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ABSTRACT

Amplitude Modulation(AM) and frequency modulation(FM)
have been well defined and studied in the context of communica-
tions systems[10]. Borrowing upon these ideas, several researchers
have applied AM-FM[6, 7, 8, 9] modeling for speech signals with
mixed results. These techniques have varied in their definition and
consequently the demodulation methods used therein. In this pa-
per, we carefully define AM and FM signals in the context of ASR.
We show that for a theoretically meaningful estimation of the AM
signal, it is necessary to decompose the speech signal into several
narrow spectral bands as opposed to the previous use of the speech
modulation spectrum[6, 7, 8, 9], which was derived by decom-
posing the speech signal into increasingly wider spectral bands
(such as critical, Bark or Mel). Due to the Hilbert relationships,
the AM signal induces a component in the FM signal which is
fully determinable from the AM signal[1, 3]. We present a novel
homomorphic filtering technique to extract the leftover FM signal
after suppressing the redundant part of the FM signal. The esti-
mated AM message signals are downsampled and their lower DCT
coefficients are retained as speech features. These features carry
information that is complementary to the MFCCs. A Tandem[4]
combination of these two features is shown to improve recognition
accuracy.

1. INTRODUCTION

In past several years, significant efforts have been made to de-
velop new speech signal representations which can better describe
the non-stationarity (spectral dynamics) inherent in the speech sig-
nal. Some representative examples are temporal patterns (TRAPS)
features[4, 7] and the several modulation spectrum related techniques[6,
7, 8, 9]. In TRAPS technique, temporal trajectories of spectral en-
ergies in individual critical bands over windows as long as one
second are used as features for pattern classification.

The notion of the amplitude modulation (AM) and the fre-
quency modulation (FM) were initially developed for the commu-
nication signals[10]. In theory, the AM signal modulates a narrow-
band carrier signal (specifically, a monochromatic sinusoidal sig-
nal). Therefore to be able to extract the AM signals of a wide-band
signal such as speech (typically 4KHz), it is necessary to decom-
pose the speech signal into narrow spectral bands. We follow this
approach in this paper as opposed to the previous use of the speech
modulation spectrum [6, 7, 8, 9] which was derived by decompos-
ing the speech signal into increasingly wider spectral bands (such
as critical, Bark or Mel). Similar arguments from the modulation
filtering point of view, were presented by Schimmel and Atlas[2].

In their experiment, they consider a wide-band filtered speech sig-
nal �������
	��
������������� , where �
����� is the AM signal and ������� is the
broad-band carrier signal. Then, they perform a low-pass modula-
tion filtering of the AM signal �
����� to obtain ����������� . The low-pass
filtered AM signal � ��� ����� is then multiplied with the original car-
rier ������� to obtain a new signal �������� . They show that the acoustic
bandwidth of �������� is not necessarily less than that of the original
signal ������� . This unexpected result is a consequence of the sig-
nal decomposition into wide spectral bands that results in a broad-
band carrier[2]. We realise that this is not only a serious problem
for modulation filtering[2], but also for modulation spectrum anal-
ysis (which is used as feature vector for ASR and is the topic of
this paper).

Over the past few decades, pole-zero transfer functions that are
used for modeling the frequency response of a signal, have been
well studied and understood [5]. In this work we will denote them
by “F-PZ”. Lately, Kumaresan et al.[1] have proposed to model
analytic signals[10] using pole-zero models in the temporal do-
main (denoted by T-PZ to distinguish them from the F-PZ). Along
similar lines, Athineos et. al.[7] have used the dual of the linear
prediction in the frequency domain to improve upon the TRAP
features.

In [3], we have stated and proved several interesting time-
frequency dualities for the analytic signals. These properties form
the basis to develop “meaningful” AM-FM decomposition of the
speech signal. There are two main contributions of this paper.
Firstly, we develop a theoretically consistent AM signal analysis
technique as compared to the previous ones[6, 8, 9]. We show that
a “meaningful” AM signal estimation is possible only if we de-
compose the speech analytic signal into several narrow-band filters
which results in narrow-band carrier signals. Secondly, we present
a novel technique to extract the unique FM signal via homomor-
phic filtering route. We use the lower modulation frequency spec-
trum of the downsampled AM signal, as a feature vector (termed
FEPSTRUM). The Fepstrum provides complementary information
to the MFCC features and a Tandem[4] combination of the two
features provides a significant ASR accuracy improvement over
several other features.

