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ABSTRACT

We consider p users in a DS-CDMA system operating asyn-
chronously in a multipath environment. Oversampling w.r.t. the
chip rate is applied to the cyclostationary received signal and
multi-antenna reception is considered, leading to a linear multi-
channel model. Channels for different users are considered to
be FIR and of possibly different lengths. We consider an indi-
vidualized linear MMSE receiver for a given user, exploiting its
spreading sequence and timing information. The blind determina-
tion of the receiver boils down to the blind channel identification.
We explore blind channel identifiability requirements. Sufficiency
of these requirements is established and it is shown that if zero-
forcing conditions can be satisfied, then the CDMA channel (and
hence the receiver) is identifiable with probability 1. It is also
shown that linear MMSE receivers obtained by different criteria
(including a new one) have the same identifiability requirements
asymptotically in SNR.

1. INTRODUCTION AND PREVIOUS WORK

The search for blind receivers for DS-CDMA systems kicked off
with the pioneering work of [1], which is based upon a constrained
minimum output energy (MOE) criterion. The constrained MOE
receiver constrains its inner product with the spreading sequence
matched filter to be fixed, thus restricting the optimization prob-
lem to within the constrained space. A constrained optimization
scheme was proposed in [2] which turns out to be the extension
to multipath channels of [1]. In this scheme, the receiver’s out-
put energy is minimized subject to the distortionless constraint.
Connections with the Capon philosophy were drawn in that pa-
per. The receivers mentioned above can be shown to converge
asymptotically (SNR! 1) to the zero-forcing (ZF) or decorre-
lating solution. Direct estimation of the MMSE receiver was in-
troduced in [3] following the observation that the MMSE receiver
lies in the signal subspace. The MMSE receiver constrained to
signal subspace (which is essentially the same as the MMSE) in
the case of channels longer than a symbol period was investigated
in [4], where a singular-value decomposition (SVD) was used to
determine the orthogonal subspaces. The channel estimate in this
work was obtained as a generalization to longer delay spreads of
the subspace technique originally proposed in [5]. Identifiability
issues under long delay spread conditions were however not elab-
orated upon. Moreover, the schemes mentioned above have high
complexity since an estimate of subspaces is required.
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The purpose of this paper is to give the FIR channel identifiabil-
ity conditions for a DS-CDMA system with users having possibly
unequal channel lengths (even longer than a symbol period), and to
show the sufficiency of these conditions. It is also shown that lin-
ear receiver algorithms related to Capon’s method [2] [6], and the
directly estimated MMSE receiver [3] have the same identifiability
requirements.

2. MULTIUSER DATA MODEL

The p users are assumed to transmit linearly modulated signals
over a linear multipath channel with additive Gaussian noise. It
is assumed that the receiver employs L antennas to receive the
mixture of signals from all users. The signal received at the lth
sensor can be written in baseband notation as

y
l(t) =

pX
j=1

X
k

aj(k)g
l
j(t� kTs) + v

l(t), (1)

where aj(k) are the transmitted symbols from the user j, Ts is
the common symbol period, glj(t) is the overall channel impulse
response between jth user and the lth antenna. Assuming the
faj(k)g and fvl(t)g to be jointly wide-sense stationary, the pro-
cess fyl(t)g is wide-sense cyclostationary with period Ts. The
overall channel impulse response for the jth user’s signal at the lth
antenna, glj(t), is the convolution of the spreading code cj(s) and
hlj(t), itself the convolution of the chip pulse shape, the receiver
filter and the actual channel (assumed to be FIR) representing the
multipath fading environment. This can be expressed as

g
l
j(t) =

m�1X
s=0

cj(s)h
l
j(t� sT ), (2)

where T is the chip duration. The symbol and chip periods are
related through the processing gain m: Ts = mT . Sampling the
received signal at R times the chip rate, we obtain the wide-sense
stationary mR � 1 vector signal yl(k) at the symbol rate. We
consider the overall channel delay spread between the jth user and
all of the L antennas to of length mjT . Let kj be the chip-delay
index for the jth user: hlj(kjT ) is the first non-zero R � 1 chip-
rate sample of hlj(t). The parameter Nj is the duration of glj(t) in
symbol periods. It is a function of mj and kj . We consider user 1
as the user of interest and assume that k1 = 0 (synchronization to
user 1). Let N =

