
Institut EURECOM
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)

Research Reporta No 169 — RR-06-169

An Application of Policy-Based Signature:
Proof-Carrying Proxy Certificates

Walid Bagga and Stefano Crosta and Refik Molva

April, 2006

a Eurecoms research is partially supported by its industrial partners: Bouygues Telecom, Fondation d’entreprise Groupe
Cegetel, Fondation Hasler, France Telecom, Hitachi, ST Microelectronics, Swisscom, Texas Instruments, and Thales

An Application of Policy-Based Signature:
Proof-Carrying Proxy Certificates

Abstract. The term proxy certificate is used to describe a certificate that is issued by an end user for the
purpose of delegating responsibility to another user so that the latter can perform certain actions on behalf
of the former. Such certificates have been suggested for use in a number of applications, particularly in
distributed computing environments where delegation of rights is common. In this paper, we present a
new concept calledproof-carrying proxy certificates. Our approach allows to combine the verification
of the validity of the proxy certificate and the authorization decision making in an elegant way that en-
hances the privacy of the end user. In contrast with standard proxy certificates that are generated using
standard (public-key) signature schemes, the proposed certificates are generated using a signature scheme
for which the validity of a generated signature proves the compliance of the signer with a credential-based
policy. We present a concrete realization of our approach using bilinear pairings over elliptic curves and
we prove its security under adapted attack models.

Keywords: Proxy Certificates, Credentials, Authorization, Bilinear Pairings, Data Minimization

1 Introduction

The concept of proxy certificates, first formalized in [15], allows an end user to delegate some
responsibility to another user, called agent, so that the latter can perform certain actions on behalf
of the former. A proxy certificate is a certificate that, in contrast with the public-key certificates
issued by trusted certification authorities (such as X.509 certificates), is generated by an end user.
It represents the signature of the end user on a message that typically contains the identity of the
end user himself, the public key of the agent and a set of statements defining the terms of the
delegation. It allows the agent to authenticate with other users as if he was the end user when
performing the delegated actions. Proxy certification has been suggested for use in a number of
applications particularly in distributed computing environments where delegation of rights is quite
common. Examples include grid computing [5], mobile agents for e-commerce [7], and mobile
communication [6]. More recently, an X.509 certificate profile for proxy certificates was proposed
in [18].

Whenever an agent wants to perform an action on behalf of an end user, he must prove that he is
authorized by the end user to perform the action on his behalf. This is achieved by providing a valid
proxy certificate and proving the possession of the private key corresponding to the agent’s public
key specified by the certificate. Furthermore, the agent has to prove that the end user is compliant
with the authorization policy associated to the action he wants to perform. An increasingly popular
approach for authorization in large-scale open environments like the Internet consists in using poli-
cies fulfilled by digital credentials. Basically, a digital credential is composed of a set of statements
about certain user and the signature of this set by a trusted entity (called credential issuer). In this

context, a commonly taken approach consists in that the agent provides a set of end user’s creden-
tials fulfilling the authorization policy (called a qualified set of credentials for the policy). The entity
that is in charge of making the authorization decision is called the verifier. On one hand, the verifier
has to check the validity of each of the received credentials. On the other hand, he has to check that
the received set of credentials fulfills the authorization policy associated to the requested action.

The standard approach is not satisfactory for three reasons: first, verifying the validity of the
proxy certificate and the validity of the different credentials separately is a burden for the veri-
fier. Second, we believe that managing the end user’s credentials and proving his compliance with
an authorization policy should not be the role of the agent. Third, proving the compliance with a
credential-based policy through the disclosure of a qualified set of credentials is not optimal from
a privacy point of view. More precisely, it is not compliant with the privacy principle of data min-
imization (called the data quality principle in OECD guidelines [9]) that states that only strictly
necessary information should be collected for a given purpose. For instance, assume that the au-
thorization policy requires the possession of at least one credential belonging to a set of multiple
credentials. Then, according to the data minimization principle, the verifier should not know more
than the fact that the end user is compliant with the policy. In other words, the verifier should not
know which specific credential fulfilling the authorization policy is held by the end user.

In this paper, we introduce a novel form of proxy certificates calledproof-carrying proxy cer-
tificates. In contrast with standard proxy certificates that are generated using standard (public-key)
signature schemes, the proposed certificates are generated using a signature scheme for which the
validity of a generated signature proves the compliance of the signer with a credential-based policy.
Using this special form of proxy certificates, the end user does not disclose any of his credentials.
He uses them to generate a proof of compliance with the verifier’s authorization policy. Besides, the
agent does not have to deal with the end user’s credentials. He just provides his proof-carrying proxy
certificate (in addition to proving the possession of the private key corresponding to the agent’s pub-
lic key specified by the certificate). Finally, the verifier will just need to verify the validity of the
received proxy certificate with respect to his policy i.e. the verification of the validity of the proxy
certificate and the authorization decision making are performed in a logically single step.

The signature scheme used for the generation of proof-carrying proxy certificates should be
unforgeable as for standard signature schemes. Furthermore, the scheme has to fulfill a privacy
property called credential ambiguity in order to fulfill the data minimization principle i.e. the validity
of a the signature on the proof-carrying proxy certificate proves that the end user is compliant with
the authorization policy. However, if multiple qualified sets of credentials can fulfill the policy, the
verifier should not know which specific one is held by the end user. In the following, an application
scenario is described as an illustration of our approach.

Application Scenario. Consider the following scenario: a researcher (end user) wants to perform
some operations on various hosts on a scientific computation oriented grid environment. The oper-
ations can be executed independently, can depend on each other, or can be executed only at specific
periods of time. From his laptop the researcher wants to submit a number of requests to the destina-
tion hosts and have the operations executed while he is doing other things including being offline.

For each request, an authenticated connection needs to be established with the corresponding desti-
nation host. An authorization policy is associated to the operations and the researcher has to prove
his compliance with the policy in order for the operations to be authorized to be executed. The
researcher delegates the management of the different operations to one or more agents.

Currently, authorization in grid environments is identity-based. The researcher whose pub-
lic/private key pair is denoted(pku,sku) holds an X.509 certificate binding his global identity to
his public key. In order to make the agent act on his behalf, he generates for the agent a random pair
of keys denoted(pka,ska). Then, he issues an X.509 proxy certificate [18] associated to the gener-
ated key pair. The certificate contains in addition to the agent’s public keypka, a set of statements
indicating the valid operations that the agent is allowed to perform on behalf of the researcher, as
well as a restricted validity period. The authentication of the agent is therefore based on its key pair,
the proxy certificate generated by the researcher and the public-key certificate of the researcher.
Authorization to perform a specific task is based on the identity of the researcher (taken from his
X.509 certificate) as well as on the statements within the proxy certificate.

As explained in [5], an identity-based approach to authorization and authentication for large
grids ”will not provide the scalability, flexibility, and ease of management that a large grid needs
to control access to its sensitive resources”, while a property-based approach where properties are
carried by digital credentials is more appropriate. In scientific grids for instance, properties may
include whether the requesting agent is acting on behalf of a professor, a student or an administrator;
whether the agent is acting on behalf of a member of a particular research project whose membership
list is not maintained locally; whether the agent is acting on behalf of a researcher from academy or
industry; etc.

