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ABSTRACT 
 
In this paper, we propose a new type of multi-dimensional 
Hidden Markov Model based on the idea of Dependency 
Tree between positions. This simplification leads to an 
efficient implementation of the re-estimation algorithms, 
while keeping a mix of horizontal and vertical dependencies 
between positions. We explain DT-HMM and we present 
the formulas for the Maximum Likelihood re-estimation. 
We illustrate the algorithm by training a 2-dimensional 
model on a set of coherent images. 
 

1. INTRODUCTION 
 
Hidden Markov Models have proven to be particularly 
efficient at modeling uni-dimensional signal, in particular in 
Speech Recognition. In theory, HMM extend easily to 
multi-dimensional signals, such as image and video, but in 
practice, the full extension leads to a computational 
explosion which makes them intractable. Several 
restrictions have been proposed to simplify the model and 
reduce the computation, generally by reducing a 2D-model 
to a 1D-model, or an embedding of 1D-models. Among the 
first ones is [1] which uses a 1D HMM to model horizontal 
bands of face images. A more elaborate idea is to extract 1D 
features out of the image or video, and model these features 
with one or more 1D models. Another approach is to use a 
two-level model, called Embeded HMM or Hierarchical 
HMM, where a first high level model contains super-states 
associated to a low level HMM, which models the lines of 
the observed image [14]. The main disadvantage of these 
approaches is that they greatly reduce the vertical 
dependencies between states, since it is only achieved 
through a single super-state. 
Finally several attempts have been done to heuristically 
reduce the complexity of the HMM algorithms by making 
simplifying assumptions which approximate the real 
algorithms: 
• select a subset of state configurations only [8], 
• ignore correlation of distant states [2], 
• approximate probabilities by turbo-decoding [7]. 
The main disadvantage of these approaches is that they only 
provide approximate computations, so that the probabilistic 
model is no longer theoretically sound. 
 

2. DEPENDENCY-TREE -HMM 
 
In this section, we briefly recall the basics of 2D HMM and 
describe our proposed DT-HMM. More details can be found 
in [3]. 
The reader is expected to be familiar with 1D-HMM. We 
denote by O={oij, i=1,…m, j=1,…,n} a 2-dimensional  
observation, for example each oij may be the feature vector 
of a block (i,j) in the image. We denote by Q = {qij, 
i=1,…m, j=1,…,n} a state assignment of the HMM, where 
the HMM is assumed to be in state qij at position (i,j) and 
produce the observation vector oij. If we denote by λ the 
parameters of the HMM, then, under the Markov 
assumptions, the joint likelihood of O and Q given λ can be 
computed as: 
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If the set of possible states of the HMM is {s1, … sN}, then 
the parameters λ are: 
• the output  probability distributions p(o | si) 
• the transition probability distributions p(si  | sj,sk). 
Depending on the type of output (discrete or continuous) the 
output probability distribution are discrete or continuous 
(typically a mixture of Gaussian distribution). 
The problem with 2D-HMM is the double dependency of qi,j 
on its two neighbors, qi-1,j and qi,j-1., which does not allow 
the factorization of computations as in 1D, and makes the 
computations intractable in practice.  
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Figure 1. 2D Neighbors 

Our idea is to assume that qi,j depends on one neighbor at a 
time only. This neighbor may be the horizontal or the 
vertical one, depending on a random variable t(i,j). More 
precisely, t(i,j) is a random variable with two possible 
values:  
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For the positions on the first row or the first column, t(i,j) 
has only one value, the one which leads to a valid position 
inside the domain. t(0,0) is not defined. 
So, our model assumes the following simplification: 
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If we further define a “direction” function: 
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then we have the simpler formulation: 
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Note that the vector t of the values t(i,j) for all (i,j) defines a 
tree structure over all positions, with (0,0) as the root. 
Figure 2 shows an example of such a Dependency Tree. 

 
Figure 2. Example of Random Dependency Tree 

The DT-HMM replaces the N3 transition probabilities of the 
complete 2D-HMM by 2N2 transition probabilities. 
Therefore it is efficient in terms of storage. We will see that 
it is also efficient in terms of computation. 
Position (0,0) has no ancestor. In this paper, we assume for 
simplicity that the model starts with a predefined initial state 
sI in position (0,0). It is straightforward to extend the 
algorithms to the case where the model starts with an initial 
probability distribution over all states. 
 

3. MAXIMUM LIKELIHOOD RE-ESTIMATION 
 
If we assume that the Dependency Tree is fixed, then many 
computations become simple. In particular, we describe in 
this section the re-estimation of the model using Maximum 
Likelihood. The organization of the computation is directly 
inspired from the Inside-Outside algorithm [12] [13], which 
is the extension of the Baum-Welch algorithm for 
Probabilistic Context Free Grammars. 
3.1. The Inside probabilities  
Let us denote by )(, sjiβ  the probability that the portion of 
the image covered by T(i,j), the subtree with root (i,j), is 
produced from state s in position (i,j). The )(, sjiβ can be 
calculated recursively, in reverse order (starting from the 
last position), following the relations: 
• if (i,j) is a leaf in T(i,j): 
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• if (i,j) has only an horizontal successor:  
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• if (i,j) has only a vertical successor:  
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• if (i,j) has both an horizontal and a vertical successors:  
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The probability that the complete observation is produced 
by the model is then: 
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3.2. The Outside Probabilities 
Let us denote by O(i,j) the portion of the image which is not 
covered by the subtrees starting at the successors of (i,j). 
For example, if (i,j) has two successors, O(i,j) is the portion 
of the image outside the subtrees T(i+1,j) and T(i,j+1). { 
O(i,j), T(i+1,j), T(i,j+1)} is a partition of the image, as 
shown in Figure 3. 

