.

This highly dedicated hardware has an incredible power be-
hind it. For instance, we used a nVidia 6800GT that provides
six Vertex Processors and sixteen Fragment Processors. Any
processor is able to perform the common operations in di-

R
as
te
ri
za
ti
o
n

In
te
rp
o
la
ti
o
n

F
ro
n
t
E
n
d

R
as
te
r
/ D
ep
th

F
ra
m
eB
u
ff
er

P
ri
m
it
iv
e

A
ss
em
b
ly

F
ra
g
m
en
t

P
ro
ce
ss
o
rs

V
er
te
x

P
ro
ce
ss
o
rs

Programmable Non-Programmable

Ve
rti
ce
s I
n-

de
x S
tre
am

Ve
rti
ce
s

Tr
an
sfo
rm
ed

Ve
rti
ce
s

As
se
m
ble
d

Ve
rti
ce
s

Fr
ag
m
en
ts

Fr
ag
m
en
t

Po
sit
ion
s

Tr
an
sfo
rm
ed

Fr
ag
m
en
ts

Pi
xe
ls

Figure 1: The Graphical Pipeline

mension 4 and in 32 bits floating point precision in a single
cycle, even two per cycles in particular cases. Memory ac-
cesses from the fragment processors are cached in an opti-
mized way, and it is possible to access memory from the ver-
tex processors despite a higher cost. Running at 450 MHz,
this leads to a peak performance far above classical CPUs.
This is why it is really interesting to use the GPU as a copro-
cessor for some tasks that fit in its architecture.

2.2 General Purpose and Digital Processing Program-
ming

This hardware as it has been described is usable besides the
case of real-time graphics. In fact, it is possible to read back
the framebuffer from the CPU, thereby allowing a feedback
of the processing done. The API provides a set of extensions
that yields rendering to a texture instead of the framebuffer,
offering the use of a rendered image as a texture in a future
step. It becomes possible to do several processings onboard
and to get the final result, limiting therefore the use of the
communication bus. Now that we know this possible, it may
be interesting to see how a general purpose application can
fit in this highly specialized pipeline and to widen the range
of possible applications [10].
The classical use of the pipeline for general purpose compu-
tation relies on a simple dataflow model that can be complex-
ified [8, 9]. Textures may be seen as Sample Arrays in the be-
ginning, and they may also contain intermediate data during
the whole processing if this is necessary. Fragment proces-
sors may be used and programmed to fetch several samples
or data and to create a new piece of data in another section
of texture memory. It is important to note that all fragment
processors have the same code and behavior, and that they
are launched on a set of fragments (usually, rendering a rect-
angle is enough to generate a large set) that will each contain
a result after execution. There is no control of the order in
which the fragments are processed. Therefore a pass cannot
use its own results.
As mentioned, the simplest way to generate and to use all
these fragments is to provide the GPU with four vertices rep-
resenting a rectangle. We use the interpolation of a variable
like the texture coordinates to let the fragment processors be
aware of where the current fragment is and where data has to
be fetched.
Thus, a processing step has to be the generation of a set of
data, each piece being computed easily on its own using a

few samples or results of the preceeding steps. As fetching
too much texture elements in a single execution may lead to
a drop in performance, such sections are divided into several
steps, gathering locally the data and computing intermediate
values, which are gathered again. An example of gathering
is the computation of an average over thousands of samples:
it may be preferable to average them per set of four, and then
to average these results per set of four, and so on until there
is just one result.
But as fragment processors cannot modify the location of
the current fragment, it is difficult to write only in a given
location which has to be computed onboard. This problem
is known as scattering, and depending on the density of lo-
cations to be written in an area of texture memory, several
methods allow this. For instance, it is possible to use Ver-
tex Processors to create simple points, thanks to the intrinsic
goal of vertex processors which is to compute the position of
the current vertex. If simple points are expected, we use no
rasterization and the fragment processors get only the output
of the vertex processors. Such a way of using the GPU is re-
ally expensive, but may prevent moving back to the CPU for
a specific step, thereby contributing to good performances.
Non-familiar readers may get more information on both
GPU-Gems books [5, 6]. Now we know how to use this
hardware as a coprocessor, we may consider the class of al-
gorithms we decided to implement on a GPU.

