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ABSTRACT

We consider an asynchronous DS-CDMA system operating in a
multipath environment. The received cyclostationary spread sig-
nal is oversampled with respect to the chip rate (and/or is received
at multisensors) and is converted to a stationary vector signal,
leading to a linear multichannel model. The blind MMSE-ZF re-
ceiver is derived and an estimate of the channel is obtained using
the spreading sequence properties and second-order statistics. The
receiver turns out to be the exact extension to the general asyn-
chronous multipath case of the constrained minimum-output en-
ergy (MOE) receiver originally proposed in [1]. Dimensional re-
quirements for the determination of the receiver and channel iden-
tification are derived and extension to the case of sparse channels
is made. It is observed that especially for the sparse scenario, an
estimate of the desired user channel is obtained in a small number
of data samples, despite the fact that the processing gain is quite
large and that severe near-far conditions are prevalent. This makes
the algorithm particularly suitable for the case of slow fading in
the UMTS WCMDA, where, multiuser algorithms can be easily
implemented once accurate channel estimates are available.

I. INTRODUCTION AND PREVIOUS WORK

Blind solutions for DS-CDMA systems have received consid-
erable attention since the pioneering work of [1], which is based
upon a constrained minimum output energy (MOE) criterion. The
constrained MOE receiver constrains the inner product of the re-
ceived signal with the spreading sequence to be fixed, thus restrict-
ing the optimization problem to within the constrained space. The
desirable feature of such a scheme is that its informational com-
plexity is the same as that of a matched filter detector, i.e., only
the desired user signature waveform and timing information are
required for its operation. Besides, the algorithm is near-far resis-
tant.

The problem addressed in [1] was that of DS-CDMA communi-
cations over a channel without multipath. A constrained optimiza-
tion scheme was proposed in [2] for multipath channels where the
receiver’s output energy is minimized subject to a general dis-
tortionless constraint. Connections with the Capon philosophy
were drawn in that paper. The above mentioned receivers can be
shown to converge asymptotically (SNR! 1) to the zero-forcing
(ZF) or decorrelating solution. It was shown in [3] that in order
to accommodate a number of users approaching code space di-
mensions, longer receivers are required for the ZF solution to be
achievable. Moreover, we presented in [3] the optimal MMSE
receiver for multipath channels and asynchronous conditions, ob-
tained by applying multichannel linear prediction to the received
cyclostationary signal. Direct estimation of the MMSE receiver
was introduced in [4] following the observation that the MMSE
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receiver lies in the signal subspace. MMSE receiver constrained
to the signal subspace in the case of channels longer than a sym-
bol period was investigated in [5], where a singular-value decom-
position (SVD) was used to determine the orthogonal subspaces.
The channel estimate in this work was obtained as a generalization
to longer delay spreads of the subspace technique originally pro-
posed in [6]. The MMSE-ZF receiver, which corresponds to the
unbiased MOE in the noiseless case, was derived in its full gen-
erality in [7]. Moreover, the above mentioned schemes have high
complexity since an estimate of subspaces is required. A further
drawback of all these schemes is that a large number of data sam-
ples are required to converge to the MMSE solution. This makes
them quite unfeasible for mobile cellular applications, especially
like the ETSI UMTS WCDMA [8], where the entire frame of 10
ms. contains only 160 data samples. Such approaches can there-
fore find their application in long duration stationary environments
with small spreading gains. In order to alleviate this problem, we
presented in [7], a semi-blind method that results in an improved
performance with the use of a small number of training symbols.
Further improvements based upon decision re-use were also ex-
plored in that paper.