In the credential-based approach, the agent needs to prove that its owner (the researcher) is
compliant with a specific credential-based authorization policy in order for the operations to be
executed. Using standard credential systems such as X.509 attribute certificates, the agent needs
to have access to the credentials of its owner to provide the necessary authorization arguments.
For example, assume that a policy requires the researcher to be either a research staff member of
companyX or companyY. Suppose that the researcher is employed by companyX, therefore he has
been issued a credentialcredu

X (associated to his public keypku). In addition to the proxy certificate,
the researcher gives to the agent the credentialcredu

X. During authentication and authorization phase,
the agent submits in addition to its proxy certificate, the researcher’s credentialcredu

X. The remote
host where the operation needs to be executed does the following: (1) check the validity of the
proxy certificate using the public keypku, (2) check the validity ofcredu

X using the public key of
the ’trusted’ credential issuer, (3) check whether the provided credential fulfills the authorization
policy for the requested operations. If all the validity checks are successful, the task is executed.
Otherwise, an error message is returned.

Using proof-carrying proxy certificates allows to combine the verification of the validity of
the proxy certificate and the authorization decision making in a way that improves the privacy of
the researcher. In fact, instead of using a standard signature scheme, the researcher generates the
agent’s proxy certificate by running an advanced signature algorithm on input of his private key

sku, his credentialcredu
X and the credential-based policy ‘credu

X or credu
Y’. The new proxy certificate

carries in addition to delegation rights, the authorization arguments necessary for the execution of
the operations. Hence, instead of performing three validity checks, the remote host needs just to
verify the validity of the proxy certificate with respect to the policy ‘credu

X or credu
Y’ using the

researcher’s public keypku. Furthermore, thanks to the credential ambiguity property, the remote
host will not know whether the agent is acting on behalf of a companyX or companyY.

Contributions and Organization of the Paper. In this paper, we present the concept of proof-
carrying proxy certificates that allows to combine the verification of the validity of the proxy cer-
tificate and the authorization decision making in a way that enhances the privacy of the end user.
After discussing the related work in Section 2, we provide a comprehensive overview of the proof-
carrying proxy certification mechanism in Section 3. In Section 4, we provide precise definitions
for the algorithms specifying a proof-carrying proxy certification scheme. Then, we define the re-
lated security models, namely unforgeability and credential ambiguity. In Section 5, we describe a
provably secure construction of proof-carrying proxy certification scheme based on bilinear pairings
over elliptic curves. In Section 6, we summarize the paper and discuss current and future research
work.

2 Related Work

The intuition behind the concept of proof-carrying proxy certificates comes originally from proof-
carrying codes [14]. The latter is a technique that can be used for safe execution of untrusted code.
In a typical scenario, a code receiver establishes a set of safety rules that guarantee safe behav-
ior of programs, and the code producer creates a formal safety proof that proves, for the untrusted
code, adherence to the safety rules. Then, the receiver is able to use a proof validator to check that
the proof is valid and hence the untrusted code is safe to execute. By analogy with proof-carrying
codes, a proof-carrying authentication mechanism based on higher-order logic was presented in [1]:
the client desiring access must construct a proof using his attribute certificates, and the server will
simply check the validity of the proof. The logic-based approach leads to a simple and efficient solu-
tion that integrates different authentication frameworks including X.509 and SPKI/SDSI. However,
it cannot be used in the context of proof-carrying proxy certification because it does not provide a
signature scheme fulfilling the required properties.

Providing a privacy preserving proof of compliance with a credential-based policy is a problem
that has been studied in recent literature. In [2], the authors exploit cryptographic zero-knowledge
proofs to allow requesting users to prove their adherence with a credential-based policy. The pro-
posed solution provides better privacy guarantees than our concrete implementation of proof-carrying
proxy certificates as the users may prove their compliance while preserving their anonymity. How-
ever, as the described protocol requires interaction between the credentials holder (end user) and
the verifier, it can not be directly used to implement proof-carrying proxy certificates. An inter-
esting line for future research would be to exploit the Fiat-Shamir heuristic [8] to transform their

interactive protocols into a signature scheme that could be used to implement proof-carrying proxy
certificates.

The concept of self-certified signatures presented in [12] shares with proof-carrying proxy cer-
tificates the idea of combining signature’s validity verification with certification information verifi-
cation: the signer (end user) first generates a temporary signing key (analog to the agent’s private
key) using his long-term signing key and his public-key certification information together. Then,
he signs a message and certification information using this temporary signing key. In the verifica-
tion stage both the signature on the message and certification are checked together. Self-certified
signature was extended to multi-certification signature in which multiple certificates are verified to-
gether with the signature. The multi-certification signature scheme described in [12] could be used
to construct proof-carrying proxy certificates for which policies are restricted to conjunctions of cre-
dentials. However, they cannot support disjunctions of credentials while respecting the credential
ambiguity property. Thus, the signature scheme used in proof-carrying proxy certification could be
seen as a generalization of self-certified signatures that supports both disjunctive and conjunctive
authorization structures.

Our pairing-based signature scheme for proof-carrying proxy certificates is based on the policy-
based signature scheme proposed in [3]. The latter allows to generate a signature on a message so
that the signature is valid if and only if the signer is compliant with a credential-based policy written
in standard normal form. However, it cannot be used to implement proof-carrying proxy certificates
as it suffers from collusion attacks. In fact, in addition to the legitimate signer, any collusion of
credential issuers or end users who are able to collect a qualified set of credentials for the policy
according to which the message is signed can generate a valid signature. Besides, the scheme is not
satisfactory as it is not supported by formal security arguments. In this paper, we propose a scheme
that solves the collusion problem and provides a formal security analysis based on reductionist
proofs, thus fulfilling the security requirements of proof-carrying proxy certificates.

3 Proof-Carrying Proxy Certification

In this section, we provide a general description of our approach as well as the notations used
along the paper. We define the different components of a proof-carrying proxy certification scheme,
including our policy model. Then, we describe how the proof-carrying proxy certificates are created
and used.

3.1 Setting the Context

The setting for proof-carrying proxy certification comprises four types of players: end users, creden-
tial issuers, agents and verifiers (service providers). We consider a public key infrastructure where
each end user holds a pair of keys(pku,sku). An end user is identified by his public keypku. The
public key does not has to be bound to the end user’s name/identity (through public-key certifi-
cation) as for standard PKI systems such as X.509. In fact, in large-scale open environments, the

identity of an end user is rarely of interest to determining whether the end user could be trusted or
authorized to conduct some sensitive transactions. Instead statements about the end user such as at-
tributes, properties, capabilities and/or privileges are more relevant. The validity of such statements
is checked and certified by trusted entities called credential issuers.

We consider a set of credential issuersI = {I1, . . . , IN}, where the public key ofIκ, for κ ∈
{1, . . . ,N}, is denotedRκ while the corresponding master key is denotedsκ. We assume that a
trustworthy value of the public key of each of the credential issuers is known by the end users. Any
credential issuerIκ ∈ I may be asked by an end user to issue a credential corresponding to a set of
statements. The requested credential is basically the digital signature of the credential issuer on an
assertion denotedApku. The assertion contains, in addition to the set of statements, the end user’s
public keypku as well as a set of additional information such as the validity period of the credential.
As the representation of assertions is out of the scope of this paper, they will simply be encoded as
binary strings. Upon receiving a request for generating a credential on assertionApku, a credential
issuerIκ first checks the validity of the assertion. If it is valid, thenIκ executes a credential generation
algorithm and returns a credential denotedς(Rκ,Apku). Otherwise,Iκ returns an error message. Upon
receiving the credentialς(Rκ,Apku), the end user may check its integrity usingIκ’s public keyRκ.
The process of checking the validity of a set of statements about a certain entity is out of the scope
of this paper.