3. BLOCK-MATCHING, A VIDEO PROCESSING
APPLICATION

Having a look at expensive algorithms in the field of Video
Processing, Motion-Estimation appear to be a basic but ex-
pensive component for which real time implies poor algo-
rithmical results. We focused more on Block-Matching al-
gorithms, dedicated to block-based motion. Such algorithms
are mostly used in video encoding.

3.1 Fundamentals

Considering two images, a current oneC and the previous
one, called the Reference,R, we partition the current one
in adjacent square blocks and for each of these, we look in
the previous image for the most similar block. The notion
of similarity is given through a distance function which the
algorithm tries to minimize among all considered blocks.
First, we may define aBlock of an image A by its top-
leftmost pixel(i, j), thereby using the notationBA

i, j , and as
a two-dimentional array of pixels. Accessing pixel(i, j) in
imageA is written A(i, j). Writing p = (px, py) and among
classical distances that may be used, we decided to use the
following one:

d1(BC
p,B

R
q) = ∑

(i, j)∈b

|C(px+ i, py+ j)−R(qx+ i,qy+ j)| (1)

with b being the square representation of a block of sizen, ie
[0..n[2. This may be written in a more explicit way using the
original block and a motion between both blocks:

c(Bp,~v) = d(BC
p,B

R
p+~v) (2)

with d standing for a distance. This explicits that for one
block in imageC, we consider the block at the position trans-
lated by~v in R. As in an optimal case, the vector~v points to

the previous position of the same object, it might be seen as
the opposite of a motion.
It is possible to elaborate different Block-Matching algo-
rithms depending ons and how it is scanned.

3.2 Classical Block-Matching Algorithms

Having introduced these notations, we can complete the de-
scription of most classical Block-Matching algorithms.
Full Exhaustive: It consists of scanning all possible blocks.

In terms of motion vectors, the sets is the set of all pos-
sible vectors such that the translated block is still in-
side the image. For axres by yres resolution and for
a 16 by 16 block at(px, py), s may be writtens0 =
[−px,xres−16−px]× [−py,yres−16−py]. Scanning any
possibility, this provides the best results but at a consid-
erable processing cost even if highly parallelizable. For
a VGA (640 by 480), 30 fps video stream, for instance,
the cost iswPE = 6 Tops where the elementary operation
is an 8 bits add.

Restricted Exhaustive: In order to reduce the amount of
work required by the Full Exhaustive Search, we may
try to reduce the search to vectors within a given range.
Specifying a maximum amplitude ofaH in the horizon-
tal and ofaV in the vertical, we haves = [−aH ,aH]×
[−aV ,aV]∩ s0. Intersecting withs0 ensures that the mo-
tion won’t move the block out of the image. Cost:
wE = 343 Gops for a±64×±64 search window.

Logarithmic: This logarithmic search is a popular method
used for fast motion-estimation. It will be used as a ref-
erence in this work. Specifying a maximal excursionm,
it starts by scanning the set of vectors{−m/2,0,m/2}2.
Getting a first result calledpredictor, it proceeds again
around that predictorp0 and in a smaller area, scanning
the set{p0 + {−m/4,0,m/4}2}, gettingp1. Having p1,
following step is to check in{p1 + {−m/8,0,m/8}2}.
And so on up to a set which can not be reduced anymore.
Obviously an error at the first step may lead to poor re-
sults anyway, and even if the vectors are accurate enough
for some encoding applications, precision and quality are
rough. Cost:wL = 1.11 Gops.

This being considered, we moved to another algorithm based
on a processing at different resolutions and on the use of sev-
eral predictors.