Delay estimation, in principle, is much less of a problem in
CDMA systems as compared to the estimation of phase and am-
plitudes of the channel. However, the coherent RAKE performs
much better than the non-coherent one thus necessitating the esti-
mation of the latter quantities. This is typically done on the uplink
by the insertion of dedicated pilot channels (or symbols) for each
user. Such is the case in UMTS WCDMA, where each user es-
sentially contributes as two users, thus engendering an overhead
of almost fifty percent. Furthermore, the pilot channels are 6 dB
weaker than the data channels upon transmission. This makes the
channel estimation by classical single-user methods all the more
difficult, especially in near-far situations. On the other hand, blind
estimation methods are typically based on subspace decomposi-
tion and are much too complex to be considered of practical in-
terest. It is worth mentioning, however, that in the blind context,
CDMA systems possess the most desirable characterstics of all ex-
isting multiuser systems with the necessary (extra) bandwidth and
integrated a priori knowledge in terms of distinct spreading se-
quences. Furthermore, quite severe near-far situations are handled
with ease by such algorithms.

We extend, in this work, the blind MMSE zero-forcing receiver
for asynchronous DS-CDMA systems presented in [7] to the case
of sparse channels. This receiver exploits spreading sequence
properties to estimate the desired user channel at a low cost (a non-
SVD based approach). Identification issues for sparse channels are
discussed and it is seen that the complexity of the algorithm can
be significantly reduced by exploiting the sparseness property.

II. MULTIUSER DATA MODEL

The p users are assumed to transmit linearly modulated signals
over a linear multipath channel with additive Gaussian noise. It is
assumed that the receiver employs L sensors to receive the mixture



of signals from all users. Oversampling with respect to the symbol
rate is already inherent to DS-CDMA systems due to the large
(extra) bandwidth and the need to resolve chip pulses. The signal
received at the lth sensor can be written in baseband notation as

y
l(t) =

pX
j=1

X
k

aj(k)g
l
j(t� kTs) + v

l(t), (1)

where aj(k) are the transmitted symbols from the user j, Ts is
the common symbol period, gj(t) is the overall channel impulse
response for the jth user. Assuming the faj(k)g and fvl(t)g to
be jointly wide-sense stationary, the process fy(t)g is wide-sense
cyclostationary with period Ts. The overall channel impulse re-
sponse for jth user’s signal at the lth sensor, g lj(t), is the convolu-
tion of the spreading code cj and hlj(t), itself the convolution of
the chip pulse shape and the actual channel (assumed to be FIR)
representing the multipath fading environment. This can be ex-
pressed as

g
l
j(t) =

m�1X
s=0

cj(s)h
l
j(t� sT ), (2)

where T is the chip duration. The symbol and chip periods are
related through the processing gain m: Ts = mT . Sampling the
received signal R times the chip rate, we obtain the wide-sense
stationary mR � 1 vector signal yl(k) at the symbol rate. We
consider the overall channel delay spread between the jth user and
all of the L antennas to be of lengthmjT . Let kj be the chip-delay
index for the jth user: hlj(kjT ) is the first non-zero R � 1 chip-
rate sample of hlj(t). The parameter Nj is the duration of glj(t) in
symbol periods. It is a function of mj and kj . We consider user 1
as the user of interest and assume that k1 = 0 (synchronization to
user 1). Let N =

Pp

j=1Nj . The vectorized oversampled signals
at L sensors lead to a discrete-time mLR� 1 vector signal at the
symbol rate that can be expressed as

y(k) =

pX
j=1

Nj�1X
i=0

gj(i)aj(k� i) + v(k)

=

pX
j=1

Gj;NjAj;Nj (k)+v(k)=GNAN (k)+v(k), (3)

y(k)=

2
64
y1(k)

...
ym(k)

3
75 ,ys(k)=

2
64
y1s(k)

...
yLs (k)

3
75 ,yls(k)=

2
64
yls;1(k)

...
yls;R(k)

3
75

Gj;Nj =
�
gj(Nj � 1): : :gj(0)