Each service provider defines an authorization policy for each action on a sensitive resource he
controls. We consider credential-based policies formalized as monotone boolean expressions involv-
ing conjunctions (AND/∧) and disjunctions (OR/∨) of credential-based conditions. A credential-
based condition is defined through a pair〈Iκ,Apku〉 specifying an assertionApku ∈ {0,1}∗ (about
an end user whose public key ispku) and a credential issuerIκ ∈ I that is trusted to check and
certify the validity ofApku. An end user whose public key ispku fulfills the condition〈Iκ,Apku〉 if
and only if the end user has been issued the credentialς(Rκ,Apku). We consider policies written in
standard normal forms, i.e. written either in conjunctive normal form (CNF) or in disjunctive normal
form (DNF). In order to address the two standard normal forms, we use the conjunctive-disjunctive
normal form (CDNF) introduced in [17]. Thus, a policy denotedPolpku is written as follows:

Polpku = ∧m
i=1[∨

mi
j=1[∧

mi, j

k=1〈Iκi, j,k,A
pku
i, j,k〉]], whereIκi, j,k ∈ I andApku

i, j,k ∈ {0,1}∗

Under theCDNF notation, policies written inCNF correspond to the case wheremi, j = 1, for all i, j,
while policies written inDNF correspond to the case wherem= 1.
Let ς j1,..., jm(Polpku) denote the set of credentials{{ς(Rκi, ji ,k

,Apku
i, j i ,k

)}mi, ji
k=1}m

i=1, for { j i ∈{1, . . . ,mi}}m
i=1.

Then,ς j1,..., jm(Polpku) is a qualified set of credentials forPolpku.

3.2 Creating and Using Proof-Carrying Proxy Certificates

When an end user wants to interact with a service provider (verifier) through an agent, he first
generates a pair of keys(pka,ska) for the agent. Then, he specifies the content of the proxy certificate
- a message, denotedM, containing the end user’s public keypku, the public key of the agentpka

and the delegation constraints. Finally, the end user generates a signature on the content of the proxy

certificate using a dedicated signature algorithm. The latter takes as input the message to be signed,
the private key of the end usersku, the policy of the service providerPolpku with respect to the end
user’s public keypku, and a qualified set of credentials for the policyς j1,..., jm(Polpku).

When the agent decides to interact with the verifier, he provides his proof-carrying proxy cer-
tificate along with a proof of possession of the private keyska corresponding to the public keypku

contained in the proxy certificate. The verifier first checks the delegation constraints specified by the
proxy certificate to be sure that the agent is allowed by the end user to perform the requested action
on his behalf. Then, he checks the validity of the signature on the content of the proxy certificate
using the adequate verification algorithm. This algorithm takes as input the proof-carrying proxy
certificate, the end user’s public keypku, and the authorization policyPolpku. At the end, the verifier
obtains a proof that the agent whose public key ispka is allowed by an end user whose public key
is pku to perform the action on his behalf and that the end user is compliant with the authorization
policy specified by the verifier.

The signature and verification algorithms used for the creation and verification of proof-carrying
proxy certificates must fulfill two security requirements:

– Unforgeability: the signature on a proof-carrying proxy certificate must not be valid with respect
to policyPolpku if the signer does not use the private keysku or a qualified set of credentials for
policy Polpku. In other words, the agent cannot obtain a valid proof-carrying proxy certificate
with respect to policyPolpku from a user that does not have access to the private keysku, and the
end user cannot generate a valid proof-carrying proxy certificate with respect to policyPolpku if
he does not have access to a qualified set of credentials for the policy.

– Credential ambiguity: in the case where there exists multiple qualified sets of credentials for
policy Polpku, a valid proxy-carrying proxy certificate must not reveal which specific set of
credentials has been used to generate the certificate.

4 Definitions

Following the functional description provided in Section 3, we give in this section precise defini-
tions for the algorithms used during the proof-carrying proxy certification process. In addition, we
formally define the corresponding security models.

4.1 Algorithms

A proof-carrying proxy certification scheme (in shortPCPC) is specified by six algorithms:System-
Setup, Issuer-Setup, User-Setup, CredGen, SignandVerify.

System-Setup. On input of a security parameterk, this algorithm generates the system parametersP
including the different spaces, groups and public functions that will be referenced by subsequent
algorithms.

Issuer-Setup. This algorithm generates a random master keysκ and the corresponding public key
Rκ for credential issuerIκ ∈ I .

User-Setup. This algorithm generates a random private keysku and the corresponding public key
pku.

CredGen. On input of the public keyRκ of a credential issuerIκ ∈ I and an assertionApku ∈ {0,1}∗,
this algorithm generates the credentialς(Rκ,Apku) using the master keysκ associated toRκ.

Sign. On input of a messageM, a pair of keys(pku,sku), a policy Polpku and a qualified set of
credentialsς j1,..., jm(Polpku), this algorithm returns a signatureσ.

Verify. On input of a messageM, a signatureσ, a public keypku and a policyPolpku, this algorithm
returns> (for true) if σ is a valid signature onM according to policyPolpku. Otherwise, it returns
⊥ (for false).

The algorithms described above have to satisfy the standard consistency constraint i.e.

σ =Sign(M, pku,sku,Polpku,ς j1,..., jm(Polpku)) ⇒ Verify(M,σ, pku,Polpku) =>

4.2 Security Models

A PCPC scheme has to fulfill the security requirement of unforgeability and the privacy requirement
of credential ambiguity.

Unforgeability. The standard acceptable notion of security for standard signature schemes is exis-
tential unforgeability against chosen message attacks [10]. Therefore, we require the same security
notion for proof-carrying proxy certification schemes. The definition of existential unforgeability
should naturally be adapted to the advanced form of signature used by proof-carrying proxy certifi-
cates.

Existential unforgeability forPCPC schemes is defined in terms of an interactive game, played
between a challenger and an adversary. The game consists of three stages:Setup, QueriesandForge
which we describe below.

– Setup. On input of a security parameterk, the challenger does the following: (1) Run algorithm
System-Setupto obtain the system public parametersP , (2) Run algorithmIssuer-Setuponce
or multiple times to obtain a set of credential issuersI = {I1, . . . , IN}, (3) Run algorithmUser-
Setupto obtain a public/private key pair(pkf ,skf), (4) Give to the adversary the parametersP ,
the public keypkf and the public keys of the different credential issuers included inI .

– Queries. The adversary performs adaptively a polynomial number of oracle queries which we
define below. By ”adaptively”, we mean that each query may depend on the challenger’s replies
to the previously performed queries.

– Forge. Once the adversary decides thatQueriesis over, it outputs a messageMf , a policyPolpkf
f ,

a signatureσf , and wins the game ifVerify(Mf ,σf , pkf ,Polpkf
f) =>.