This paper is divided into four sections. In Section 2, we de-
scribe the dual properties of the pole-zero models and the associ-
ated notation. In Section 3, the FM signal extraction is presented.
Through examples, we show how the bandwidth of the analysis fil-
ter influences the estimated AM signal. In Section 4, experimental
results are described followed by a conclusion in Section 5.



2. POLE-ZERO MODELS IN THE TEMPORAL DOMAIN

We recall that given a real periodic1 signal � ����� with period T sec-
onds, its analytic version � ����� is given by,� ����� 	 ������� ������������ (1)

where
�� ����� denotes the Hilbert transform of � ����� . It has been

shown in [3], that any arbitrary analytic signal can be expressed
as a ratio of poles and zeros (T-PZ).

� ����� 	 ���
	���
���� � ������ ������� � 	 ����� ��! �"��� ���#�%$ � 	 �&�'� �
()* ��� ������+

*
	������ � (2)

where, � � and + � are the zeros inside and outside the unit circle
respectively. The poles $ � are guaranteed to be inside the unit
circle[3].

Let us now specify the dual analogues of three well known
properties which are,, Minimum-phase: Traditionally, minimum phase is a fre-

quency domain phenomenon. A frequency response (F-PZ)
is termed minimum-phase if all its poles and zeros are in-
side the unit circle. Similarly, a T-PZ is called T-MinP if all
its poles and zeros are inside the unit circle., All-pass: Traditionally, all-pass is a frequency domain phe-
nomenon. A frequency response, (F-PZ), is said to be all-
pass if its magnitude is unity at all frequencies. Similarly,
a T-PZ is called T-AllP if it has unity magnitude for �.-���0/213/ � ., Causality: Traditionally, causality is a time-domain phe-
nomenon. A signal ������� is said to be causal if it is non-zero
only for the �.465 . Similarly, we define a frequency re-
sponse to be F-causal if it is non-zero only for the 78495 .
Therefore, an analytic signal is F-causal.

With these definitions in place, we are ready to describe the de-
composition of an analytic signal � ����� into its T-MinP and T-AllP
part which will lead to its AM and FM parts. Therefore, reflecting
the zeros + � inside the unit circle, we get,

� ����� 	 ���
	���
:�;� � ��"��� ���#�<� � 	 ���'� ��  ����� �����=$ � 	 ����� �
()�"��� ���#�>�@?A+:B� 	��&�'� �C D&E F

T-MinP

(3)
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Our decomposition technique is based on the following lemma
whose proof can be found in our previous work[3].

Lemma 1 Given an analytic T-PZ signal � �����
	KJMLN"OQP
R � I�S NUT;VUW ��XJ#YN�OZP R � I\[ NHT VUW � X 	^] � �����
] 	 ��_ R � X , all of its poles and zeros are

within the unit-circle (i.e s(t) is T-MinP) if and only if its phase` ����� is the Hilbert transform of its log envelope acbedf] � �����
] .
1This is not a limitation as in short-time Fourier analysis, we implicitly

make the signal periodic with the base period equal to the g second long
windowed segment.

Therefore, using Lemma (1), � ����� can be expressed as follows,

� ����� 	 �'�
()����� ����+:B� �C D&E Fhji

	@k R � X"l �Qmk R � XC D&E F
T-MinP

	���n R � XC D&E F
T-AllP

(4)

where oqp is a constant, r ����� is the logarithm of the AM signal,�r ����� its HT and
�r������ �<s ����� is the phase signal and its derivative is

the FM signal. As
�r ����� can be determined from the log AM signalr������ 2, it forms the redundant information and hence is excluded

from the FM signal. Therefore,
sut ����� is the FM (instantaneous

frequency) signal of interest, where
t

denotes derivative.
The next step is to develop algorithms that can automatically

achieve the decomposition as in (4). Noting that the all-pole F-PZ
as estimated using classical linear prediction technique is guaran-
teed to be minimum phase, Kumaresan et. al. used the dual of lin-
ear prediction in the spectral domain (LPSD)[1], with sufficiently
high prediction order ’M’, to derive the T-MinP signal. The T-AllP
signal was obtained as the residual signal of the LPSD.

