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ABSTRACT 
 
In this paper, we investigate some properties of a 
new type of 2D Hidden Markov Model, based on the 
notion of Dependency Tree. DT-HMMs avoid the 
complexity of regular 2D HMMs by changing the 
double horizontal and vertical spatial dependencies 
into a random uni-directional dependency, either 
horizontal or vertical. We explore various issues 
about the effect of this random choice. This type of 
probabilistic model can be useful in many 
applications for image and video segmentation, 
classification, and others. 
 
1. INTRODUCTION 
 
Statistical modeling methods are paramount in 
today's large-scale image analysis. It is critical for 
almost all image processing problems, such as 
estimation, compression and classification.  
In image modeling there is a fairly wide-spread 
agreement that objects should be presented as 
collections of features which appear in a given 
mutual position or shape (e.g. sun in the sky, sky 
above landscape or boat in the water etc) [1,2]. This 
is also applicable on a lower level; consider 
analyzing local features in a small region; it is 
sometimes difficult even for a human to tell what the 
image is about. 
For most images, pixels have spatial dependencies 
which should be enforced during the classification. 
2D Hidden Markov Models consider observations 
(e.g. feature vectors representing blocks of pixels) 
statistically dependent on neighboring observations 
through transitions probabilities organized in a 
Markov mesh [11], giving a dependency in two 
dimensions. The state process defined by this mesh 
is a special case of the Markov random field.  
The standard algorithms associated with HMMs; 
Baum-Welch and Viterbi, are efficient in estimating 
the model parameters in 1D. Unfortunately their 
computational complexity grows exponentially in 

higher dimensions, so they are therefore not useful in 
2D problems. 
Many approaches have been proposed to overcome 
the complexity of 2D-HMMs [3]. Among the first 
ones is [4] which uses a 1D HMM to model 
horizontal bands of face images. A more elaborate 
idea is to extract 1D features out of the image or 
video, and model these features with one or more 1D 
models [5]. 
Another approach is to use a two-level model, called 
Embedded HMM or Hierarchical HMM, where a 
first high level model contains super-states 
associated to a low level HMM, which models the 
lines of the observed image [6]. The main 
disadvantage of these approaches is that they greatly 
reduce the vertical dependencies between states, as it 
is only achieved through a single super-state. 
Finally several attempts have been done to 
heuristically reduce the complexity of the HMM 
algorithms by making simplifying assumptions 
which approximate the real algorithms: 
• select a subset of state configurations only [7], 
• ignore correlation of distant states [8], 
• approximate probabilities by turbo-decoding [9]. 
The main disadvantage of these approaches is that 
they only provide approximate computations, so that 
the probabilistic model is no longer theoretically 
sound. 
We have recently proposed [10] a novel multi-
dimensional Hidden Markov Model based on the 
idea of a dependency tree between positions. This 
simplification leads to an efficient implementation of 
the re-estimation algorithms, while keeping a mix of 
horizontal and vertical dependencies between 
positions. The remainder of this paper is organized 
as follows; section 2 provides the theoretical basis 
for DT-HMM, section 3 present experimental results 
and in section 4 we give concluding remarks and 
suggest future directions. 
 
 
2. DT-HMM: DEPENDENCY-TREE HMM 



 
The reader is expected to be familiar with 1D-HMM. 
We denote by O={oij, i=1,…m, j=1,…,n} the 
observation, for example each oij may be the feature 
vector of a block (i,j) in the image. We denote by Q 
= {qij, i=1,…m, j=1,…,n} the state assignment of the 
HMM, where the HMM is assumed to be in state qij 
at position (i,j) and produce the observation vector 
oij. If we denote by λ the parameters of the HMM, 
then, under the Markov assumptions, the joint 
likelihood of O and Q given λ can be computed as:  
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 If the set of states of the HMM is {s1, … sN}, then 
the parameters λ are: 
• the output  probability distributions p(o | si) 
• the transition probability distributions p(si  | sj,sk). 
 
Depending on the type of output (discrete or 
continuous) the output probability distribution are 
discrete or continuous (typically a mixture of 
Gaussian distribution). 
The problem with 2D-HMM is the double 
dependency of qi,j on its two neighbors, qi-1,j and qi,j-1, 
which does not allow the factorization of 
computation as in 1D, and makes the computations 
practically intractable.  
 

     
  (i-1,j)   
 (i,j-1) (i,j)   

Figure 1.  2D Neighbors 

Our idea is to assume that qi,j depends on one 
neighbor at a time only. But this neighbor may be the 
horizontal or the vertical one, depending on a 
random variable t(i,j). More precisely, t(i,j) is a 
random variable with two possible values:  
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For the position on the first row or the first column, 
t(i,j) has only one value, the one which leads to a 
valid position inside the domain. t(0,0) is not 
defined. So, our model assumes the following 
simplification: 

⎪⎩

⎪
⎨
⎧

−=

−=
=

−

−
−− ),(),()(

),(),()(
),,(

,,

,,
,,, 1jijitifqqp

j1ijitifqqp
tqqqp

1jijiH

j1ijiV
1jij1iji

 
 If we further define a “direction” function: 
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then we have the simpler formulation: 
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Note that the vector t of the values t(i,j) for all (i,j) 
defines a tree structure over all positions, with (0,0) 
as the root. Figure 2 shows an example of random 
Dependency Tree. 
 