During theQueriesstage, the adversary may perform queries to two oracles controlled by the chal-
lenger. On one hand, a credential generation oracle denotedCredGen-O. On the other hand, a signa-

ture oracle denotedSign-O. While the oracles are executed by the challenger, their input is specified
by the adversary. The oracles are defined below:

– CredGen-O. On input of a credential issuerIκ ∈ I and an assertionApku ∈ {0,1}∗ (associated
to a key pair(pku,sku) chosen by the adversary), run algorithmCredGenon input of the tuple
(Iκ,Apku) and return the resulting credentialς(Rκ,Apku).

– Sign-O. On input of a messageM and a policyPolpkf , first run algorithmCredGenonce or mul-
tiple times to obtain a qualified set of credentialsς j1,..., jm(Polpkf) for Polpkf , then run algorithm
Signon input of(M, pkf ,skf ,Polpkf ,ς j1,..., jm(Polpkf)) (for somej i ∈ {1, . . . ,mi} for i = 1, . . . ,mi)
and return the resulting output.

The oracle queries made by the adversary duringQueriesare subject to some restrictions depending
on the type of adversary. In fact, we distinguish two types of attackers:

– Insider: the adversary is given, in addition to the parameters provided by the challenger during
Setup, the private keyskf . An adversary of this type is not allowed to obtain (through queries
to oracleCredGen-O) a qualified set of credentials for the forgery policyPolpkf

f . This type of
attackers corresponds to entities that are not compliant with a policy and that try to generate a
valid signature w.r.t the policy.

– Outsider: the adversary is given, in addition to the parameters provided by the challenger during
Setup, the master keys of the different credential issuers included inI . An adversary of this
type does not have access to the private keyskf and do not need to perform queries to oracle
CredGen-O. This type of attackers corresponds to entities that might have access to a qualified
set of credentials for the policy but do not have access to the corresponding public key.

Obviously, an adversary, be it insider or outsider, is not allowed to perform a query to oracleSign-O
on the tuple(Mf ,Polpkf

f).

The game described above is denotedEUF-PCPC-CMAX, whereX = I for insider adversaries and
X = O for outsider adversaries. A formal definition of existential unforgeability against chosen
message attacks forPCPC schemes is given below. As usual, a real functiong is said to be negligible
if g(k)≤ 1

f (k) for any polynomialf .

Definition 1. The advantage of an adversaryAX in the EUF-PCPC-CMAX game is defined to be
the quantity AdvAX = Pr[AX wins]. A PCPC scheme isEUF-PCPC-CMAX secure if no probabilistic
polynomial time adversary has a non-negligible advantage in theEUF-PCPC-CMAX game.

Credential Ambiguity. We define credential ambiguity against chosen message attacks forPCPC
schemes in terms of an interactive game (denotedCrA-PCPC-CMA), played between a challenger
and an adversary. The game consists of three stages:Setup, ChallengeandGuesswhich we describe
below.

– Setup. On input of a security parameterk, the challenger does the following: (1) Run algorithm
Setupto obtain the system public parametersP , (2) Run algorithmIssuer-Setuponce or mul-
tiple times to obtain a set of credential issuersI = {I1, . . . , IN}, (3) Give to the adversary the
parametersP as well as the public and master keys of the different credential issuers included
in I .

– Challenge. The adversary chooses a messageMch, a pair of keys(pkch,skch) and a policyPolpkch
ch

on which he wishes to be challenged. The challenger does the following: (1) Fori = 1, . . . ,m,
pick at randomjch

i ∈ {1, . . . ,mi}, (2) Run algorithmCredGen mtimes to obtain the qualified set
of credentialsς jch

1 ,..., jch
m
(Polpkch

ch), (3) Run algorithmSignon input the tuple(Mch, pkch,skch,Polch,

ς jch
1 ,..., jch

m
(Polpkch

ch)) and return the resulting output to the adversary.

– Guess. The adversary outputs a tuple(j1, . . . , jm), and wins the game if the equality(jch
1 , . . . , jch

m)=
(j1, . . . , jm) holds.

Definition 2. The advantage of an adversaryA in the CrA-PCPC-CMA game is defined to be the
quantity AdvA = Maxi{|Pr[j i = jch

i]− 1
mi
|}, where the parameters mi are those defined by the chal-

lenge policy Polpkch
ch . A PCPC scheme isCrA-PCPC-CMA secure if no probabilistic polynomial time

adversary has a non-negligible advantage in theCrA-PCPC-CMA game.

5 Concrete Implementation

In this section, we describe a concrete implementation of proof-based proxy certificates. Our imple-
mentation is based on bilinear pairings over elliptic curves. Our scheme owes much to the work on
pairing-based signature and ring signatures presented in [13, 19, 20]. After describing our concrete
algorithms, we analyze their consistency and efficiency. Then, we prove their security in the random
oracle model.

5.1 Description

Before describing the algorithms defining ourPCPC scheme, we define algorithmBDH-Setupas
follows:

BDH-Setup. Given a security parameterk, generate a tuple(q,G1,G2,e,P) wheree : G1×G1 →G2

is a bilinear pairing,(G1,+) and(G2,∗) are two groups of the same orderq, andP is a random gen-
erator ofG1. The generated parameters are such that the following mathematical problem are hard
to solve:

– Computational Diffie-Hellman Problem (CDHP): given a tuple(P,a·P,b·P) for randomly cho-
sena,b∈ Z∗

q, compute the valueab·P.
– (k+1)-Exponent Problem (k+1EP): given the tuple(P,a·P,a2 ·P, . . . ,ak ·P) for a∈Z∗

q, compute
ak+1 ·P.

Note. We recall that a bilinear pairing satisfies the following three properties: (1) Bilinear: for
Q,Q′ ∈G1 and fora,b∈ Z∗

q, e(a·Q,b·Q′) = e(Q,Q′)ab, (2) Non-degenerate:e(P,P) 6= 1 and there-
fore it is a generator ofG2, (3) Computable: there exists an efficient algorithm to computee(Q,Q′)
for all Q,Q′ ∈G1. �
Our PCPC scheme consists of the algorithms described below.

System-Setup. On input of a security parameterk, do the following:

1. Run algorithmBDH-Setupon inputk to generate output(q,G1,G2,e,P)
2. Define three hash functions:H0 : {0,1}∗ →G1, H1 : {0,1}∗ → Z∗

q andH2 : G1 → Z∗
q

3. Let P = (q,G1,G2,e,P,H0,H1,H2).

Issuer-Setup. Let I = {I1, . . . , IN} be a set of credential issuers. Each credential issuerIκ ∈ I picks
at random a secret master keysκ ∈ Z∗

q and publishes the corresponding public keyRκ = sκ ·P.

User-Setup. This algorithm picks at random a private keysku ∈ Z∗
q and computes the corresponding

public keypku = sku ·P.

CredGen. On input of the public keyRκ of issuerIκ ∈ I and assertionApku ∈ {0,1}∗, this algorithm
outputsς(Rκ,Apku) = sκ ·H0(Apku).