�
, GN =

�
G1;N1 : : :Gp;Np

�
Aj;Nj (k) =

h
a
H
j (k�Nj + 1) : : : aHj (k)

iH
AN (k) =

h
A
H
1;N1

(k) : : :AH
p;Np (k)

iH
, (4)

and the superscript H denotes Hermitian transpose. For the
user of interest (user 1), g1(i) = (C1(i) 
 ILR)h1, where

h1 =
�
h1H1 � � �hLH1

�H
is the m1LR � 1 channel vector, and

the matrices C1(i) are shown in figure 1, where the band con-
sists of the spreading code (cH0 � � � c

H
m�1)

H shifted successively
to the right and down by one position. For the interfering users,
we have a similar setup except that owing to asynchrony, the
band in fig. 1 is shifted down kj chip periods and is no longer
conincident with the top left edge of the box. We denote by
C1, the concatenation of the code matrices given above for user
1: C1 = [CH

1 (0) � � �CH
1 (N1 � 1)]H .

It is clear that the signal model above addresses a multiuser
setup with a possiblity of joint interference cancellation for all
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Figure 1. The Code Matrix C1

sources simultaneously [9] provided the timing information and
spreading codes of all of them are available. As we shall see
later, it is possible to decompose the problem into single user ones
thus making the implementation suitable for applications such as
at mobile terminals or as suboptimal processing stage at the base
station.

III. BLIND MMSE ZERO FORCING RECEIVER

We stack M successivey(k) vectors in a super vector

Y M (k)=TM (GN )AN+p(M�1)(k)+V M(k), (5)

where, TM(GN ) =
�
TM;1(G1;N1 ) � � � TM;p(Gp;Np )

�
and TM (x) is a banded block Toeplitz matrix with M

block rows and
�
x 0n�(M�1)

�
as first block row

(n is the number or rows in x), and AN+p(M�1)(k)
is the concatenation of user data vectors ordered ash
AH
1;N1+M�1(k);A

H
2;N2+M�1(k) � � �A

H
p;Np+M�1(k)

iH
.

Consider the scenario depicted in fig. 2 for a single user. Due
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Figure 2. The ISI and MAI for Desired Symbol

to the limited delay spread, the effect of a particular symbol,
a1(k� d), propagates to the next N1 � 1 symbol periods, render-
ing the channel a moving average process of order N 1 � 1 [9].
For the other users, the matrices TM (GNj ), where i = 2 � � � p,
have a similar structure and can be viewed as being superimposed
over the channel matrix TM (GN1 ) in fig. 2. Same applies for the
data vectors Aj;Nj+M�1(k), 8j 6= i. The overall effect of the ISI
and the MUI is therefore that of engendering the shaded triangles
in the figure, which need to be removed from Y N1 . To this end,
let us introduce the following orthogonal transformation:

T 1=
�
0 CH

1 0

�

ILR; T 2 =

2
4 I 0 0

0 C?
1 0

0 0 I

3
5
ILR,

(6)

where, CH
1 is the spreading code correlator matched to the de-

layed versions of the spreading code, and C ?H
1 is the orthog-

onal complement of C1, the tall code matrix given in section
II. (C?

1 C1 = 0). Then, CH
1 Y N1 = T 1Y M and the middle



(block) row of the matrix T 2 acts as a blocking transformation
for the signal of interest. Note that PTH1 + PTH2

= I , where,

PX = X(XHX)�1XH is the projection operator. This gives
us a possiblity of estimating the a1(k � d) contribution in Y N1

blindly. We have,

Z(k) = [T 1 �QT 2]Y M (k), (7)

and the interference cancellation problem settles down to mini-
mization of the trace of the matrix RZZ for a matrix Q, which
results in

Q =
�
T 1R

d
T
H
2

� �
T 2R

d
T
H
2

��1

, (8)

and where,Rd is the noiseless (denoised) data covariance matrix,
RY Y , with the subscript removed for convenience. The output
Z(k) can directly be processed by a multichannel matched filter
to get the symbol, â1(k� d), the data for the user 1.