 
Figure 2. Example of a Random Dependency Tree 

 
The DT-HMM replaces the N3 transition 
probabilities of the complete 2D-HMM by 2N2 
transition probabilities. Therefore it is efficient in 
terms of storage. But, more importantly the 
computation also keeps a linear complexity with the 
number of positions since we only have 
dependencies in one direction at the time. Position 
(0,0) has no ancestor. In this paper, we assume for 
simplicity that the model starts with a predefined 
initial state sI in position (0,0). It is straightforward 
to extend the algorithms to the case where the model 
starts with an initial probability distribution over all 
states. A full presentation for the Maximum 
Likelihood and Viterbi reestimation algorithms can 
be found in research report [10]. 
The 2D HMM has numerous interesting applications 
for image and video understanding, for example: 
• The best state assignment (one state for each 

position) provides a segmentation of the image, 
or the localization of a specific object (identified 
by one or more states), 

• The probability P(O|t) may be trained for several 
classes of images, therefore leading to a 
Maximum Likelihood classifier for unknown 
images. 

 



3. DT-HMM PROBABILITY ESTIMATION 
 
According to the model, the exact probability of an 
observation is: 
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We may assume that all dependency trees are equally 
likely, so that the distribution P(t) is uniform. As 
there are ))(( 1n1m2 −−  different trees for an image of 
mxn blocks, the complete computation is prohibitive. 
Therefore, it is important to search for 
approximations of this value which are easy to 
compute. In this paper we investigate three different 
ways of doing this estimation by: unique sampling 
(Pu), tree average (Pa) and dual tree (Pd). The section 
below gives a detailed study of their qualities. 
The experiments are conducted using a 36-state 
model trained on a consistent set of 130 Beach 
images annotated at the pixel level into 8 different 
sub classes. We divide the images in 22x16 blocks 
that are represented by color moments and DCT 
coefficients. Evaluation is done by computing P(O|t) 
(also called the score), using the Viterbi algorithm, 
for 100 random images, with different set of trees, to 
investigate the behavior of the dependency.  
We give an example below to illustrate the state 
alignment in one image for two different trees. 

 
Figure 3. State alignment with two different trees 

 
Estimation by Average 
 
The best approximation (in terms of quality) that we 
can do is to compute an average over as many trees 
as possible: consider a set of trees Tk={t1, t2, … tk} 
and compute the estimate as: 
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As k gets larger, the value of )(OPa
k  should 

converge towards the optimal value. The graph in 
figure 4 shows the magnitude of the relative error 
E(k) computed as the relative difference of this score 
to the average over the largest number of trees (here 
chosen to be 50), i.e.: 
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Figure 4. Convergence of probability average 

We can see that with 10 trees or more, the average 
relative error is below 0.01% while the maximum 
relative error remains below 0.03%. 
 
Estimation by unique sampling 
 
As the computation of the probability with a lot of 
different trees can be computationally expensive, we 
would like a faster approximation of this probability. 
The fastest way is to use a single tree,  
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To evaluate the quality of the approximation, we 
compute the relative difference between an 
estimation and the mean over all 50 trees, and we 
compute the histograms of these values for different 
estimations ),,( 15

dau PPP . 
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Figure 5. Distribution of scores 

dP is the dual estimation and is explained below. We 
can see that 90% of the values for aP15  are within a 



range of ± 0.015%. By comparison uP has only 63% 
of its values with in the same range. For a confidence 
interval of 90%, uP has a variation of ± 0.060%.  
 
Estimation with dual tree 
 
The dual tT of a tree t is defined as the tree where the 
horizontal dependencies are replaced by vertical 
dependencies and vice versa (except for the border 
nodes for which the ancestor is unique).  
 
As the couple (t, tT) contains all the possible vertical 
and horizontal dependencies, it is interesting to 
consider the estimation by the average probability 
between the tree t and its dual tT.  
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Where tT is the dual tree of t, defined by replacing 
horizontal by vertical dependencies (and vice versa), 
except for boundary constraints. This formulation 
introduces both horizontal and vertical dependencies 
for all neighbor pairs in the observation.  
As indicated in figure 5 the dual estimation gives a 
better approximation than the unique sampling. The 
dual estimation has 82% of its samples in the 
previously mentioned interval with limits ± 0.015%. 
For a confidence interval of 90%, dP has a variation 
of ± 0.022%.  
This comparison may lead to the choice of the best 
approximation method, based on the deviation which 
is considered reasonable for a given application. 
 

4. CONCLUSIONS AND FUTURE RESEARCH 
 
In this paper, we have presented a new type of 
Hidden Markov Models based on dependency trees. 
This presentation allows efficient algorithms to be 
used for training the model and computing the 
probability of new observations. We have 
investigated the variation of the observation 
probability with respect to the particular dependency 
tree that is used. We have found that there are great 
chances that a random tree will provide a value 
which is close to the average.  

The DT-HMM is quite recent and we have just 
started exploring its capabilities. We expect that this 
type of model will be useful in the future for 
applications such as image and video segmentation 
and semantic classification. 
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