Sign. On input of a messageM, a pair of keys(pku,sku), a policy Polpku and a qualified set of
credentialsς j1,..., jm(Polpku), do the following:

1. For i = 1, . . . ,m, do the following:
(a) Pick at randomYi ∈G1, then computexi, j i+1 = e(P,Yi)
(b) For l = j i +1, . . . ,mi ,1, . . . , j i −1 mod(mi +1), do the following:

i. Computeτi,l = ∏mi,l

k=1e(Rκi,l ,k,H0(A
pku
i,l ,k))

ii. Pick at randomYi,l ∈G1, then computexi,l+1 = e(P,Yi,l)∗ τH1(M‖xi,l‖m‖i‖l)
i,l

(c) ComputeYi, j i = Yi −H1(M‖xi, j i‖m‖i‖ j i) · (∑
mi, ji
k=1 ς(Rκi, ji ,k

,Apku
i, j i ,k

))
2. ComputeY = ∑m

i=1 ∑mi
j=1Yi, j , then computeZ = (sku +H2(Y))−1 ·P

3. Returnσ = ([[xi, j]
mi
j=1]

m
i=1,Y,Z)

Verify. Let σ = ([[xi, j]
mi
j=1]

m
i=1,Y,Z) be a signature on messageM according to policyPolpku and

public keypku. To check the validity ofσ, do the following:

1. Computeτi, j = ∏mi, j

k=1e(Rκi, j,k,H0(A
pku
i, j,k)) (for j = 1, . . . ,mi andi = 1, . . . ,m)

2. Computeα0 = e(pku +H2(Y) ·P,Z)
3. Computeα1 = ∏m

i=1[∏
mi
j=1xi, j] andα2 = e(P,Y)∗∏m

i=1 ∏mi
j=1 τH1(M‖xi, j‖m‖ j‖i)

i, j
4. If α0 = e(P,P) andα1 = α2, then return>, otherwise return⊥

The intuition behind our signature algorithm is as follows: each conjunction of conditions∧mi, j

k=1〈Iκi, j,k,A
pku
i, j,k〉

is associated to a tagτi, j . For each indexi, the set of tags{τi, j}mi
j=1 is equivalent to a set of ring mem-

bers. The signature key of the ring member corresponding to the tagτi, j consists of the credentials

{ς(Rκi, j,k,A
pku
i, j,k)}

mi, j

k=1. Thus, the generated signature corresponds to a set of ring signatures which
validity can be checked using the global ’glue’ valueY. The latter can be computed only by a user
having access to a qualified set of credentials for policyPolpku. The elementZ represents the [20]
short signature onY using the private keysku. Therefore,σ proves that the entity whose public
key is pku is compliant with policyPolpku. Note that we can use any standard signature scheme to
generate the valueZ.

5.2 Consistency and Efficiency

OurPCPCscheme satisfies the standard consistency constraint thanks to the following statements:

α0 = e(pku +H2(Y) ·P,Z) = e((sku +H2(Y)) ·P,(sku +H2(Y))−1 ·P) = e(P,P) (1)

τH1(M‖xi, j‖m‖i‖ j)
i, j = xi, j+1∗e(P,Yi, j)−1(wherexi,mi+1 = xi,1) (2)

α2 = λ∗
m

∏
i=1

[
mi

∏
j=1

τH1(M‖xi, j‖m‖i‖ j)
i, j] (whereλ = e(P,Y))

= λ∗
m

∏
i=1

[
mi−1

∏
j=1

xi, j+1∗e(P,Yi, j)−1∗xi,1∗e(P,Yi,mi)
−1]

= λ∗
m

∏
i=1

[
mi

∏
j=1

xi, j ∗
mi

∏
j=1

e(P,Yi, j)−1]

= λ∗ [
m

∏
i=1

mi

∏
j=1

xi, j]∗ [e(P,
m

∑
i=1

mi

∑
j=1

Yi, j)]−1 = λ∗α1∗λ−1 (3)

The essential operation in pairing-based cryptography is pairing computations. Our signature al-
gorithm requires a total of∑m

i=1mi + ∑m
i=1 ∑ j 6= j i mi, j pairing computations. Note that the values

τi,l does not depend on the signed messageM. Thus, they can be pre-computed by the end user,
cached and used in subsequent signatures involving the corresponding credential-based conditions
i.e. 〈Rκi,l ,k,A

pku
i,l ,k〉. On the other hand, our verification algorithm requires a total of 3+∑m

i=1 ∑mi
j=1mi, j

pairing computations. Although pairing computations could be optimized as explained in [4], the
performance of our signature and verification algorithms still need to be improved. This is the main
focus of our current research work.

Let l i denote the bit-length of the bilinear representation of an element of groupGi (i = 1,2). Then,
the bit-length of a signature produced by ourPCPC scheme is equal to(∑m

i=1mi).l2+2.l1. Note that
the signature’s length does not depend on the valuesmi, j .

5.3 Security

In the following, we provide the security results related to ourPCPC scheme.

Notation. Given the notation used in Section 3, the maximum values that the quantitiesm, mi and
mi, j can take are denoted, respectively,m∨∧ ≥ 1,m∨ ≥ 1 andm∧ ≥ 1. We assume that these upper-
bounds are specified during system setup.�

Theorem 1. Our PCPC scheme isEUF-PCPC-CMAI secure in the random oracle model under the
assumption thatCDHP is hard. In fact, letA◦ be anEUF-PCPC-CMAI adversary with advantage
AdvA◦ ≥ ε when attacking ourPCPC scheme. Assume that adversaryA◦ has running time tA◦ and
makes at most qc queries to oracle CredGen-O, qs queries to oracle Sign-O, q0 queries to oracle
H0 and q1 queries to oracle H1. Then, there exists an adversaryA• the advantage of which, when
attacking CDHP, is such that

AdvA• ≥ 9/(100qm∨∧m∨
0 ∑m∨

l=1 l !
(m∨

l

)
)

Its running time is tA• ≤ (32q1+4)tA◦/ε, for q≥Max{2m∨∧m∨,2m∨∧qsq1} andε≤32(q1 +1−m∨∧m∨)/q.

Proof. Proof of Theorem 1 follows the method described in [11], which is based on the oracle replay
technique [16]. Informally, by a polynomial replay of the attack with different random oracles, we
allow the attacker to forge two signatures that are related so that the attacker is able to solve the
underlying hard problem (CDHP). The details of our proof are given in Appendix A. Note that our
security reduction does not depend on the parameterm∧. On the other hand, it depends exponentially
on the parametersm∨∧ andm∨ which needs further improvement. Finally, note that the ID-based
ring signature presented in [20] is not supported by any security arguments. Our proof could be
easily adapted to realize the missing proofs. In fact, the ID-based ring signature of [20] is almost
similar to our signature algorithm applied in the particular case where the policies are such that
m∨∧ = m∧ = 1. �

Theorem 2. Our PCPC scheme isEUF-PCPC-CMAO secure in the random oracle model under the
assumption that k+1EP is hard.

Proof. The security of our schemePCPC in theEUF-PCPC-CMAO game is equivalent to the security
of the short signature scheme presented in [20]. In fact, the outsider adversary succeeds in forging a
proof-carrying proxy certification if and only if it succeeds in generating a validZ corresponding to
a valid([[xi, j]

mi
j=1]

m
i=1,Y) associated to the pair of keys(pkf ,skf). As the adversary has access to the

master keys of the different credential issuers, its is able to generate a valid tuple([[xi, j]
mi
j=1]

m
i=1,Y)

corresponding to any policy associated topkf . Therefore, the adversary needs to be able to generate
a [20] short signature onY using the protected private keyskf . The short signature of [20] is proved
to be secure in the random oracle model under the assumption that thek+1EP problem is hard.�

Theorem 3. Our PCPC scheme isCrA-PCPC-CMA secure in the random oracle model.