Pp

j=1Nj . The vectorized oversampled signals
at all L sensors lead to a discrete-time mLR � 1 vector signal at
the symbol rate that can be expressed as



y(k) =

pX
j=1

Nj�1X
i=0

gj(i)aj(k � i) + v(k)

=

pX
j=1

Gj;NjAj;Nj (k)+v(k)=GNAN (k)+v(k), (3)
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and the superscript H denotes Hermitian transpose. For the user
of interest (user 1), g1(i) = (C1(i) 
 ILR)h1, and the ma-
trices C1(i) are shown in figure 1, where the band consists of
the spreading code (cH0 � � � c

H
m�1)

H shifted successively to the
right and down by one position. For interfering users, we
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Figure 1: The Code Matrix C1

have a similar setup except that owing to asynchrony, the band
in fig. 1 is shifted down kj chip periods and is no longer con-
incident with the top left edge of the box. We denote by C 1,
the concatenation of the the code matrices given above for user
1 : C1 = [CH

1 (0) � � �CH
1 (N1 � 1)]H .

3. CHANNEL IDENTIFICATION

3.1. MMSE-ZF Criterion

We stack M successive x(k) vectors to from the mLRM � 1
supervector

Y M(k)=TM (GN )AN+p(M�1)(k)+V M (k), (5)

where, TM (GN ) =
�
TM;1(G1;N1

) � � � TM;p(Gp;Np )
�

and TM (x) is a banded block Toeplitz matrix with M

block rows and
�
x 0n�(M�1)

�
as first block row

(n is the number or rows in x), and AN+p(M�1)(k)
is the concatenation of user data vectors ordered as
[AH

1;N1+M�1(k);A
H
2;N2+M�1(k) � � �A

H
p;Np+M�1(k)]

H . Let us
introduce the following orthogonal transformation:

T 1=
�
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1 0

�

ILR; T 2 =

2
4 I 0 0

0 C?
1 0

0 0 I

3
5
ILR;

(6)

where,C?
1 spans the orthogonal complement ofC 1 , the tall code

matrix given in figure 1. Then, the middle (block) row of the
block diagonal element of the matrix T 2 acts as a blocking trans-
formation for the signal of interest from all sensors. Note that
PTH

1

+ PTH
2

= I , where, PX = X(XHX)�1XH . This gives

us a possiblity of estimating the a1(k�d) contribution in T 1Y M

blindly. Consider the estimation erroreY (k) = [T 1 �QT 2]Y M (k), (7)

and the (IS and MA) interference cancellation problem settles
down to minimization of the trace of the matrix R

eY eY w.r.t. ma-
trix Q, which results in

Q =
�
T 1R

d
T
H
2

� �
T 2R

d
T
H
2

��1
, (8)

where Rd is the noiseless (denoised) data covariance matrix,
RY Y , with the subscript removed for convenience. The outputeY (k) can directly be processed by a multichannel matched filter
to get the symbol estimate â1(k � d), the data for user 1:

â1(k � d) = F
H
Y M (k) = h

H
1 (T 1 �QT 2)Y M(k), (9)

where, h1 = [h1H1 � � �hLH1 ]. An estimate of the channels

T 1

T 2

Y M (k)
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Q
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Figure 2: MMSE-ZF Receiver

G1(z) = (C1(z ) 
 ILR)h1(z ) can be obtained as a byproduct
of the interference cancellation scheme. Notice that the above
scheme is analogous to a MMSE-ZF equalizer for the single user
case with T 1 = diagf[0 I 0]g and T 2 block diagonal without
the middle (block) row in (6), which when employed in a multiuser
scenario is no longer capable of MAI suppression coming from the
middle block of Y M (k), unless a fair amount of data smoothing
is introduced. This corresponds to the two-sided linear prediction
approach of [7]. eY (k) corresponds to the vector of prediction er-
rors, and the covariance matrix of the prediction errors is given by

R
eY eY=T 1R

d
T
H
1 �T 1R

d
T
H
2

�
T 2R

d
T
H
2

��1
T 2R

d
T
H
1 .