â1(k� d) = F
H
Y M(k) = h

H
1 (T 1 �QT 2)Y M (k)

(9)

An estimate of the channel G1(z) = (C1(z )
ILR)h1(z ) can be

T 1

T 2

Y M (k)

hH1

Q

â1(k � d)
Z(k)

kcorrelator

rake

Figure 3. MMSE-ZF Receiver

obtained as a by product of the interference cancellation scheme.
Notice that the interference canceler is analogous to a MMSE-ZF
in the form of a smoother or two-sided linear predictor for the
single user case [10] with T 1 = [0 I 0] and T 2 without the
middle (block) row, which when employed in a multiuser scenario
is no longer capable of MAI suppression coming from the middle
block of Y M (k) of fig. 2, unless a fair amount of data smoothing
is introduced [10]. Z(k) corresponds to the vector of prediction
errors, and the covariance matrix of the prediction errors is given
by

RZZ=T 1R
d
T
H
1 �T 1R

d
T
H
2

�
T 2R

d
T
H
2

��1
T 2R

d
T
H
1 ,

(10)

From the above structure of the two-sided (or rather full dimen-
sional) linear prediction problem, the key observation is that the
matrix RZZ is rank-1 in the noiseless case! Using this fact, one
can identify the composite channel as the maximum eigenvector
of the matrix RZZ , sinceZ(k) = (CH

1 C1 
 ILR)h1~a1(k � d).

IV. RELATION WITH OTHER APPRAOCHES

It can be seen that the derivation of the receiver structure in fig.
3 is in the spirit of the Generalized Sidelobe Canceller (GSC). The
main branch (T 1) is a bank of desired user code sequence correla-
tors, while the second branch contains a blocker for the signal of
interest. It is interesting to observe that in the event of T 2 = 0,
the receiver is no more than a coherent RAKE receiver. However,
several interesting interpretations of the above method can be ob-
tained in terms of various existing approaches.

Proposition:
Suppose that F is a linear receiver vector applied to the received

data Y M(k). F is unbiased if FHeg1 = 1, where, eg1 = TH
1 h1.

Then the following relation holds.

arg min
F :FHeg1=1

MSEunbiased = arg min
F :FH eg1=1

OE = argmax
F

SINR,
(11)

This simply implies that the minimum mean-squared error
(MMSE), and the minimum output energy (MOE)1, are inter-
changeable criteria under the unbiased constraint, and are equiva-
lent to the maximization of the output SINR.

We shall discuss these interpretations in some detail and show
that (11) proves to be true in the following subsections.

A. The Unbiased MOE Approach

The unbiased MOE criterion proposed in [2], which is a
generalization of the instantaneous channel case of [1], is in
principle a max/min problem solved in two steps with,

step:1 Unbiased MOE

min
F :FH eg1=1

F
H
RY Y F ) F =

1egH1 R�1
Y Y eg1R

�1
Y Y eg1 ,

(12)

with MOE(ĥ1) = 1
eg1R

�1
YY

eg1

, followed by,

step:2 Capon’s Method

max
^h1:k

^h1k=1

MOE(ĥ1)) min
^h1:k

^h1k=1

ĥ
H

1

�
T 1R

�1
Y Y T

H
1

�
ĥ1,

(13)

from where, ĥ1 = Vmin(T 1R
�1
Y Y T

H
1 ). It can be shown that if

T 2 = T?1 , then

T 1R
�1
Y Y T

H
1 =

�
T 1T

H
1

�
R
�1
ZZ

�
T 1T

H
1

�
, (14)

where, RZZ is given by (10), and Q, given by (8), is optimized
to minimize the prediction error variance. Rd replaces RY Y in
the above developments. From this, we can obtain ĥ1 as ĥ1 =

Vmaxf
�
T 1T

H
1

��1
RZZ

�
T 1T

H
1

��1
g. In order to evaluate the

quality of the blind receiver obtained from the above criterion, we
consider the noiseless received signal (v(t) � 0). We have the
following two cases of interest.