Proof. Let Mch be the message andσch = ([xch
i, j]

mi
j=1]

m
i=1,Y

ch,Zch) be the signature which the adver-
sary is challenged on in theCrA-PCPC-CMA game. OurPCPC scheme is such that the following
holds

1. xch
i, j = e(P,Yi, j−1)∗ τ

H1(Mch‖xch
i, j−1‖m‖i‖ j−1)

i, j−1 for j 6= jch
i +1 andxch

i, jch
i +1

= e(P,Yi)

2. Ych = ∑m
i=1[∑ j 6= jchYi, j +Yi −H1(Mch‖xch

i, jch
i
‖m‖i‖ jch

i) · (∑
m

i, jch
i

k=1 ς(Rκ
i, jch

i ,k
,Ai, jch

i ,k))]

SinceYi andYi, j−1 are chosen at random fromG1, andH1 is assumed to be a random oracle, we
have thatxch

i, j andYch are uniformly distributed inG2 andG1 respectively. If(j1, . . . , jm) is the tuple
output by the adversary in theCrA-PCPC-CMA game, then we havePr[j i = jch

i], for i = 1, . . . ,m. �

6 Conclusion

In this paper, we presented the concept of proof-carrying proxy certificates. The idea is to generate
the proxy certificate using a special signature scheme for which the validity of the generated sig-
nature proves the compliance of the signer with a credential-based policy. The proof adheres to the
privacy principle of data minimization i.e. in the case where there exists multiple qualified sets of
credentials for a policy, the proof does not reveal which specific set has been used to generate the
signature. To implement our approach, we developed a concrete proof-carrying proxy certification
scheme using bilinear pairings over elliptic curves. We defined formal security models for proof-
carrying proxy certification schemes and proved the security of our construction under the defined
models in the random oracle model. We are currently developing an experimental implementation
framework for proof-carrying proxy certificates in the context of grid computing. The integration of
well established credential standards (e.g. SPKI, SAML) is one of our goals. We are also working
on improving the performance of our construction in terms of both computational and bandwidth
consumption costs, and preparing and in-depth analysis of such costs. As discussed in the related
work, an interesting line for future would be the construction of a proof-carrying proxy certification
scheme based on the well known zero-knowledge proof of knowledge protocols.

References

1. A. Appel and E. Felten. Proof-carrying authentication. InACM Conference on Computer and Communications
Security, pages 52–62, 1999.

2. M. Backes, J. Camenisch, and D. Sommer. Anonymous yet accountable access control. InWPES ’05: Proceedings
of the 2005 ACM workshop on Privacy in the electronic society, pages 40–46, New York, NY, USA, 2005. ACM
Press.

3. W. Bagga and R. Molva. Policy-based cryptography and applications. InProceedings of Financial Cryptography
and Data Security (FC’05), volume 3570 ofLNCS, pages 72–87. Springer-Verlag, 2005.

4. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. InProceedings of
the 22nd Annual International Cryptology Conference on Advances in Cryptology, pages 354–368. Springer-Verlag,
2002.

5. J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust on the grid. In2nd WWW Workshop
on Semantics in P2P and Grid Computing, New York, USA, May 2004.

6. J. Choi, K. Sakurai, and J. Park. Proxy certificates-based digital fingerprinting scheme for mobile communication. In
IEEE 37th Annual 2003 International Carnahan Conference on Security, pages 587 – 594. IEEE Computer Society,
2003.

7. J. Claessens, B. Preneel, and J. Vandewalle. (how) can mobile agents do secure electronic transactions on untrusted
hosts? a survey of the security issues and the current solutions.ACM Trans. Inter. Tech., 3(1):28–48, 2003.

8. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Advances in Cryptology — Crypto ’86, pages 186–194, New York, 1987. Springer-Verlag.

9. Organization for Economic Cooperation and Development (OECD). Recommendation of the council con-
cerning guidelines governing the protection of privacy and transborder flows of personal data, 1980.
http://www.oecd.org/home/.

10. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks.SIAM J. Comput., 17(2):281–308, 1988.

11. J. Herranz. A formal proof of security of Zhang and Kim’s ID-based ring signature scheme. InWOSIS’04, pages
63–72. INSTICC Press, 2004. ISBN 972-8865-07-4.

12. B. Lee and K. Kim. Self-certified signatures. InINDOCRYPT ’02: Proceedings of the Third International Conference
on Cryptology, pages 199–214, London, UK, 2002. Springer-Verlag.

13. C. Lin and T. Wu. An identity-based ring signature scheme from bilinear pairings. Cryptology ePrint Archive, Report
2003/117, 2003. http://eprint.iacr.org/.

14. G. Necula. Proof-carrying code. InPOPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 106–119, New York, NY, USA, 1997. ACM Press.

15. B. Clifford Neuman. Proxy-based authorization and accounting for distributed systems. InInternational Conference
on Distributed Computing Systems, pages 283–291, 1993.

16. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.Journal of Cryptology:
the journal of the International Association for Cryptologic Research, 13(3):361–396, 2000.

17. N. Smart. Access control using pairing based cryptography. InProceedings CT-RSA 2003, pages 111–121. Springer-
Verlag LNCS 2612, April 2003.

18. S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile.RFC 3820, June 2004.

19. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. InASIACRYPT, pages 533–547.
Springer-Verlag LNCS 2501, 2002.

20. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bilinear pairings and its applications.
In Public Key Cryptography, pages 277–290, 2004.

A Proof of Theorem 1

We construct an algorithmA• that usesA◦ to mount an attack againstCDHP. The game between
the challenger and algorithmA• starts with theInitialization stage which we describe below.

Initialization . The challenger gives to adversaryA• the BDH parameters(q,G1,G2,e,P) as well
as aCDHP-instance(P,a ·P,b ·P) = (P,P1,P2) for these parameters. Then, algorithmA• does the
following:

1. Choose the valuesi• ∈ {1, . . . ,m∨∧}, j• ∈ {1, . . . ,m∨} andm•
i•, j• ∈ {1, . . . ,m∧}

2. Pick at random the valuesκ•i•, j•,k ∈ {1, . . . ,N} andl i•, j•,k ∈ {1, . . . ,q0}, for k = 1, . . . ,m•
i•, j•

3. Pick at randomθ•i•, j•,k ∈ Z∗
q, for k = 2, . . . ,m•

i•, j• , then computeθ•i•, j•,1 = ∑
m•

i•, j•

k=2 θ•i•, j•,k

The interaction between algorithmA• and adversaryA◦ consists of three stages:Setup, Probing
andForgewhich we describe below.

