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Abstract— We analyze the sum capacity of multicell wireless
networks with full resource reuse and channel-driven oppor-
tunistic scheduling in each cell. We address the problem of
finding the co-channel (throughout the network) user assignment
that results in the optimal joint multicell capacity, under a
resource-fair constraint and a standard power control strategy.
This problem in principle requires processing the complete co-
channel gain information, and thus, has so far been justly
considered unpractical due to complexity and channel gain
signaling overhead. However, we expose here the following key
result: The multicell optimal user scheduling problem admits
a remarkably simple and fully distributed solution for large
networks. This result is proved analytically for an idealized
network. From this constructive proof, we propose a practical
algorithm that is shown to achieve near maximum capacity for
realistic cases of simulated networks of even small sizes.

I. INTRODUCTION

In wireless networks featuring multiple simultaneous trans-
mission links (cellular or ad-hoc), there exists a well known
trade-off between the reuse of spectral resource across these
links and the interference created to one another by co-channel
transmissions. Power control strategies were proposed to limit
interference effects by targeting a given signal-to-interference
ratio (SIR) [1], [2] or a received signal power-level [3], leading
to a truncated channel gain inversion. Combining power con-
trol with cell diversity was subsequently shown to increase the
number of supported users in the uplink [4]. Recently proposed
resource allocation techniques [5], [6], [7], [8], [9] attempt
to mitigate this problem by exploiting directional antennae,
sectorization or clever location-dependent power transmission
profiles to reduce the interference. However, to fully benefit
from all degrees of freedom provided by the multi-user fading
channel, a more promising solution lies in the concept of co-
channel user scheduling. In this setting, the assignment of the
users to the spectral resource is done not just to maximize the
capacity of each individual cell [10], but rather to maximize
the capacity of all links and cells in a joint fashion, thus giving
rise to an extension of the concept of multi-user diversity to
a full network.

In principle the complexity of the above problem is high: the
number of degrees of freedom is governed by the number of
cells � the number of users per cell � the number of possible
scheduling slots to which a user can be assigned. Additionally,
it can be shown easily that the co-channel scheduling problem
makes sense only if some form of power control is used. In

this paper, we first formulate the co-channel user scheduling
problem for an arbitrary network given the complete network-
wide co-channel gain information and a standard power control
rule (gain inversion-based power control). Next, we propose
an idealization for a large network coined interference-ideal
network, that can be exploited to simplify the problem formu-
lation. We then obtain the following striking results:

� For interference-ideal networks, maximum network ca-
pacity can be reached by using a low-complexity fully
distributed scheduling protocol, based on local channel
gains. This result admits a theoretical constructive proof
which we further exploit to propose a multicell schedul-
ing algorithm for realistic (non-ideal) networks.

� For fast-fading, the algorithm is a generalization of the
single cell maximum capacity scheduler [10] to the mul-
ticell case. As a result, per-cell throughput maximization
and multicell interference avoidance are shown to go hand
in hand and multi-user diversity scheduling can also be
throughput optimal in a multicellular scenario.

From the analysis above we derive a practical co-channel
scheduling algorithm that can trade-off resource fairness for
system capacity. These results have applications in cellular/ad-
hoc networks with interference-limited transmission. In this
paper we test the algorithms over finite-size non-ideal cellular-
type networks and show the throughput gains over a non-
coordinated co-channel scheduler in the presence of interfer-
ence.

II. NETWORK CAPACITY MODEL

Consider a multicell system with � access points (AP)
communicating with � user terminals (UT) in each cell. We
consider the downlink in which the AP sends data to the UT,
but the results presented in this paper can be generalized to
the uplink. We assume a multiple access scheme in which
spectral resource is orthogonally divided into units called
(e.g. code-, time-, frequency- etc.) slots. Slot assignment
occurs simultaneously in all cells and is used to separate the
transmissions to the users of any given cell. We enforce �-
th order resource fairness, where � � � � � . This means
that a scheduling frame consists of � slots assigned to �
distinct users per cell. Note that this does not necessarily yield
throughput fairness, even with � � � , as users may not enjoy
an equal throughput due to local channel conditions. Moreover,



because of concurrent transmissions in all cells in any one slot,
an assigned user “sees” interference from all co-channel cells.

