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Abstract. This paper presents a novel multi-dimensional hidden Markov model 
approach to tackle the complex issue of image modeling. We propose a set of 
efficient algorithms that avoids the exponential complexity of regular multi-
dimensional HMMs for the most frequent algorithms (Baum-Welch and 
Viterbi) due to the use of a random dependency tree (DT-HMM). We provide 
the theoretical basis for these algorithms, and we show that their complexity 
remains as small as in the uni-dimensional case. A number of possible applica-
tions are given to illustrate the genericity of the approach. Experimental results 
are also presented in order to demonstrate the potential of the proposed DT-
HMM for common image analysis tasks such as object segmentation, and track-
ing. 

1 Introduction 

In image modeling there is a fairly wide-spread agreement that objects should be pre-
sented as collections of features which appear in a given mutual position or shape 
(e.g. sun in the sky, sky above landscape or boat in the water etc) [2,4]. This is also 
relevant on a lower level; consider analyzing local features in a small region; it is 
sometimes difficult even for a human to tell what the image is about. 
 
The HMM considers observations (e.g. feature vectors representing pixels) statisti-
cally dependent on neighboring observations through transitions probabilities organ-
ized in a Markov mesh [1], giving a dependency in two dimensions. The state process 
defined by this mesh is a special case of the Markov random field.  
 
Hidden Markov models (HMM) have earlier become a key technology for many ap-
plications such as speech recognition [8] and language modeling. Their success is 
largely due to the discovery of an efficient training algorithm, the Baum-Welch algo-
rithm [10], which allows estimating the numeric values of the model parameters from 
training data. HMMs have been used in such diverse applications as acoustic model-
ing, language modeling, language analysis, spelling correction etc. Most of the current 



applications involve uni-dimensional data. In theory, HMMs can be applied as well to 
multi-dimensional data. However, the complexity of the algorithms grows tremen-
dously in higher dimensions, even in two dimensions, so that the usage of plain HMM 
becomes prohibitive in practice [18]. 
 In this paper, we propose a new type of multi-dimensional hidden Markov model; the 
dependency-tree hidden Markov model (DT-HMM). We show that for this model, 
most of the common algorithms keep the same linear complexity as in one dimension. 
We explain these algorithms and illustrate the various possible usages of the DT-
HMM through a set of examples. Our contribution is mostly theoretical, to show the 
richness and potential of this formalism. Further research will be needed to bench-
mark it with existing techniques. The remainder of this paper is organized as follows: 
section 3 provides the theoretical basis for DT-HMM, and sections 4-6 presents the 
different applications and experimental results. Finally in sections 7 we give the con-
clusions and suggest future work. 

2 Related Work 

Many approaches have been proposed to overcome the complexity of 2D-HMMs 
[11]. Among the first ones is [5] which uses a 1D HMM to model horizontal bands of 
face images. A more elaborate idea is to extract 1D features out of the image or video, 
and model these features with one or more 1D models [15]. Another approach is to 
use a two-level model, called Embedded HMM or Hierarchical HMM, where a first 
high level model contains super-states associated to a low level HMM, which models 
the lines of the observed image [16]. The main disadvantage of these approaches is 
that they greatly reduce the vertical dependencies between states, as it is only 
achieved through a single super-state. Finally several attempts have been done to heu-
ristically reduce the complexity of the HMM algorithms by making simplifying as-
sumptions which approximate the real algorithms: 
•  select a subset of state configurations only [17], 
•  ignore correlation of distant states [6], 
•  approximate probabilities by turbo-decoding [9]. 
The main disadvantage of these approaches is that they only provide approximate 
computations, so that the probabilistic model is no longer theoretically sound. 

3 Dependency-Tree HMM 

In this section, we briefly recall the basics of 2D HMM and describe our proposed 
DT-HMM [7]. 

3.1 2D-HMM 

The reader is expected to be familiar with 1D-HMM. We denote by O={oij, i=1,…m, 
j=1,…,n} the observation, for example each oij may be the feature vector of a block 



(i,j) in the image. We denote by S = {sij, i=1,…m, j=1,…,n} the state assignment of 
the HMM, where the HMM is assumed to be in state sij at position (i,j) and produce 
the observation vector oij. If we denote by λ the parameters of the HMM, then, under 
the Markov assumptions, the joint likelihood of O and S given λ can be computed as: 
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If the set of states of the HMM is {s1, … sN}, then the parameters λ are: 
•  the output  probability distributions p(o | si) 
•  the transition probability distributions p(si  | sj,sk). 
 
Depending on the type of output (discrete or continuous) the output probability distri-
bution are discrete or continuous (typically a mixture of Gaussian distribution).  
 