Setup. Algorithm A• does the following: (1) LetI • = (q,G1,G2,e,P,n,H•
0 ,H•

1 ,H2) be the global
information, where the oraclesH•

0 and H•
1 are controlled by algorithmA•, H2 is a public hash

function, the tuple(q,G1,G2,e,P) is given to algorithmA• in theInitialization stage, and the value
n ∈ N∗ is chosen by algorithmA•, (2) Define the the set of credential issuersI = {I1, . . . , IN} as
follows: for κ ∈ {κ•i•, j•,k}, the public key ofIκ is Rκ = rκ ·P1 for some randomly chosenrκ ∈ Z∗

q,
whereas, forκ ∈ {1, . . . ,N}\{κ•i•, j•,k}, the public key ofIκ is Rκ = sκ ·P for some randomly chosen
sκ ∈ Z∗

q, (3) Run algorithmUser-Setupto obtain a public/private key pair(pkf ,skf), (4) Give the
global informationI • and the credential issuers’ public keysRκ }N

κ=1 to adversaryA◦.

Note. Forκ ∈ {κ•i•, j•,k}, the master key ofIκ is sκ = rκa

Algorithm A• controls the random oracleH•
0 as follows: algorithmA• maintains a list of tuples

[Aı,H0,ı,λı] which we denoteH list
0 . The list is initially empty. Assume that adversaryA◦ makes a

query on assertionApku ∈ {0,1}∗, then adversaryA• responds as follows:

1. If Apku already appears on the listH list
0 in a tuple[Aı,H0,ı,λı], then returnH0,ı

2. If pku = pkf andApku does not appear onH list
0 andApku is the l•i•, j•,1-th distinct query to or-

acle H•
0 , then computeH0,l•i, j,1 = r−1

κ•i•, j•,1
· (P2− θ•i•, j•,1 ·P), returnH0,l•i•, j•,1

, and add the entry

[Apku,H0,l•i•, j•,1
,null] to H list

0

3. If pku = pkf andApku does not appear onH list
0 andApku is thel•i•, j•,k-th distinct query to oracleH•

0

(for k> 1), then computeH0,l•i•, j•,k
=(r−1

κ•i•, j•,k
θ•i•, j•,k)·P, returnH0,l•i•, j•,k

, and add[Apku,H0,l•i•, j•,k
, r−1

κ•i•, j•,k
θ•i•, j•,k]

to H list
0

4. Otherwise, pick at randomλ ∈ Z∗
q, returnλ ·P and add[Apku,λ ·P,λ] to H list

0

Note. The random oracleH•
0 is such thatτ•i•, j• = ∏

m•
i•, j•

k=1 e(Rκi•, j•,k,H0(A
pkf
i•, j•,k)) = e(P,ab·P).

Probing. AdversaryA◦ performs a polynomial number of oracle queries adaptively.

Forging. Algorithm A◦ outputs a messageMf , a policyPolf and a signatureσf . The adversary wins
the game ifVerify(Mf ,σf , pkf ,Polf) =>.

The oracles that adversaryA◦ may query duringProbing are defined below. We assume without
loss of generality that adversaryA◦ always makes the appropriate query to the random oracleH•

0
on assertionApku.

– CredGen-O. Assume that adversaryA◦ makes a query on a tuple(Iκ,A). Let [Aı,H0,ı,λı] be the
tuple fromH list

0 such thatAı = Apku, then algorithmA• responds as follows:
1. If ı = l•i•, j•,1 andκ ∈ {κ•i•, j•,k}, then report failure and terminate (eventEcred)
2. If ı 6= l•i•, j•,1 andκ ∈ {κ•i•, j•,k}, then return(rκλı) ·P1 = (rκa) ·H0,ı = sκ ·H0,ı

3. If κ ∈ {1, . . . ,N}\{κ•i•, j•,k}, then returnsκ ·H0,ı

– Sign-O. Assume that adversaryA◦ makes a query on a tuple(M,Polpkf). AlgorithmA• responds
as follows:

1. Pick at randomhi,1 ∈ Z∗
q , andYi, j ∈G1 (j = 1, . . . ,mi andi = 1, . . . ,m)

2. Computeτi, j = ∏mi, j

k=1e(Rκi, j,k,H
•
0(Apkf

i, j,k)) (j = 1, . . . ,mi andi = 1, . . . ,m)

3. Computexi, j+1 = e(P,Yi, j)∗τhi, j
i, j , then computehi, j+1 = H1(M‖xi, j+1‖m‖i‖ j +1). In order to

compute the valuehi, j , algorithmA• maintains a list of tuples[(Mı,xı,mı, iı, jı),H4,ı] which
we denoteH list

1 . If (M,xi, j ,m, i, j) appears onH list
1 in a tuple[(Mı,xı,mı, iı, jı),H1,ı], then

algorithmA• setshi, j = H1,ı. Otherwise, it picks at randomH ∈ Z∗
q, setshi, j = H and adds

the tuple[(M,xi, j ,m, i, j),H] to H list
1 .

4. Let xi,1 = e(P,Yi,mi)∗ τhi,mi
i,mi

andhi,1 = H1(M‖xi,1‖m‖i‖1), then
(a) If (M,xi,1,m, i,1) already appears on the listH list

1 in a tuple[(Mı,xı,mı, iı,1),H1,ı] such
thatH1,ı 6= hi,1, then report failure and terminate (we refer to this event asEsig).

(b) Otherwise, add the tuple[(M,xi,1,m, i,1),hi,1] to H list
1 .

5. ComputeY = ∑m
i=1 ∑mi

j=1Yi, j andZ = (sku + H2(Y))−1 ·P then return([xi, j]
mi
j=1]

m
i=1,Y,Z) to

adversaryA◦.

Algorithm A• controls the random oracleH•
1 as follows: assume that adversaryA◦ makes a query

to the random oracleH•
1 on input(M,x,m, i, j), then algorithmA• responds as follows:

1. If the tuple(M,x,m, i, j) already appears onH list
1 in a tuple[(Mı,xı,mı, iı, jı),H1,ı], then outputH1,ı

2. Otherwise, pick at randomH ∈ Z∗
q, outputH and add[(M,x,m, i, j),H] to H list

1

In the following, we analyze the simulation described above: letw be the whole set of random
tapes that take part in an attack by adversaryA◦, with the environment simulated by algorithmA•,
but excluding the randomness related to the oracleH•

1 . The success probability of adversaryA◦

in forging a valid ring signature scheme is then taken over the space(w ,H•
1). Let S be the set of

successful executions of adversaryA◦, then the following holds

AdvA◦ = Pr[(w ,H•
1) ∈ S]≥ ε (4)

Let E0 be the event that adversaryA◦ succeeds in forging the signatureσf = ([xf
i, j]

mi
j=1]

m
i=1,Y

f ,Zf)
without making a query to the random oracleH•

1 on at least one of the tuples(Mf ,xf
i, j ,m, i, j), and

let E ′
0 be the event that eventEsig occurs at one of the queries made by adversaryA◦ to the oracle

Sign-O. Then, we have

Pr[E0]≤
m∨∧m∨

q
, Pr[E ′

0]≤
m∨∧qsq1

q
(5)

Let S ′ be the set of successful executions of adversaryA◦ for which it has made queries to the
random oracleH•

1 on the all the tuples(Mf ,xf
i, j ,m, i, j), then the following holds

Pr[(w ,H•
1) ∈ S ′] = Pr[¬E0].Pr[¬E ′

0].Pr[(w ,H•
1) ∈ S]≥ (1− m∨∧m∨

q
).(1− m∨∧qsq1

q
).ε (6)

Let Q1, . . . ,Qq1 denote the different queries made by adversaryA◦ to the random oracleH•
1 . We

denote byQβi, j
(for βi, j ∈ {1, . . . ,q1}) the query made by adversaryA◦ to the random oracleH•

1 on

the tuple(Mf ,xf
i, j ,m, i, j). Let i lq and j lq be the indexes such that for all(i, j) 6= (i lq, j lq), βi, j < βi lq, j lq .