(10)

From the above structure of the two-sided (or rather full-
dimensional) linear prediction problem, the key observation is that
the matrix R

eY eY is rank-1 in the noiseless case, enabling identi-
fication of the composite channel as the maximum eigenvector of
the matrix R

eY eY , since eY (k) = (CH
1 C1 
 ILR)h1~a1(k � d).

3.2. Relation with the Unbiased MOE Criterion

The unbiased MOE criterion proposed in [2] 1, which is a gener-
alization of the instantaneous channel case of [1], is in principle a
max/min problem solved in two steps with the minimization of the
unbiased MOE,

min
F :FH eg1=1

F
H
RY Y F )F =

1egH1 R�1
Y Y

eg1R
�1
Y Y eg1,

(11)

where, MOE(ĥ1) =
�eg1R�1

Y Y eg1��1 , and eg1 = TH
1
eh1, followed

by channel estimation by Capon’s method,

max
ĥ1:kĥ1k=1

MOE(ĥ1)) min
ĥ1:kĥ1k=1

ĥ
H

1

�
T 1R

�1
Y Y T

H
1

�
ĥ1,

(12)

1also known as the minimum variance distortionless response (MVDR)
approach: a particular instance of the linearly constrained minimum-
variance (LCMV) criterion.



from which, ĥ1 = Vmin(T 1R
�1
Y Y T

H
1 ). It can be shown that if

T 2 = T?
1 , then

T 1R
�1
Y Y T

H
1 =

�
T 1T

H
1

�
R
�1
eY eY

�
T 1T

H
1

�
, (13)

where,R
eY eY is given by (10), andQ, given by (8), is optimized to

minimize the estimation error variance. From this, we can obtain
ĥ1 as ĥ1 = Vmaxf

�
T 1T

H
1

��1
R

eY eY

�
T 1T

H
1

��1
g. In order to

evaluate the quality of the blind receiver obtained from the above
criterion, we consider the noiseless received signal (v(t) � 0).
There are two cases of interest:

3.2.1. Uncorrelated Symbols

In the absence of noise, with i.i.d. symbols, the stochastic
estimation of T 1Y from T 2Y is the stochastic estimation of
T 1TM (GN )A from T 2TM (GN)A with RAA = �2aI . Hence, it
is equivalent to the deterministic estimation of T HM (GN )TH

1 from
T H
M (GN )TH

2 : kT H
M (GN )TH

1 � T H
M (GN )TH

2 Q
Hk22 . Then,

given the condition

spanfTH
1 g \ spanfTM (GN)g = spanfTM(GN )e

0

dg
) spanfTM (GN )g � spanfTH

2 g � spanfeg1g
* TM (GN )e

0

d = TM(G1)ed = eg1 = TH
1 h1, (14)

and where, e
0

d and ed are vectors of appropriate dimensions with
all zeros and one 1 selecting the desired column in TM (GN ) and
TM (G1) respectively, we can write the channel convolution ma-
trix TM (GN ) as

TM (GN) = eg1e0Hd + TM (GN )P
e
0?

d

= [eg1 T
H
2 ]A, (15)

for someA. Then we can write

T H
M (GN )

�
TH
1 � TH

2 Q
H
�
=

e
0

dh
H
1 T 1T

H
1 +AH

� eg1TH
1

0
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�AH
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H
2
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QH

= e
0

dh
H
1 T 1T

H
1 +AH

1 egH1 TH
1 �AH

2

�
T 2T

H
2

�
QH .