 
Figure 3. Schema of Outside O(i,j) and Inside T(i,j) areas 

If we denote by )(, sjiα the probability of starting from (0,0), 
generating the output vectors for all the positions in O(i,j), 
and reaching position (i,j) in state s, then 
the )(, sjiα probabilities may be computed by the following 
recursions: 
• )()( ,, I00I00 sops =α , 0s00 =)(,α for s ≠ sI, 
In general, (i,j) may have two descendants, so that the 
outside probability for a descendant has to include the inside 
probability of the subtree for the other descendant: 
• if (i,j+1) has an horizontal ancestor (i,j):  
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(in this case, O(i,j+1) is the union of O(i,j), (i,j) and 
T(i+1,j)), 
• if (i+1,j) has a vertical ancestor (i,j):  
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(in this case, O(i+1,j) is the union of O(i,j), (i,j) and 
T(i,j+1)). 
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These formulas simplify in the case where the ancestor (i,j) 
has only one successor: 
• if (i,j+1) is the horizontal successor:  

∑++ =
'

,,, )'()'()()(
s

Hji1ji1ji sspssops αα  

• if (i+1,j) is the vertical successor:  
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3.3. Maximum Likelihood training 
In Maximum Likelihood training, we need to estimate the 
number of times that a particular transition, or a particular 
output, has been used during the generation of the complete 
observation. Using the inside and outside probabilities 
defined previously, we can observe that the probability of 
generating the complete image is: 
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for any position (i,j) with two successors. Let us define: 
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Then: 
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Note that if we define )(, sH
jiγ (respectively )(, sV

jiγ ) to be 
equal to 1 when (i,j) has no horizontal (respectively vertical) 
successor, then this formula is valid for all positions (i,j), 
whatever the number of successors. 
The probability for being in state s at position (i,j) while 
generating the complete image is therefore: 
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The expected number of times that the system is in state s 
during the generation of the image is: 
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The probability for going from state s at position (i,j) to 
state s’ in the successor position (i,j+1) while generating the 
complete image is: 
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The expected number of times that the horizontal transition 
from s to s’ takes place during the generation of the image 
is: 
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This provides the basis for the reestimation of the horizontal 
transition probabilities: 
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The vertical transitions are handled in the same way. The 
reestimation of the output probabilities is similar, as the 
probability of being in state s at (i,j) is also the probability 
of emitting the output vector oi,j from state s at position (i,j). 
When the output probability distribution is discrete, the 
reestimate is obtained by counting: 
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When the distribution is continuous, the expected number of 
times that the emission is observed can be used to update 
the parameters of the distribution (in the case of a Mixture 
of Gaussian distributions, weights, means and variances). 
 

4. EXPERIMENTATION 
 
As an example, we have applied our algorithm for the joint 
segmentation of a set of images. Each image is split into 
blocks of 8x8 pixels, and the observation vector for each 
block is computed as the average and variance of the YIQ 
coding. We consider a 9 states model, where each output 
probability is a Gaussian Mixture Model with 2 
components. The initial model is constructed with an initial 
alignment where one state covers one region of a regular 
3x3 grid over the image. A Viterbi algorithm allows 
displaying the best sequence of states at each position, 
therefore showing how the model matches each image. 
The training set contains two images: 
 

   
 

During training, we can observe the state assignment at each 
iteration, as an indication of the way the model fits the 
training data. For example, the first four iterations on the 
training images provide the following assignments: 
 

    



    
 

The graph below shows the evolution of likelihood of the 
training data during the training iterations: 

 
After 25 iterations, we get the following state assignments 
for the training images: 
 

  
 

It should be emphasized that this is not just a simple 
segmentation of the images, but that each region is also 
assigned one of the 9 states of the model, and that the 
definition of those states has been done taking into account 
all training data simultaneously. 
Once the model is trained, we can also apply it on new 
images. Below is an example of the state assignement for a 
new image: 
 

  
 

Note that those regions are also labeled with the same 9 
states as the training data. 
 

6. CONCLUSION 
 
In this paper, we have only presented the basic mechanism 
for the DT-HMM and some initial experiments. As with 
regular 1D-HMM, the potential usages are very numerous. 
Training on a set of images provides a model for a class of 

data. The probability of emitting a new image can be used 
as a measure for the probability that it belongs to this class. 
The Viterbi alignment can be used to identify components 
within the image. Furthermore, the DT-HMM has several 
interesting theoretical extensions, for example by using 
several trees for the same image, considering other 
ancestors scheme than just horizontal-vertical, and 
extending to more than 2 dimensions. We plan to explore 
many of these issues in our further work. 
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