The valueβi lq, j lq is called the last-query index. We defineS ′βilq, j lq
to be the set of executions fromS ′

whose last-query index isβi lq, j lq . Sinceβi lq, j lq may range betweenβ≤ β = m∨∧m∨ andq1, this gives
us a partition ofS ′ in at leastq1 +1−β classes.

Let E1 be the event that algorithmA• obtains a successful execution(w1,H•1
1) ∈ S ′β1

ilq, j lq
, for some

last-query indexβ1
i lq, j lq , after invokingt1 times adversaryA◦ with randomly chosen tuples(w ,H•

1).
In the particular case wheret1 = (Pr[w ,H•

1) ∈ S ′])−1, and since(1− 1
X)X ≤ e−1 (for X > 1), the

following statement holds

Pr[E1] = 1− (1−Pr[(w ,H•
1) ∈ S ′])t1 ≥ 1−e−1 >

3
5

(7)

We define the setJ of last-query indexes which are more likely to appear as follows:

J = {βi lq, j lq s.t. Pr[(w ,H•
1) ∈ S ′βilq, j lq

|(w ,H•
1) ∈ S ′]≥ γ}, whereγ = 1

2(q1+1−β)

Let S ′J = {(w ,H•
1) ∈ S ′βilq, j lq

s.t. βi lq, j lq ∈ J} be the subset of successful executions corresponding to

the setJ . Since the subsetsS ′βilq, j lq
are pairwise disjoint, the following holds

Pr[(w ,H•
1) ∈ S ′J |(w ,H•

1) ∈ S ′] = ∑
βilq, j lq∈J

Pr[(w ,H•
1) ∈ S ′βilq, j lq

|(w ,H•
1) ∈ S ′]

= 1− ∑
βilq, j lq /∈J

Pr[(w ,H•
1) ∈ S ′βilq, j lq

|(w ,H•
1) ∈ S ′]

≥ 1− (
1
2γ
−|J |).γ ≥ 1

2
(8)

Let α = (1− m∨∧m∨
q).(1− m∨∧qsq1

q).ε.γ, then equation (6) leads to the following statement

Pr[(w ,H•
1) ∈ S ′βilq, j lq

] = Pr[(w ,H•
1) ∈ S ′].Pr[(w ,H•

1) ∈ S ′βilq, j lq
|(w ,H•

1) ∈ S ′]≥ α (9)

The oracleH•
1 can be written as a pair(H̃1,hi lq, j lq), whereH̃1 corresponds to the answers for all the

queries to oracleH•
1 except the queryQβilq, j lq

whose answer is denoted ashi lq, j lq . We define the set
Ωβilq, j lq

as follows:

Ωβilq, j lq
= {(w ,(H̃1,hi lq, j lq)) ∈ S ′ s.t. Prhilq, j lq

[(w ,(H̃1,hi lq, j lq)) ∈ S ′βilq, j lq
]≥ δ−α}

For δ = 2α and according to the splitting lemma defined in [16], the following statements hold

∀ (w ,(H̃1,hi lq, j lq)) ∈ Ωβilq, j lq
, Prhilq, j lq

[(w ,(H̃1,hi lq, j lq)) ∈ S ′βilq, j lq
]≥ α (10)

Pr[(w ,(H̃1,hi lq, j lq)) ∈ Ωβilq, j lq
|(w ,(H̃1,hi lq, j lq)) ∈ S ′βilq, j lq

]≥ α
δ

=
1
2

(11)

Assume that eventE1 occurs and that the successful execution(w1,(H̃1
1 ,h1

i lq, j lq)) is in S ′J . Let E2

be the event that algorithmA• obtains, for some last-query indexβ1
i lq, j lq , a successful execution

(w1,(H̃1
1 ,h2

i lq, j lq))∈Ωβ1
ilq, j lq

such thath2
i lq, j lq 6= h1

i lq, j lq , after invokingt2 times adversaryA◦, with fixed

(w1, H̃1
1) and randomly chosenhi lq, j lq . In the particular case wheret2 = (α− 1

q)−1, the following
holds

Pr[E2] = 1− (1− (α− 1
q
))t2 ≥ 1−e−1 >

3
5

(12)

Consider(w1,(H̃1
1 ,h1

i lq, j lq)) and(w1,(H̃1
1 ,h2

i lq, j lq)), the two successful executions of the attack ob-
tained by algorithmA• if eventsE1 andE2 occur. For the two considered executions, the random
tapesw are identical, whereas the answers of the random oracleH•

1 to the queries of adversaryA◦

are identical only until the queryQβ1
ilq, j lq

.

Let σ1
f = ([x1

i, j]
m1

i
j=1]

m1

i=1,Y
1,Z1) andσ2

f = ([x2
i, j]

m2
i

j=1]
m2

i=1,Y
2,Z2) be the signatures forged by adversary

A◦ through the two considered successful executions respectively. With probability greater than
1

∑m∨
l=1 l !(m∨

l) , we havem1 = m2 = m and m1
i = m2

i = mi (i = 1, . . . ,m). In this case, the following

statements hold

1. x1
i, j = x2

i, j (j = 1, . . . ,mi andi = 1, . . . ,m)
2. h1

i, j = h2
i, j (for j 6= j lq andi 6= i lq) andh1

i lq, j lq 6= h2
i lq, j lq

The fact thatσ1
f andσ2

f are valid ring signatures leads to the equalitye(P,Y2−Y1) = τ
h1

ilq, j lq
−h2

ilq, j lq

i lq, j lq .

With probability greater than 1/qm∨∧m∨
0 , we haveτ•i•, j• = τi lq, j lq . In this case, note that adversaryA◦

does not make a query to oracleCredGenon assertionAl•i•, j•,1
(eventEcred does not occur). This case

leads to the equalityτi lq, j lq = e(P,ab·P), and soY2−Y1 = (h1
i lq, j lq − h2

i lq, j lq) · (ab·P). Thus, with

probabilityPr[A• wins], algorithmA• succeeds to obtainab·P by computing the quantity(h1
i lq, j lq −

h2
i lq, j lq)

−1 · (Y2−Y1). From statements (7), (8), (11) and (12), we have AdvA• = Pr[A• wins] ≥
9

100qm∨∧m∨
0

. 1
∑m∨

l=1 l !(m∨
l) .

For q≥ Max{2m∨∧m∨,2m∨∧qsq1} andε ≤ 32(q1 +1−m∨∧m∨)/q, the running time of adversary
A• is such that the following holds

tA• = (t1 + t2).tA◦ = (
γ
α

+
1

α−1/q
).tA◦ ≤ (

4
ε

+
32(q1 +1−m∨∧m∨)

ε
).tA◦ ≤ 32q1 +4

ε
.tA◦