1. Uncorrelated symbols

In the absence of noise, with i.i.d. symbols, the stochastic
estimation of T 1Y from T 2Y is the stochastic estimation of
T 1TM (G1:p)A from T 2TM (G1:p)A with RA = �2aI . Hence,
it is equivalent to the deterministic estimation of T HM (G1:p)T

H
1

from T H
M (G1:p)T

H
2 : kT HM (G1:p)T

H
1 � T H

M (G1:p)T
H
2 Q

Hk22 .
Then, given the condition

spanfTH
1 g \ spanfTM (G1:p)g = spanfTM (G1:p)e

0

dg
) spanfTM (G1:p)g � spanfTH

2 g � spanfeg1g
* TM (G1:p)e

0

d = TM (G1)ed = eg1 = T 1h1, (15)

and where, e
0

d and ed are vectors of appropriate dimensions with
all zeros and one 1 selecting the desired column in TM (G1:p) and
TM(G1) respectively. We can write the channel convolution ma-
trix TM (G1:p) as

TM (G1:p) = eg1e0Hd + TM(G1:p)Pe0?
d

= [eg1 T
H
2 ]A, (16)

1also known as minimum variance distortionless response (MVDR), a
particular instance of the linearly constrained minimum-variance (LCMV)
criterion.



for someA. Then we can write,

T H
M (G1:p)

�
TH

1 � T
H
2 Q

H
�
=

e
0

dh
H
1 T 1T

H
1 +AH

� eg1TH
1

0

�
�AH

�
0

T 2T
H
2

�
QH

= e
0

dh
H
1 T 1T

H
1 +AH

1 egH1 TH
1 �A

H
2

�
T 2T

H
2

�
QH .

(17)

Note that e
0H
d AH

i = 0; i 2 f1; 2g. This implies that the first term
on the R.H.S. of (17) is not predictable from the third. Therefore,
if the second term is perfectly predictable from the third, then the
two terms cancel each other out andRZZ turns out to be rank-1,
and ĥ1 =

�
T 1T

H
1

��1
Vmax (RZZ).

2. Correlated symbols

In the case of correlated symbols, with a finite amount
of data, given the conditions in (15), it still holds that
spanfT H

M (G1:p)T
H
2 g = spanfP

e
0?

d

TM (G1:p)g. Now, we can

write the received vector Y M (k) as

Y M (k) = TM (G1:p)A = TM (G1:p)e
0

da1(k� d) + T M
�A.
(18)

Now, the estimation of T 1Y in terms of T 2Y =
T 2TM(G1:p)A = T 2T M

�A is equivalent to estimation in terms
of �A.

]T 1Y jT 2Y
= T 1Y �[T 1Y

= T 1Y �
�
T 1R

d
Y Y T

H
2

��
T 2R

d
Y Y T

H
2

��1
T 2Y

]T 1Y j �A = T 1TM (G1:p)e
0

d~a1(k � d)

= T 1T
H
1 h1~a1(k� d)j �A. (19)

This results in,

�
T 1R

�d
Y Y T

H
1

��1

= �
2
~a1(k�d)j �A

h1h
H
1 , (20)

The rank-1 results in a normalized estimate of the channel. It must
however be noted that the estimation error variance of the desired
symbol is now smaller (�2~a1(k�d) < �2a).

B. The Unbiased MMSE Criterion

The MSE can be written as follows:

MSE = Eja1;k�d � â1j
2 = Eja1;k�d � F

H
Y j2

= �
2
a � �

2
aF

Heg1 � �
2
aegH1 F + F

H
RY Y F| {z }

output energy

) min
FH ~g1=1

MSE = unbiased MOE (21)

which proves the first equality in 11.

C. Maximization of SINR

The signal part in Y M (k) is Y s = eg1a1;k�d , whereas the
interference (MAI & ISI) plus noise is Y in = T M

�A + V M ,
where, T M = TM(G1:p) except for the column eg1. Then, for an
arbitrary F , assuming uncorrelated symbols, we obtain,

SINR =
FHRsF

FHRinF
=

�2aF
Heg1egH1 F

FH
�
RY Y � �2aeg1egH1 �F ,

(22)

from where,

max
F

SINR$ min
F

SINR�1 $ min
F

FHRY Y F

�2ajF
Heg1j2

) min
F :FH eg1=1

F
H
RY Y F , (23)

Hence the maximization of SINR is the same as the unbiased MOE
cost function of 12.