(16)

Note that e
0H
d AH

i = 0; i 2 f1; 2g. This implies that the first term
on the R.H.S. of (16) is not predictable from the third. Therefore,
if the second term is perfectly predictable from the third, then the
two terms cancel each other out and R

eY eY turns out to be rank-1,

and ĥ1 =
�
T 1T

H
1

��1
Vmax

�
R

eY eY

�
.

3.2.2. Correlated Symbols

Given the conditions in (14), it still holds that
spanfT H

M (GN )TH
2 g = spanfP

e
0?

d

TM (GN )g. We can

write the received vector Y M (k), in the noiseless case, as

Y M (k) = TM (GN )A = TM (GN )e
0

da1(k � d) + T M
�A.
(17)

Now, the estimation of T 1Y in terms of T 2Y =
T 2TM (GN )A = T 2T M

�A is equivalent to estimation in
terms of �A.

]T 1Y jT 2Y
= T 1Y �[T 1Y

= T 1Y �
�
T 1R

d
Y Y T

H
2

��
T 2R

d
Y Y T

H
2

��1
T 2Y

]T 1Y j �A = T 1TM (GN)e
0

d~a1(k � d)

= T 1T
H
1 h1~a1(k � d)j �A. (18)

This results in,�
T 1R

�d
Y Y T

H
1

��1
= �

2
~a1(k�d)j �A

h1h
H
1 , (19)

The rank-1 results in a normalized estimate of the channel. It can
however be noted that the estimation error variance of the desired
symbol is now smaller (�2~a1(k�d) < �2a).

3.3. Channel Identification by Subspace Fitting

An extension of [5] to the longer (than a symbol period) delay
spread case can be made to identify the channel from the following
subspace fitting criterion:

min
eg1

kT H
M (G1)VNk

2
F =min

eg1

tr
n
T H
M (G1)VNV

H
N TM (G1)

o
,

(20)

where, VN denotes the noise subspace, or, by an SVD-free ap-
proach as

min
eg1

tr
n
T H
M (G1)R

�dTM (G1)
o
=min
kh1k=1

X
s

h
H
1

�
T 1;sR

�d
T
H
1;s

�
h1,
(21)

from where, ĥ1 = Vmin

�P
s T 1;sR

�dTH
1;s

�
, s is a delay andRd

is the denoised and appropriately regularized RY Y . The above
method always yields a unique channel estimate ĥ1 regardless
of the fNjg,8j, once the spanfT 1;sg does not intersect with all
shifted versions of egj ,8j 6= 1.

4. IDENTIFIABILITY CONDITIONS

4.1. MMSE-ZF and Subspace Method

Continuing with the noiseless case, or with the denoised version
ofRY Y , i.e., Rd = �2aTM(GN )T H

M (GN ),

min
F :FH eg1=1

F
H
R
d
Y Y F = �

2
a, i� F

HTM (GN ) = e
0H
d ,

(22)

i.e., the zero-forcing condition must be satisfied. Hence, the unbi-
ased MOE criterion corresponds to ZF in the noiseless case. This
implies that MOE(êg1) < �2a if êg1 6� eg1. We consider that:

(i). FIR zero-forcing conditions are satisfied, and
(ii). spanfTM (GN )g \ spanfTH

1 g = spanfTH
1 h1g.

The two step max/min problem boils down to

max
ĥ1:kĥ1k=1

ĥ
H

1

�
T 1T

H
1

��1
T 1TMP

?
TH
M
TH
2

T H
M T

H
1

�
T 1T

H
1

��1
ĥ1 ,
(23)

where, P?
X = I�X(XHX)�1XH . Then identifiability implies

that TMP?
TH
M
TH
2

T H
M = TH

1 h1h
H
1 T 1 = eg1egH1 , or

P
?
TH
M
TH
2

T H
M (GN ) = P

e
0

d

T H
M (GN ), (24)

Condition (i) above implies that e
0

d 2 spanfT H
M (GN)g. From

condition (ii), since TH1 h1 = TM (GN )e
0

d, we have

spanfTM (GN )TH
2 g = spanfP?