We would like to point out that there are two ways of modeling the spatial depend-
ences between the near neighbor state variables; by a causal or non-causal Markov 
random field (MRF). The former is referred to as Markov mesh and has the advantage 
that it reduces the complexity of likelihood functions for image classification [1]. The 
causality also enables the derivation of an analytic iterative algorithm to estimate 
states with the maximum a posteriori probability, due to that the total observation is 
progressively built from smaller parts. The state process of DT-HMM is defined by 
the Markov mesh. 

3.2 DT-HMM 

The problem with 2D-HMM is the double dependency of si,j on its two neighbors, si-1,j 
and si,j-1., which does not allow the factorization of computation as in 1D, and makes 
the computations practically intractable.  
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 (i,j-1) (i,j)    

 

Fig. 1.  2D Neighbors 

Our idea is to assume that si,j depends on one neighbor at a time only. But this 
neighbor may be the horizontal or the vertical one, depending on a random variable 
t(i,j). More precisely, t(i,j) is a random variable with two possible values :  
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For the position on the first row or the first column, t(i,j) has only one value, the one 
which leads to a valid position inside the domain. t(0,0) is not defined. 
So, our model assumes the following simplification: 
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If we further define a “direction” function: 
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then we have the simpler formulation: 
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Note that the vector t of the values t(i,j) for all (i,j) defines a tree structure over all po-
sitions, with (0,0) as the root. Figure 2 shows an example of random Dependency 
Tree. 

 
Fig. 2.  Example of Random Dependency Tree. 

The DT-HMM replaces the N3 transition probabilities of the complete 2D-HMM by 
2N2 transition probabilities. Therefore it is efficient in terms of storage. We will see 
that it is also efficient in terms of computation. Position (0,0) has no ancestor. In this 
paper, we assume for simplicity that the model starts with a predefined initial state sI 
in position (0,0). It is straightforward to extend the algorithms to the case where the 
model starts with an initial probability distribution over all states. 

3.3 Fundamental Problems 

As stated in [8], three fundamental problems should be solved for using HMMs: 
P1: Estimate the parameters of the model from a set of training examples, 



P2: Estimate the probability of an observation to be produced by the model, 
P3: Find the best state sequence in the emission of an observation. 

A great advantage of HMM is that the same formalization can be used for a variety of 
tasks, many of which are relevant to Multimedia analysis: 

•   build a model from examples, 
•   classify an item, 
•   detect an object in a stream, 
•   analyze an object of known type, etc… 

 
In the following sections, we will propose algorithms for the fundamental problems in 
the case of DT-HMM. We will show that these algorithms exhibit only moderate 
computation complexity, and we will provide illustrative examples of their usage in 
the context of Multimedia analysis. 

4 Application to Image Segmentation 

4.1 Viterbi Algorithm  

The Viterbi algorithm is a solution for problem P3, it finds the most probable se-
quence of states which generates a given observation O: 
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Let us define T(i,j) as the sub-tree with root (i,j), and define )(, sjiβ  as the maximum 
probability that the part of the observation covered by T(i,j) is generated starting from 
state s in position (i,j). We can compute the values of )(, sjiβ  recursively by enumer-
ating the positions in the opposite of the raster order, in a backward manner: 

 
•  if (i,j) is a leaf in T(i,j): 

)()( ,, sops jiji =β  (7) 

•  if (i,j) has only an horizontal successor:  
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•  if (i,j) has only a vertical successor:  
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•  if (i,j) has both an horizontal and a vertical successors:  
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Then the probability of the best state sequence for the whole image is )(, I00 sβ . Note 
that this value may also serve as an approximation for solving problem P2. 
The best state labeling is obtained by assigning Iss =0,0 and selecting recursively 
the neighbor states which accomplish the maxima in the previous formulas. Note that 
the complexity of the algorithm is only linear in the number of positions. 

4.2 Relative Frequency estimation 

Assume that we have a labeled observation, for example an image where each output 
block has been assigned a state of the model. (this labeled observation might have 
been created manually or automatically). Then, it is straightforward to estimate the 
transition probabilities by their relative frequency, for example: 
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where )',(, ssN tH is the number of times that state s’ appears as a right horizontal 
neighbor of state s in the dependency tree t, and )(sN the number of times that state s 
appears in the labeling. (This probability may be smoothed, for example using La-
grange smoothing).  
The output probabilities may be also estimated by relative frequency in the discrete 
case, or using standard Multi-Gaussian estimation in the continuous case. This pro-
vides a solution for problem P1 in the case where a labeling is available, and is called 
Viterbi training.  Each observation is assumed (with weight 1) to have resulted from 
the single most likely state sequence that might have caused it i.e. in the Viterbi train-
ing the state sequence with the maximum a posteriori probability P(S|O) is assumed to 
be the real state sequence.  