It is well know that the LP technique overestimates the peaks
and poorly models the valley. Moreover, the results are highly sus-
ceptible to the model order ’M’ whose actual value is not known.
Therefore, in this work, we use a non-parametric technique to es-
timate the AM signals. From (4), we note that avbwdx] � �����
]�	yr������ �avbwd
�Ho p � , where avbwd �Ho p � is a constant over the frame. Therefore
the logarithm of the absolute magnitude of the analytic signal in
each band is an estimate of the corresponding AM signal + a con-
stant term.

3. CARRIER SIGNAL (FM) EXTRACTION

Fig.1 illustrates the FM signal extraction through homomorphic
filtering. Consider a narrow band analytic signal �Az �����&1��{-!| 5�1�}%���~ . Our objective is to represent � z ����� as a product of a T-MinP
signal and a T-AllP signal as done in (4). The phase of the T-
AllP signal is the FM signal of interest. Let �w	 ������	3� � ���A$Z� �H����	���x�f�A�"���j] � z �����
] � . In fact �w	 ������	3� � ���A$Z� �H� � is the dual of the
well known quantity i.e. real cepstrum. The causality conversion
block in Fig.1 performs the following operation.�2�U� �\��	3� � �;�e$Z�=| ��~ 	�� G �e	 �'�"��	�� � �;�e$Q�%| ��~ (5)��-!|��w1�}�?w�x�>�&~���H� �\��	3� � ���A$Z�%| ��~ 	y�e	 �'�"��	�� � �;�e$Q�%| ��~� 	25�13}�?w����H� �\��	3� � ���A$Z�%| ��~ 	25��-%| }�?w� � �w1�}��>�&~
As
�2�H� �\��	3� � ���A$Z�%| ��~ is a causal sequence, its IFFT, ���A�
� � �2�U� ��������� 	� ����� �>� �� ����� is an analytic signal. In light of lemma (1), it can

be seen that, � �2�H� � ����� 	�	@� R � X�l � m� R � X is the T-MinP signal in
(4). Moreover, according to (4), T-AllP signal � ox���"� ����� that cor-
responds to the original signal ��z ����� can be obtained as,

� ox���"� ����� 	 ��z ������ ���H� ������� (6)

The unique FM signal can be obtained from � o0����� ����� as the deriva-
tive of its unwrapped phase. We have been experimenting with the

2Due to the HT relationship between the two
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Fig. 1. Carrier signal decomposition via homomorphic filtering.

signal � ox���"� ����� to gather an understanding of this new signal and
the ways in which it can be used as a feature that is suitable for
ASR. However, in this work, we have used only the AM modula-
tion spectrum as a feature and the work on FM signal inclusion in
under progress.
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Fig. 2. The AM signal derived using narrow-band filters

Please refer to [3] to find a description of the AM signal ex-
traction scheme. Fig.2 illustrates the case when we use narrow-
band filters to decompose the speech analytic signal, followed by
the AM signal estimation in each band. Second and third pane
shows the narrow band-pass filtered speech signals and their cor-
responding AM signals. We note that these AM signals are low
modulation frequency signals. The narrow band-pass filters used
have band-widths 160 Hz and 104 Hz respectively. Fig.3 illus-
trates the case where a broad-band filter (bandwidth 533 Hz) has
been used. For voiced speech, each pitch harmonic can be roughly
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Fig. 3. The AM signal derived using broad-band filters

seen as a monochromatic sinusoidal carrier signal. The spectrum
of the signal at the output of a broad-band filter will have several
pitch harmonics in it and therefore will violate the condition of
a narrow-band carrier signal. As can be noted in the Fig.3, the
pitch component manifests itself as sharp spikes in the AM signal.
Therefore a modulation spectrum of this AM signal will reflect the
pitch frequency as well, which is undesirable in the context of a
speaker independent ASR system. We present these arguments to
justify our choice of the non-overlapping narrow-band filterbank
instead of a critical, Bark or Mel-scale filterbank, in the Fepstrum
estimation.