3.3 Multiresolution and Multiprediction Algorithm

We now consider 640 by 480 images and blocks of size 16.
We only use the luminance, so it is preferable to reduce the
image to a single channel as soon as possible. Our algorithm
uses several images at different resolutions. Each image has
to be filtered and downsampled by a factor of two in each
dimension, leading to a 320 by 240half resolution image.
Applying this again leads to a 160 by 120quarter resolution
image. In order to reduce processing time, it is convenient to
apply a separable filter.
The first step is to compute the functionc for any block
and any possible vector in the range[−16,16]× [−8,8] (i.e.
±64×±32 at full resolution) at the quarter-resolution, lead-
ing to a motion cost table. Then, among all these results,
we select the four best per block, keeping four predictors
(~pi)i=0..3. Considering 4 by 4 blocks, this may be seen as
an exhaustive search for a list of the 4 best vectors.
All these predictors are multiplied by two before using them

at the half-resolution. Then, for each block, whose size
is now 8 by 8, we consider up to thirty six vectors: four
predictors plus all their neighbours,i.e. the set of vec-
tors {2× ~pi + {−1,0,1}2}. Among these 36 possibilites,
we still take the four best, leading to four new predictors
(~p′i)i=0..3. Moving back to the full-resolution follows ex-
actly the same principle, considering a new set of vectors
{2×~p′i + {−1,0,1}2}, and we only keep the best result at
this step. This processing is summarized in figure 2.

Exhaustive
Search

Half-Res
refinement

Full-Res
refinement

 p1
 p2
 p3
 p4

2{pi} + {-1,0,1}2

 p1
 p2
 p3
 p4

Processing
Step

Intermediate
dataImage Reduction

2{pi} + {-1,0,1}2

Figure 2: Multiresolution Multiprediction Algorithm

This provides us with a good algorithmic quality for a still
reasonable computation costwMR/MP = 2.27 Gops for a
±64×±64 window. The algorithm is almost regular enough
to fit in the GPU datastream model.

4. IMPLEMENTATION SPECIFICITIES

The first particularity of a GPU implementation of a complex
algorithm is that it has to be cut into several steps, each step
being seen as a computational kernel applied to a large set of
data. This computational kernel may also be seen as a loop
body, the loop being controlled by the API and through the
rasterization of all fragments. All kernels have to perform a
limited amount of computations and memory accesses.
On the implementation side, image reduction may be per-
formed automatically by the GPU. In order to control the fil-
ter and to be sure of the result, we implemented these steps
ourselves. The whole reduction process is done in four one-
dimension reductions, one horizontal and one vertical lead-
ing to the half-resolution, and again to the quarter-resolution.
Moving to the quarter-resolution, all values of thec function
are computed at once, generating a set of 673.000 distances -
one per couple block / vector, with 40 by 30 blocks and 33 by
17 vectors. Then, another set of fragment programs gathers
in several steps all these results in order to find the minimum
value per block among all possible vectors. This leads to a set
of 40 by 30 values: all the best vectors. These results are read
and the corresponding entries in the distance table overwrit-
ten by the vertex processors, setting them to the maximum.

This way, gathering again the results leads to the second best
vectors. This is performed twice again in order to get four
vectors. It is interesting to note that getting all vectors may
have been implemented in a single pass. But this would have
reduced flexibility and the performance gain would not have
been that obvious: each gathering step would have been done
between eight values,i.e. gathering the results of two execu-
tions at once, then sorting these eight values would have been
necessary. Sorting is an expensive task on the GPU, mostly
due to the fact that the fragment processors are almost SIMD.
This implies that in if-cases, both branches are executed by
all processors. This penalty is to be added to the expensive
overhead of such structures.
Then, having all these predictors, we may move back to the
half-resolution. This is first performed by a fragment pro-
gram that fetches predictors, computes the memory location
of the translated block, fetches both blocks and computes
partial sums of ourc function. We have to stop at partial sums
to prevent a too large amount of memory accesses at once.
Another fragment program gathers all these results and pro-
vides a half-resolutionc table. Then, as previously, another
set of fragment programs is used to gather and compare all
these results. This leads to the best vector per block. As pre-
viously again, the Vertex Processors disable corresponding
entries and the processing is performed several times again,
leading to the(~p′i)i family of predictors.
Returning to the full resolution lies on the same principles,
except that we stop with the first result instead of looking for
four. Another difference is the fact that the gathering of par-
tial sums has to be performed in two steps as the number of
samples to be fetched increases. The information on selected
vectors is then sent back to the CPU.