4.3 Model Training 

We now show the use of the previous two algorithms to train iteratively a DT-HMM 
on a set of images comprised of 130 consistent images depicting beach (see examples 
in Figure 3).  

 



 
Fig. 3. Example of training images 

During training each image is split into blocks of 16x16 pixels, and the observation 
vector for each block is computed as the average and variance of the LUV (CIE LUV 
color space) coding {Lµ,Uµ,Vµ, Lσ,Uσ,Vσ} combined with six quantified DCT coeffi-
cients (Discrete Cosine Transform). Thus each block is represented by a 12 dimen-
sional vector. Every feature vector is annotated with a sub-class as described below. 

4.4 States with semantic labels 

In order to perform semantic segmentation we enforce semantic meaning to the states 
by uniquely assigning a state to one sub-class. Table 1 lists the number of states as-
signed to each sub-class. 

Table 1. The number of states for each sub-class 

Sub Class No. states 
Unknown 3 
Sky 7 
Sea 5 
Sand 6 
Mountain 3 
Vegetation 3 
Person 4 
Building 3 
Boat 2 
8 sub-classes 36 states 

 
Annotations was done in practice by first segmenting the training images into arbi-
trary shaped regions using the algorithm proposed in [20] and then manually label 
each region with one of the sub classes by using an application with a graphical user 
interface as shown in Figure. 4. 

 



 
Fig. 4. Annotating an image segment as “sky” 

To make an initial model for the output probabilities a GMM (Gaussian Mixture 
Model) is trained with observations corresponding to each sub-class. We dedicate 
three GMM components for every state, which gives us for instance that "sky" has 21 
components and vegetation has 9 (see Table 1). Then we group the components into 
clusters by k-means. The number of clusters corresponds to the number of states we 
have dedicated to the actual sub-class. Finally each state is assigned to a cluster, 
which we have scaled up by a factor of two (multiplying its component weight by 2).  
The transition probabilities are initialized uniformly. Then, during training we iterate 
the following steps: 
•  With (11) estimate the output and transition probabilities by counting the relative 

frequencies (emission of an observation by a state, horizontal and vertical succes-
sors of a state) with Lagrange smoothing. 

•  Generate a random dependency tree and perform a Viterbi alignment to generate a 
new labeling of the image. The Viterbi training procedure is adapted to select the 
range of states that correspond to the annotated sub-class at each position, thus 
constraining the possible states for the observations. 

4.5 Experiment Results 

During training, we can observe the state assignments at each iteration as an indica-
tion of how the model fits the training data. For example, the first ten iterations on the 
training image to the left in figure 4 above provide the following assignments: 
 

 
Fig. 5. State segmentation after 0, 2, 6 and 10 iterations 

The sequence in figure 5 shows that the model has rapidly adapted each sub class to a 
particular set of observations. As such, the Viterbi labeling provides a relevant seg-
mentation of the image. The graph below shows the evolution of likelihood of the 
training data during the training iterations. We can see that the likelihood for the 
model given the data has an asymptotic behavior after 10 iterations. 
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Fig. 6. Likelihood of the training data 

Once the model is trained, we can apply it on new images. Below is an example of the 
state assignment for an image in the test set after 15 iterations, 70% of the blocks is 
correctly classified. 
 

 
Fig. 7. State segmentation on test image 

It should be emphasized that this is not just a simple segmentation of the images, but 
that each region is also assigned one of the 36 states (which represents one of the sub 
classes) of the model, and that the definition of those states has been done taking into 
account all training data simultaneously. We can observe that those area types are la-
beled with the same states during training.  

5 Application to Object Tracking 

In this section, we present how DT-HMMs can be applied to track an object in a video 
sequence. We consider a model with two types of states, object states (so) and back-
ground states (sb). The general idea is to train the model on an initial image where the 
object has been delimited, then to use the Viterbi algorithm to find the location of the 
object in subsequent frames.  
We use a model with 6 states: 
•  background states: sb={ s1,  s6}, 
•  object states: so={s2,  s3, s4, s5 }. 
Assuming that a bounding box has been drawn around the object on the initial frame, 
we set the states on the initial frame according to the pattern in figure 8. 

 



 
Fig. 8. Object and Background states for Object Tracking 

•  s1 is the initial state of the model, 
•  s6 is the final state of the model, 
•  The 4 object states are arranged inside a regular 2x2 grid within the bounding box. 
 