A. Signal Model

To preserve light notation we focus on the single antenna
case. For a user �� in cell �, the downlink is a typical
interference channel [11], the received signal for which is
given by
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where ��� is the signal from the serving AP � and 	�� is
additive white Gaussian noise. The signal to interference-plus-
noise ratio (SINR), � is given by,
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If transmit power used by an AP to serve �� is ��� , we
have � ���� �

� � ��� . Note that ����� � �
� reflects the

composite channel gain possibly including fast-fading.

B. Power Control

As is seen later, power control plays a key role in en-
abling the gains of network coordination. We assume each
AP has a peak transmission power constraint, ���� and a
multiplicative power control factor � 
 � � � is used to
adjust the transmitted power such that ��� � ������� . The
AP transmit power is adjusted in order to achieve a target
received power �� at the receiver. If it is not achievable, the
AP transmits at full power. Assuming each user can measure
and communicate back the power received from the serving
AP, ��� � 	�
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. But, since there is a peak power

constraint ���� , � is upper bounded by one:
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We point out here that the capacity optimal scheduling policy
should be jointly optimized with the power control policy.
Such issues are, however, beyond the scope of this paper and
will be addressed in a later paper.

Power control setting: Depending on the value of � � and
the intra-cell channel gain, a user will be receiving in full
(� � �) or reduced (� 
 �) power mode. We consider three
network scenarios. (1) fully power controlled (FPC) network:
All users achieve �� after power control. (2) mixed power
controlled (MPC) network: Only a fraction of users achieve
��. (3) no power controlled (NPC) network: � � � for all
users.

III. THE CO-CHANNEL USER MATCHING PROBLEM

We assume that channel gains do not vary over the schedul-
ing frame duration which is sized in accordance with the co-
herence period of the channel. Under the �-th order resource
fairness constraint, the co-channel user matching problem

consists in selecting � users in each cell and assigning these
users to � slots so as to optimize the system utility function
(joint capacity). To facilitate the formulation of the problem,
we state the following definitions:

Definition 1: A scheduling policy � is a bijective mapping
of the subset ��, consisting of � users chosen from the set
of all users in cell �, onto � the set of slots, �� 	 �� �� �.

Definition 2: A scheduling vector I ��� contains the set of
users scheduled in slot � across all cells (based on �):
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where 
I ����� � �
���
� is the user scheduled during slot � in

cell �. Note that because � is a bijection, scheduling vectors
are element-wise disjoint, I �
�

�
I ��� � � 
 � �� �. The

scheduling vector is the ensemble of users which interfere
with each other and thus it determines the sum capacity for
slot �.

Definition 3: A scheduling matrix � is a �-column matrix
composed of scheduling vectors given by the scheduling policy
�.

� �
�
I ��� I ��� 	 	 	 I ���

�
�

This matrix describes the complete ordering of all users during
one frame.

A. System Performance

The SINR for users scheduled in slot � will depend on the
scheduling vector I ���. We can express the SINR in cell �
as
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Assuming an ideal link adaptation protocol, the per cell
capacity in slot � can be expressed in bits/sec/Hz/cell using
the Shannon capacity,
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The network capacity of the system is a function of the overall
scheduling matrix � given by
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B. Round Robin Scheduling

A standard approach for resource fair scheduling is round
robin (RR) in which users are given slots turn by turn in each
frame. Letting � be the set of all scheduling matrices, the
network capacity for RR is
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C. Optimal Co-channel Scheduling

On the other hand, the scheduling policy for optimum
network capacity (4) can be stated as
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As �� gives the optimal network capacity, we have in general:
����
 � �		. Inequality will be strict in most cases, thus
showing the gain of coordinated networks over uncoordinated
ones.