e
0

d

T H
M (GN )g

spanfT H
M (GN)g=spanfT H

M (GN )TH
2 g�spanfe

0

dg (25)



from which, T H
M (GN ) = PTH

M
TH
2

T H
M (GN ) + P

e
0

d

T H
M (GN ),

which is the same as (24). The smoothing factor M required to
satisfy condition (i) is given by

M �MZF =

�
N � p

(mLR)e� � p

�
, (26)

while the condition (ii) can be restated as the following dimen-
sional requirement:

rankfTM (G1:p)g+ rankfTH
1 g 6 rowfTM(G1:p)g+ 1,

(27)

from where, under the irreducible channel and column reduced
conditions [6], it can be shown that the receiver lengthM is related
to other parameters as

M �M =

�
N � p+m1LR� 1

(mLR)e� � p

�
, (28)

where, (mLR)e� = rankfGNg is the effective number of chan-
nels.

4.1.1. Relation with Twosided Linear Prediction

In the case where the middle block row of T 2 is removed (6), the
problem reduces to twosided linear prediction [7], and the matrix
R

eY eY is still rank-1 for M � 2M+N1, where M is given by (26).
This holds if N1 < Nj;8j 6= 1. However, a mixture of channels
of different users’ channels is obtained if N1 is not the smallest
Nj .

4.2. Direct Estimation of MMSE Receiver

It can be noted that the MMSE and MOE approaches are equiva-
lent under the unbiased constraint. And the unbiased MMSE re-
ceiver is the best among linear receivers in that it results in the min-
imum error probability. Following the observation that the MMSE
receiver lies in the signal subspace [3], the MMSE receiver,F , can
be estimated from

min
F
F
H
�
�VNV

H
N +RY Y T 2T

H
2 RY Y

�
F , (29)

where, VN is the noise subspace and � is an arbitrary scalar. The
first term in parentheses can also be replaced by R�d

Y Y resulting
in an SVD-free approach. The above relation can be interpreted
as the MMSE receiver constrained to the intersection of the signal
subspace with T H

1 , which being of dimension 1, gives the MMSE
receiver uniquely, once the identifiability conditions of section 4.1
are satisfied.

Consider the noiseless case (v(t) � 0). The second term in (29)
is nulled out if the zero-forcing constraint FHT (GN ) = e

0H
d is

satisfied, while the first translates into the condition (ii) of section
4.1. Hence, the same set of identifiability conditions hold for the
MMSE receiver obtained by this method.

5. SIMULATIONS AND CONCLUDING REMARKS

We presented relationships between different asymptotically
equivalent receiver algorithms related to the unbiased MMSE cri-
terion and derived identifiability conditions for these schemes. Al-
though these receivers are obtained from different optimization cri-
teria, they can all be shown to be equivalent to the unbiased MOE

approach. Furthermore, they share the same identifiability condi-
tions. Once zero forcing conditions can be satisfied in the noise-
less (denoised) case, the receivers can be identified with probabil-
ity 1. Channel identification by subspace fitting requires the same
smoothing factors as the MMSE-ZF scheme. Output SINR per-
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Figure 3: Output SINR and Channel Estimation Performance

formance of different receiver algorithms in a near far scenario is
compared in fig. 3(a) for 5 users with a processing gain of 16,
where it can be seen that the results are comparable. A single an-
tenna (L = 1) and no oversampling (R = 1) are employed in these
simulations with 200 data samples. The directly estimated MMSE
receiver performs slightly better than the MMSE-ZF receiver. A
flooring effect exists for both due to the fact that the length of
the data record is not enough to estimate bRY Y accurately. Semi-
blind techniques along with exploitation of the finite symbol al-
phabet can be used to alleviate this effect [6]. In fig. 3(b) we show
the quality of channel estimate obtained from the MMSE-ZF al-
gorithm from the denoised and the non-denoised data covariance
matrices. It can be seen that denoising improves significantly, the
quality of the channel estimate.
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