4. EXPERIMENTS AND RESULTS

In order to assess the effectiveness of the fepstrum features, speech
recognition experiments were conducted on the OGI Numbers cor-
pus [11]. It consists of spontaneously spoken free-format con-
nected numbers over a telephone channel. The lexicon consists of
31 words.3. We used �e5 linearly spaced, non-overlapping rectan-
gular filters to decompose the speech analytic signal into narrow-
band signals of bandwidth �e5e5 Hz each. The AM signal is obtained
as the logarithm of the absolute magnitude of the narrow-band fil-
ter output. At this stage, the AM signal has the same sampling
frequency as the original speech signal ( ������� ). As can be noted

3with confusable words like nine, ninety and nineteen.



in the Fig2, the AM signals are low modulation frequency signals.
Therefore, we filter the AM signals through a low-pass filter of
cutoff-frequency �e5w5 Hz and then downsample them by a factor of� 5 . Long rectangular windows of size ��� ms were used to frame
the narrow band-pass filtered analytic signals. This was done to
ensure that we have sufficient number of samples after downsam-
pling the AM signal. We chose a rectangular shape of the window
to avoid any artificial tilt in the lower DCT coefficients. We then
retain its first � DCT coefficients (Fepstrum) that correspond to| 5�1��A5A~ Hz. Fepstrum sub-vector from each band are concatenated
together to form a vector of dimensionality �
5w5 ( � G �A5 ). We
perform a KL transform on this vector, followed by dimensional-
ity reduction to obtain a 60 dim. feature vector. These features
are then fed to a trained multi-layer perceptron (MLP) to obtain
phoneme aposteriors which are again KL transformed to obtain
27 dimensional Tandem-Fepstrum features4. Tandem[4] has been
shown to be an effective technique for combining different kind
of features. Fepstrum being a modulation spectrum carries infor-
mation that is complementary to the usual spectral envelope based
MFCC features. Therefore we have concatenated MFCC feature
with the Fepstrum-Tandem features.

Mel-frequency cepstral coefficients (MFCC) and their tempo-
ral derivatives along with cepstral mean subtraction have been used
as additional features. For comparison, four feature sets were gen-
erated:

1. [T-MFCC:] 27 dim. Tandem representation of MFCC
+ delta features.

2. [T-Fepstrum:] 27 dim. Tandem representation of Fepstrum
features

3. [Concat. MFCC+ (T-MFCC):] (27+39) dim. feature vector
which is a concatenation of the MFCC and Tandem-MFCC

4. [Concat. MFCC+ (T-FEPSTRUM):] (27+39) dim. feature
vector which is a concatenation of the MFCC and Tandem-
Fepstrum features.

All the above features were then used in a Hidden Markov Model
and Gaussian Mixture Model (HMM-GMM) based speech recog-
nition system that was trained using public domain software HTK
on the clean training set from the original Numbers corpus. The
system consisted of 80 tied-state triphone HMMs with 3 emitting
states per triphone and 12 mixtures per state. Table 1 indicates
the performance of these feature sets. T-Fepstrum features have
only the modulation frequency information and hence they per-
form slightly worse than the T-MFCC feature. However, as they
carry complementary information, their concatenation (MFCC+T-
FEPSTRUM) results in the lowest (4.1%) WER. For a fair compar-
ison, we compare this to a concatenation of the MFCC+ T-MFCC
features which has a WER of 4.6%. This is an encouraging result
and we are further working on the feature represenations that will
include the FM signal information in it. This may improve the
results further.

5. CONCLUSION

We have extended the work of Kumaresan[1] to develop a theoret-
ically sound AM-FM decomposition technique suitable for ASR
application. We point out to the deficiency in the previous use of
the modulation spectrum that was caused due to the use of the

4each dimension corresponds to a monophone which are 27 in number

Table 1. Word error rate (WER) in clean conditions

T-MFCC 5.2
T-FEPSTRUM 5.5
Concat. MFCC+ (T-MFCC) 4.6
Concat. MFCC+ (T-FEPSTRUM) 4.1

broad-band filters. A novel homomorphic filtering based algo-
rithm was presented to extract the FM signal of interest. Finally
we present a suitable representation of the AM signal in form of
the lower modulation frequencies of the downsampled AM signals
in each band. A concatenation of the MFCCs with the Tandem-
Fepstrum features achieves the lowest WER (4.1%). We are fur-
ther working on the representations of the extracted FM signal that
are suitable for ASR.
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