V. IDENTIFICATION ISSUES

Continuing with the noiseless case, or with the denoised version
ofRY Y , i.e., Rd

Y Y = �2aTM(G1:p)T
H
M (G1:p),

min
F :FH eg1=1

F
H
R
d
Y Y F = �

2
a, i� F

HTM (G1:p) = e
0H
d ,

(24)

i.e., the zero-forcing condition must be satisfied. Hence, the
unbiased MOE criterion corresponds to ZF in the noiseless case.
This implies that MOE(êg1) < �2a if êg1 6� eg1 . We consider that:

(i). FIR zero-forcing conditions are satisfied, and
(ii). spanfTM (G1:p)g \ spanfTH

1 g = spanfTH
1 h1g.

The two step max/min problem boils down to

max
ĥ1:kĥ1k=1

ĥ
H

1

�
T 1T

H
1

��1

T 1TMP
?
TH
M
TH2
T H
M T

H
1

�
T 1T

H
1

��1

ĥ1,
(25)

where,P?
X = I�X(XHX)�1XH . Then identifiability implies

that TMP?
TH
M
TH2
T H
M = TH

1 h1h
H
1 T 1 = eg1egH1 , or

P
?
TH
M
TH2
T H
M (G1:p) = P

e
0

d

T H
M (G1:p), (26)

Condition (i) above implies that e
0

d 2 spanfT H
M (G1:p)g. From

condition (ii), since TH
1 h1 = TM (G1:p)e

0

d, we have

spanfTM (G1:p)T
H
2 g = spanfP?

e
0

d

T H
M (G1:p)g

spanfT H
M (G1:p)g=spanfT H

M (G1:p)T
H
2 g�spanfe

0

dg (27)

from which, T HM (G1:p) = PTH
M
TH2
T H
M (G1:p)+P

e
0

d

T H
M (G1:p),

which is the same as (26).

A. A Note on Sufficiency of Conditions

We consider first the conditions (i). Furthermore, in the
following developments, we consider that p < m, which is
easily achievable when multiple sensors (or oversampling)
is employed. The effective number of channels is given
by me� = rankfGNg, where GN is given in (5). Let
G1(z ) =

PN1�1
k=0 g1(k)z

�k be the channel transfer function for
user 1, with G(z ) = [G1(z ) � � �Gp(z )]. Then let us assume the
following:

(a). G(z ) is irreducible, i.e., rankfG(z )g = p;8z .
(b). G(z ) is column reduced:

rankf[g1(N1 � 1) � � � gp(Np � 1)]g = p.

Given that the above two conditions hold, the composite channel
matrix T (G1:p) is full rank with probability 1. Then, the FIR
length M required is given by,

M �M =

�
N � p

me� � p

�
. (28)



Note that condition (a) holds with probability 1 due to the quasi-
orthogonality of spreading sequences. As for (b), it can be vio-
lated in certain limiting cases e.g., in the synchronous case where
gj(Nj � 1)’s contain very few non-zero elements. Under these
circumstances, instantaneous (static) mixture of the sources can
zero out some of the gj(Nj � 1) (more specifically, at most p� 1
of them). Then N gets reduced by at most p� 1. However, even
then, M given by (28) remains sufficient.