In order to reinforce spatial constraints, we do not smooth transition probabilities, so 
that transitions which do not exist in the initial frame will keep a probability of zero 
and will remain forbidden in the subsequent frames. The output probabilities are 
smoothed as the color of the object may change from frame to frame. 
We compared several variations of the tracking procedure: 

 
•  (b) train the model on the first frame, and use it to Viterbi align the other frames, 
•  (c) train a first model on the first frame, use it  to Viterbi align the second frame, 

train a second model on this alignment, use it to Viterbi align the third frame, etc… 
•  (d) same as before, but train on all frames since the beginning, rather than just the 

current frame. 
 
Figure 9 shows the compared results of these procedures. We can observe that, be-
cause the initial bounding box also contains background pixels, all methods have a 
tendency to spread outside the actual shape of the object. This is especially true for 
method (c), which updates the model at every frame. Method (d) improves a little, but 
it still not perfect. 

s1

s6



(a) (b) (c) (d) 

 
Fig. 9. Alignments at frames 70, 71, 75, 80 and 85 

In order to cope with this problem, we should try to penalize background pixels which 
are within the object bounding box. For this purpose, we propose to modify the output 
probabilities of the object states with the following formula: 
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This formula will reduce the output probability of colors which are highly probable in 
the background states, therefore enhancing the true object pixels only. 

 
(a) (b) (c) 

 
Fig. 10. Object tracking with weighted output probabilities 

 



Figure 10 shows the result of tracking the object with method (c) using object prob-
ability weighting. It is clear that probability weighting has greatly improved the qual-
ity of object tracking. 

6 Future Extensions 

The DT-HMM formalism is open to a great variety of extensions and tracks. For ex-
ample the algorithms that we have proposed remain valid for other ancestor functions 
and multidimensional Markov models. 

6.1 Ancestor Dependencies 

As before mentioned the state process is based on the dependencies defined by the 
Markov mesh, which is a special case of the Markov random field [1]. The Markov 
mesh defines spatial dependencies that are called “causal” because the dependent 
states are “past”; above and to the left of the current node. We can for example con-
sider the following causal dependencies of a 3d and 4th order Markov mesh: 

 
     

 (i-1,j-1) (i-1,j)   

 (i,j-1) (i,j)   
Fig. 11.  Example of extended neighborhood 

 

  (i-2,j)   

 (i-1,j-1) (i-1,j)   

(i,j-2) (i,j-1) (i,j)   

This only increases linearly (not exponentially) the number of transition probabilities, 
and therefore the complexity of the model and the algorithm.  

6.2 Trees and Duals 

One may notice that the value of P(O| t) depends on the specific dependency tree t 
that has been used in the computation. It may happen that, by chance, a given image 
get a more or less convenient dependency tree, and therefore a different score. The 
true score for an image should be: 
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All dependency trees are supposed to be equally likely, so that P(t) is uniform. While 
this sum cannot be computed easily, it may be estimated by generating several trees 
and averaging the conditional likelihood of the output. Of particular interest is the es-
timation: 
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where t is the dual tree of t, defined by replacing horizontal by vertical dependencies 
(and vice versa), except for boundary constraints. This formulation introduces both 
horizontal and vertical dependencies for all neighbor pairs in the observation. In an 
investigation of different estimations for (13), we demonstrated that the dual ap-
proximation is more accurate than sampling with a unique random tree [19]. 

6.3 Multidimensional Model 

The framework can also be extended to several dimensions, for example in the case of 
a video. Video can be regarded as images indexed with time. Considering the continu-
ity of consecutive frames, it is often reasonable to assume local dependencies between 
pixels among frames. If a position is (i,j,t), it could depend on the neighbors (i-1,j,t), 
(i,j-1,t), (i,j,t-1) or more.  

 
 

Fig. 12.  Extending the block dependences to three-dimensions 

7 Conclusion 

In this paper, we have presented a new type of hidden Markov models based on de-
pendency trees. We have shown that this presentation leads to very efficient algo-
rithms for 2D observations, and we have presented two examples to show the richness 
of the potential application of these models. 
Our research on these models is only beginning, so that the results should not be 
compared now with the results from more advanced techniques. More time is needed 
to understand how to exploit best DT-HMM. In particular, it seems obvious that effi-
cient models should contain a large number of states (in speech, acoustic models often 
have several hundred states), but these states have to be constructed in a coherent 
manner which has yet to be defined.  
Our contribution is mostly theoretical. Examples have been used to show that the DT-
HMM has a great potential for applications. We have identified several issues which 
are potential tracks for future research. We plan to explore the properties of this 
model further in the future, and are confident that this type of model will be helpful 
for a large panel of applications. 
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