Multicell scheduling gain in NPC system: It is easy to
see that some scenarios will result in no gain at all as shown
below:

Lemma 1: For a no power control (NPC) network, the
network capacity gain associated with multicell scheduling is
zero.

Proof: With no power control ��� � � 
 ��, and thus
all BS transmit at same (maximum) power. Substituting this
in (2) we obtain
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which is independent of the choice of co-channel users in other
cells. It follows that the capacity will be the same no matter
which users are scheduled with each other.
This result indicates that the gain can be intuitively expected
to depend much on the degree of variability of channel and
power control coefficients across the network users, as well as
on the number of cells and users. We now turn to the issue of
finding the optimal �.

IV. OPTIMUM SUM CAPACITY SCHEDULING

As � is a discrete finite set, (6) is a non-linear combinatorial
optimization problem for which, finding optimal solutions is
NP-hard. ���� �� �
���, considering that a set of � schedul-
ing vectors can be ordered in �� ways without changing
the network capacity. Even for a small network this method
remains prohibitive: for � � � and � � �, ��� � ���� ����.
Collecting and processing all path gain information within
the coherence time will pose significant signaling and delay
problems. In order to find a distributed multicell scheduling
algorithm instead, we introduce a simplified model for network
capacity used to later approximate the actual capacity.

A. Interference-Ideal Networks

Due mostly to the large number of interference sources
adding up at the receiver, we can offer a simpler model for
interference in large full reuse networks. We define the concept
of an interference-ideal network as one in which, for any
cell user, the total received interference is independent of its
location in the cell. Mathematically, a network is interference-
ideal if, for any user �� and cell �:
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where � does not depend on the location of ��. Fortunately,
the interference-ideal network is a good model for a full reuse
network with a large number of cells: We have, due to the
interference channel gain and the power control coefficients
being uncorrelated:
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and for a large � , due to the law of large numbers,
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where � can be thought of as the mean channel gain from an
interferer to any user position. The value of � will naturally
depend on the distribution of interferers and the channel
statistics but, as will be seen, this value need not be known.
Moreover, variation of the interference from the cell center
to the cell boundary in a dense network can be shown to be
quite small [12] and from an algorithmic design point of view,
we can consider that all users get the average channel gain �
from each AP.

B. Optimum Scheduling in Interference-Ideal Networks

We characterize the solution to the optimal network schedul-
ing problem in an interference-ideal network in an FPC
scenario. Using (8) and (1) we can rewrite (2) as
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The network capacity will be given by
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We define a vector U��, containing the � users of �� ordered
in descending order of intra-cell channel gains,

U��� 
���� � � � ���� � � � �����
�


where ������� � � � � � ��	���� � � � � � ��
����. We
now present the following result:

Theorem 1: Let � �� 
U� � � � �U� � � � �U� ��� and
��� �
 be the scheduling matrix obtained by applying any
column-wise permutation on ��. Then, for an interference-
ideal network, ����
 is an optimal scheduling matrix, �� for
the problem (6).

Proof: See Appendix.
Based on Theorem 1 an optimal scheduling policy is for each
cell to rank its users by, say, decreasing order of channel
gain and assign the best � users to the � available slots,
regardless of the channel gains in other cells. As co-channel
users are matched based on the rank of their channel gain, we
call this scheduling policy Power Matched Scheduling (PMS).



PMS is completely distributed as local channel gain is the
only scheduling criteria. Note that a side-effect of the policy
is to group users with similar channel quality levels, possibly
creating an unfair service.

V. MULTI-USER DIVERSITY AND FAIRNESS

Interestingly, when we choose � � � (no resource fairness),
Theorem 1 leads to scheduling the user with the best channel
gains in each cell. This can be interpreted as a generalization of
multi-user diversity scheduling to the multicell case. Clearly,
for � � � there is an unfair repartition of interference
among the different slots with best users getting also the
least interference. Thus, network capacity is optimized at the
expense of throughput fairness which is reasonable from an in-
formation theoretic point of view and extends the well-known
capacity/fairness trade-off known in single cell scenarios [10],
[13]. Notice that � can be selected (between � and � ) by
the service provider to vary the resource fairness/throughput
trade-off. For � � � only multi-user diversity gain is obtained
without regard for resource fairness, while � � � provides
full resource fairness at the cost of capacity.