5. APPLICATIONS AND RESULTS

On its own, our Block-Matching runs at 17.5 fps on a
6800GT board, compared to 1.61 fps on a dual 3 Ghz
Pentium-IV. Using only one predictor when moving from
the half- to the full-resolution yields 27.4 fps. Whatever the
number of predictors, the acceleration factor is always more
than ten. A drawback shall be noticed in the setup time for
the first couple of images; this represents a few seconds.
As a proof of concept, we decided to use this motion-
estimator in a video encoder, using thus the GPU as a copro-
cessor dedicated to that specific task whereas the CPU had to
handle all other MPEG processings.
Starting from the Dali library [11] and using their sim-
ple MPEG-1 encoder example, we replaced the motion-
estimation section, adding the same software control that al-
lows thresholding on the null motion or intra-coding accord-
ingly to the result quality. The Motion-Estimation used by
Dali is a fast logarithmic search used only after checking that
null-motion is not sufficent. We have also separated the API
calls in a separate thread: this lets some MPEG-processing
be done while waiting for the GPU to finish and for the API
to unlock the execution of its thread.
Comparing with the original encoder, the speed has been im-
proved by 65%, increasing from 6 to 10 frames per second
on our hardware. On the first experiments, we had neither in-
crease in quality nor reduction in mpeg filesize. This was due
to the poor quality of the sequences we worked on, which
were mpeg-2 classical test sequences. Working on a clean
succession of images and specifying a constant signal-to-

noise ratio, we got a 10-15% reduction in file sizes, thereby
validating the algorithmical quality of our method.

6. CONCLUSION

In this contribution, we have shown that the processing
power of the GPU can be used to off-load the CPU. Graphics
Hardware can be used efficiently as a Digital Signal Copro-
cessor, thanks to their massively parallel architecture. As the
main processor still has to perform control, the GPU can be
used as a coprocessor only.
To prove this concept, we successfully implemented a Block-
Matching motion estimator whose speed has been increased
by a factor of more than 10 when compared to its CPU imple-
mentation. Then, we tested this for MPEG Encoding. It lead
to significant improvements in several fields such as speed,
processor load and algorithmic quality.
Future work includes a more flexible implementation with
for instance the possibility to parametrize block sizes,
image sizes, half- and full-resolution refinement sets of
vectors... Another step will be the integration in the
GPUCV framework. As a part of the VisionGPU
Project (http://picolibre.int-evry.fr/projects/gpucv/), it has
been funded by the french GET (http://www.get-telecom.fr/),
a network of Engineering Schools.

REFERENCES

[1] V. Bhaskaran and K. Konstantinidies,Image and Video
Compression Standards. Kluwer Academic Publishers,
1997.

[2] M. I. Sezan and R. L. Lagendijk,Motion Analysis and
Image Sequence Processing. Kluwer Academic Publish-
ers, 1993.

[3] C. Tziritas and C. Labit,Motion Analysis for Image Se-
quence Coding. Elsevier, 1994.

[4] K. R. Rao and J. J. Hwang,Techniques & Standards for
Image, Video & Audio Coding. Prentice Hall PTR, 1996.

[5] GPUGems - Programming Techniques, Tips, and Tricks
for Real-Time Graphics. nVidia, Inc. 2004.

[6] GPUGems 2 - Programming Techniques for High-
Performance Graphics and General-Purpose Computa-
tion. nVidia, Inc. 2005.

[7] J. Montrym and H. Moreton, “The geForce 6800”. InMi-
cro, IEEE, vol. 25 iss. 2, pp. 41–51, 2005.

[8] T. Dokken, T. Hagen and J. M. Hjelmervik, “The GPU
as a high performance computational resource,” inPro-
ceedings of the 21st Spring Conference on Computer
Graphics, ACM Press.

[9] N. Goodnight, R. Wand and G. Humphreys, “Compu-
tation on Programmable Graphics Hardware”. InCom-
puter Graphics and Applications, IEEE, vol. 25 iss. 5,
2005.

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kuger, A. E. Lefohn, and T. J. Purcell, “A survey of
General-Purpose Computation on Graphics Hardware”.
In EUROGRAPHICS 2005, State of the Art reports, pp.
21–51, 2005.

[11] W.T. Ooi, B. Smith, S. Mukhopadhyay, H.H. Chan, S.
Weiss, and M. Chiu,The Dali Multimedia Software Li-
brary. December, 1998.