The condition (ii) can be restated as the following dimensional
requirement:

rankfTM (G1:p)g+ rankfTH
1 g 6 rowfTM (G1:p)g+ 1,

(29)

from where, under the irreducible channel and column reduced
conditions,

M �M =

�
N � p+m1LR� 1

(mLR)e� � p

�
, (30)

where, m1 is the channel length for user 1 in chip periods. If (30)
holds, then condition (ii) is fulfilled w.p. 1, regardless of the Nj’s,
i.e., the spanfTH

1 g does not intersect with all shifted versions of
gj’s, 8j > 1, which further means that no confusion is possible
between the channel of the user of interest and those of other users,
whether the mixing is static (same lengths) or dynamic (different
channel lengths), with lengths measured in symbol periods.

1. Violation of condition (ii)

If the channel length m1 is over-estimated, such that N1 gets
over-estimated, then condition (ii) is violated w.p. 1. In that case,
more than one shifted versions of g1 will fit in the column space
of TH1 . The estimated channel in that case can be expressed asbG1(z ) = G1(z )b(z ), where, b(z ) is a scalar polynomial of the
order equaling the amount by which the channel has been over-
estimated. A solution to this would be to try all orders for N1 and
stop at the correct one.

VI. SPARSE CHANNELS

Let us now consider the scenario where the channels for all
users are sparse. This is essentially the case of most mobile chan-
nels [8]. Then we can write the channel vector of the jth user as
hj =

�
0 � � � 0 hHj (1) 0 � � � 0 h

H
j (mj � 1)

�H
, where mj now de-

notes the number of non-zero taps (per sensor per oversampling
phase) for the channel of the jth user, and the co-efficients hj(k)
are LR � 1 vectors (L being the number of sensors, and R the
oversampling factor). We further consider that the positions of
these taps have been determined by the initial acquisition proce-
dure. Referring back to fig. 1, we can write (C1 
 ILR)h1 =
(C1 
 ILR)h1 , and in which the code matrix C1 will now have
m1 non-zero columns. For the implementation of the MMSE-
ZF algorithm described in the previous section, the matrix T 1

now contains m1LR rows, representing m1 shifted versions of
the spreading code correlator for each sub-channel. This opera-
tion is the same as building the fingers of the non-coherent RAKE
receiver, once the tap positions have been located. A coherent
RAKE can be implemented by premultiplying the T 1Y M(k) by

the complex co-efficient vector h
H

1 . However, we shall proceed
with the estimation of the channel co-efficients by the MMSE-ZF
algorithm as presented in the preceding section. It must be noted
that the principle of the algorithm is not affected by the new di-
mensions of the matrices T 1 and T 2. However, the number of
parameters to be estimated blindly is much reduced, i.e., only the
non-zero taps of the channel need to be estimated.

A. Identification Issues under the Sparse Channel Model

For the purpose of the following, let us consider L = R = 1.
Referring to (28), we observe that for an underloaded system with
me� = N , a stacking factor of M = 1 suffices for (i) to be
satisfied. (29) can be written as fM � Ne� +p(M�1)+m1 �1,
where fM is the number of rows of T (G1:p). Substituting a value
of M = 1 in this equation, we get

fM � Ne� +m1 � 1. (31)

where, Ne� is the number of linearly independent columns in the
reduced T (G1:p). Ne� < N , since due to the mutually asyn-
chronous nature of the users, certain columns which contributed
inGN are present in the reduced version as all-zero columns. It is
as if the contribution of symbols associated with these columns of
GN is no longer there in the system. Furthermore, given the fact
that m1 is a small number and when N � m, as is the case of
strongly underloaded systems, fM(< m) rows of T (G1:p) suffice
for rendering the matrix RZZ rank-1, thus resulting in a perfect
blind estimate of the channel asymptotically (in SNR or amount
of data). fM < m means that the stacking factor (M < 1) corre-
sponds to less than one symbol period of data. Some performance
loss will be incurred due to the reduced dimensions, but as seen,
in terms of the eigenvalue spread of the matrix RZZ , in fig.4, this
effect is rather insignificant. A spreading gain of m = 256 is used
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Figure 4. Eigenvalue spread for RZZ , m = 256, 50 users

with four non-zero taps in a channel length of 80 chips, which is
the case of the vehicular B channel in the UMTS WCDMA speci-
fications [8].