VI. NUMERICAL RESULTS

The performance of PMS is compared with RR through
Monte Carlo simulations under a full resource fairness con-
straint (� � � ). An 1800 MHz hexagonal cellular system
with 1 km. radius cells is considered, with 30 users/cell
randomly spread according to a uniform distribution. Both
inter-cell and intra-cell AP-UT links are based on the COST-
231 [14] path loss model including zero mean lognormal
shadowing with a standard deviation of 10 dB and fast-fading
� �� ��
 �
. �� corresponds to an SNR target of 30 dB and
���� � �W. These parameters result in an MPC network
which serves to compare the schemes in a realistic setting.

For PMS, the scheduling matrix is given by Theorem 1
and, in accordance with (5), RR is modeled by selecting a
random permutation of the scheduling matrix for each frame.
The comparison of the two scheduling policies is represented
by the Network Capacity Gain � , given by � � �����

���
. We

show traces of network capacity obtained with � � � and
� � �� in figs. 1 & 2 respectively. As the number of cells
increases, interference averaging reduces variation in network
capacity yielding an increase in gain. As expected, PMS
outperforms RR in all cases and moreover, the gain increases
with system size (fig. 3). Moreover, the gain is greater in the
presence of both shadowing and fast-fading. This leads to the
conclusion that increase in system size, as well as greater
channel variation, improves performance.

VII. CONCLUSION

We address the problem of multicell scheduling for wireless
networks. We show that large gains are obtained from inter-
cell coordination due to the inter-cell interference variability
that stems from power control and fading. We show that the
optimal scheduler can be efficiently approximated by a fully
distributed multicell scheduler. In the optimal scheduler each

cell ranks its users according to decreasing channel gains.
The multi-cell scheduler is also consistent with maximizing
the capacity of each cell independently through multi-user
diversity.
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Fig. 1. Trace of network capacity values for 3 cells and 30 users per
cell. Independent channel realizations based on shadowing and fast-fading
are generated on a frame by frame basis.

APPENDIX

PROOF OF THEOREM 1
We prove the optimality of �� by first showing that it is valid for

� cells and two slots. This is then extended to � slots.
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Lemma 2: For an arbitrary number of cells � and two slots, let
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The optimal scheduling matrix for (6), �� � ����� .
Proof: We show that interchanging users in � � � cells will

result in either no change or a decrease in network capacity (� � �
will result in same capacity). Without loss of generality let these
be the first � cells. We employ lighter notation by letting ����

represent the channel gain between user scheduled in slot � � �	 �
and it’s serving AP 
. Capacity before the swapping is given by
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and after the swap
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we need to show
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Fortunately, it can be shown that the differential of ����	 is negative
[12], making it a decreasing function. Thus ����� � 
. This proves
that �� � �����.
Next, we define an operator ������	 which orders the users in
columns (slots) � and � of the scheduling matrix in decreasing order
of channel gain.
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where ���	 �	 	 �
��� obtained through
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 ��
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Lemma 3: For an arbitrary scheduling matrix �, ��������		 �
���	

Proof: As only columns � and � are manipulated, the capacity
due to other columns remains unchanged. From Lemma 2, the
capacity of two slots arranged in decreasing order of channel gains
will be more than when they are arranged in any other fashion. Thus,
��������		 � ���	.

Lemma 4: For an arbitrary scheduling matrix �

�	���	 � � � ���	 � � � �������	 � � � �����������		 � �� �
Proof: From Lemma 3, the capacity of the scheduling matrix

after each � operation will be greater than the previous. The
successive 	�	���

�
� operations will result in the perfectly ordered

matrix ��.
Since there is an increase in capacity at every step, ����	 � ���	.
This concludes the proof.