The equation (31) reveals the great practical interest of the al-
gorithm in sparse channel environments. Due to the small size
of the covariance matrix (fM � fM instead of 2M � 2M ) to be
estimated, relatively small data records will be required.

It must be mentioned that the reduced rank Ne� holds equally
well for the case of non-sparse channels since it is a function of
the delay spread. However, if m1 is a large number, then a largerfM is required to satisfy the rank condition, as can be seen from
(31). So, it is of greater interest to take sparseness into account
when m1 is much smaller than the delay spread.

VII. NUMERICAL EXAMPLES

We consider 45 asynchronoususers in the system with a spread-
ing factor of m = 256, which is the the spreading gain employed
in the UMTS WCDMA. For the purpose of these examples, we
consider no oversampling with respect to the chip rate (R = 1).
Furthermore, a single receiving antenna is employed for reception
(L = 1). For the first example, we consider the vehicular-B chan-
nel model [8], which represents a delay spread of approximately



80 chips with 4 � 5 dominant taps per user channel. The channel
delay spread is therefore much shorter than one symbol period.
Near-far conditions prevail in that the interfering users are ran-
domly (ranging from 10 to 15 dB.) stronger than the user of inter-
est. The performance measure is the Normalized MSE (NMSE)2.
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Figure 5. Channel estimation performance m = 256, p =
45, Veh.B channel

These results are averaged over P = 200 Monte-Carlo runs. Fig.
5 shows the quality of the channel estimate as a function of the
input signal-to-noise ratio (SNR). fM was always chosen to satisfy
eq.(31). Blocks of 90, 110, and 260 data samples were consid-
ered for the estimation process correponding to a fM of 85, 100,
and 256 (M = 1) respectively. This corresponds to channel co-
herence times of 5:6, 7:0, and 16:25 ms. It can be seen that the
performance for short fM is slightly worse but would suffice for
most practical purposes.

Also of interest is the case of the vehicular-A channel [8]. This
is a channel of length 12 chip periods with 7� 10 significant taps.
We shall consider 7 paths as opposed to the norm which proposes
only 4 RAKE fingers. Due to the small delay spread, and due
to the reduced dimension (fM ) of T (GN ), most users contribute
once to the rank most of the time. This reduces the required fM .
Fig. 6 shows the NMSE of the channel estimates as a function
of the input SNR. This time, we use a block of 70 symbols for
the channel estimation algorithm with fM = 65. It can also be
observed that there is practically no difference between the case
with fM = 100 and fM = 256 (M = 1). It is to be noticed that
since the channel delay spread and m 1 are both small this time,fM will not be too large even for the non-sparse case.

VIII. CONCLUSIONS

The blind MMSE-ZF receiver for DS-CDMA was presented.
This receiver turns out to be the exact extension to the general
multipath case of the constrained MOE receiver derived in [1].
The equivalence to the unbiased MOE and the unbiased MMSE
receiver was shown in terms of optimization criteria.

What is not shown in the numerical examples section is that
the performance of the MMSE-ZF receiver itself is not acceptable
with such short data records (see [7]). However, it was observed
that sparse channels provide a framework for which the channel
estimate obtained by the blind algorithm for underloaded systems
is quite good despite the severe near-far conditions and short data
records. It will perhaps be of practical interest in mobile cellular
applications such as UMTS WCDMA, where a significant over-
head is incurred by the training (pilot) data, to incorporate the

2NMSE = E
kh1�ĥ1k

2

kh1k2
= 1

P

PP
i=1

kh1�ĥ
(i)

1 k2

kh1k2
.

channel estimates obtained by this method into multiuser receivers
like the decorrelating detector or even for serial and parallel inter-
ference cancellation algorithms.

It was also shown that in the case where delay spread is large,
the dimension of the problem can be reduced by taking into con-
sideration the sparseness of the channel. For the desired user, it is
the number of significant taps of the channel that counts, resulting
in a reduced problem.
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