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Abstract

It is often acknowledged that speech signals contain short-term and long-term tem-
poral properties [15] that are difficult to capture and model by using the usual fixed
scale (typically 20ms) short time spectral analysis used in hidden Markov models
(HMMs), based on piecewise stationarity and state conditional independence as-
sumptions of acoustic vectors. For example, vowels are typically quasi-stationary
over 40-80ms segments, while plosive typically require analysis below 20ms seg-
ments. Thus, fixed scale analysis is clearly sub-optimal for “optimal” time-frequency
resolution and modeling of different stationary phones found in the speech signal.
In the present paper, we investigate the potential advantages of using variable size
analysis windows towards improving state-of-the-art speech recognition systems.
Based on the usual assumption that the speech signal can be modeled by a time-
varying autoregressive (AR) Gaussian process, we estimate the largest piecewise
quasi-stationary speech segments, based on the likelihood that a segment was gen-
erated by the same AR process. This likelihood is estimated from the Linear Predic-
tion (LP) residual error. Each of these quasi-stationary segments is then used as an
analysis window from which spectral features are extracted. Such an approach thus
results in a variable scale time spectral analysis, adaptively estimating the largest
possible analysis window size such that the signal remains quasi-stationary, thus the
best temporal/frequency resolution tradeoff. The speech recognition experiments on
the OGI Numbers95 database[19], show that the proposed variable-scale piecewise
stationary spectral analysis based features indeed yield improved recognition ac-
curacy in clean conditions, compared to features based on minimum cross entropy
spectrum [1] as well as those based on fixed scale spectral analysis.
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1 Introduction

Most of the Automatic Speech Recognition (ASR) acoustic features, such as
Mel-Frequency Cepstral Coefficient (MFCC)[16] or Perceptual Linear Predic-
tion (PLP)[17], are based on some sort of representation of the smoothed
spectral envelope, usually estimated over fixed analysis windows of typically
20ms to 30ms of the speech signal [16,15]. Such analysis is based on the as-
sumption that the speech signal can be assumed to be quasi-stationary over
these segment durations. Typically, the vowels last for 40 to 400ms while the
stops last for 3 to 250ms. However, the sustained-stationary segments in a
vowel can typically last from 30 to 80ms, while stops are time-limited by less
than 20ms [15]. Therefore, it implies that the spectral analysis based on a
fixed size window of 20ms or 30ms has some limitations, including:

• The frequency resolution obtained for quasi-stationary segments (QSS) longer
than 20 or 30ms is quite low compared to what could be obtained using
larger analysis windows. Although, most of the frequency resolution is lost
due to averaging by 24 Mel filters. However, power spectrum estimation
(DFT) over quasi-stationary segments will still lead to low-variance Mel-
filter bank energies as compared to those obtained with a fixed scale spectral
analysis that does not take quasi-stationarity into account.

• In certain cases, the analysis window can span the transition between two
QSSs, thus blurring the spectral properties of the QSSs, as well as of the
transitions. Indeed, in theory, Power Spectral Density (PSD) cannot even
be defined for such non stationary segments [9]. Furthermore, on a more
practical note, the feature vectors extracted from such transition segments
do not belong to a single unique (stationary) class and may lead to poor
discrimination in a pattern recognition problem.

In this work, we make the usual assumption that the piecewise quasi-stationary
segments (QSS) of the speech signal can be modeled by a Gaussian AR process
of a fixed order p as in [2,4,10,11]. We then formulate the problem of detecting
QSSs as a Maximum Likelihood (ML) detection problem, defining a QSSs
as the longest segment that has most probably been generated by the same
AR process. 1 As is well known, given a pth order AR Gaussian QSS, the
Minimum Mean Square Error (MMSE) linear prediction (LP) filter parameters
[a(1), a(2), ...a(p)] are the most “compact” representation of that QSS amongst
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all the pth order all pole filters [9]. In other words, the normalized “coding
error” 2 is minimum amongst all the pth order LP filters. When erroneously
analyzing two distinct pth order AR Gaussian QSSs in the same non-stationary
analysis window, it can be shown that the “coding error” will then always be
greater than the ones resulting of QSSs analyzed individually in stationary
windows[14]. This is intuitively satisfying since, in the former case, we are
trying to encode ′2p′ free parameters (the LP filter coefficients of each of the
QSS) using only p parameters (as the two distinct QSS are now analyzed
within the same window). Therefore, higher coding error is expected in the
former case as compared to the optimal case when each QSS is analyzed in
a stationary window. As further explained in the next sections, this forms
the basis of our criteria to detect piecewise quasi-stationary segments. Once
the “start” and the “end” points of a QSS are known, all the speech samples
coming from this QSS are analyzed within that window, resulting in (variable-
scale) acoustic vectors.

Working under the similar framework, Brandt [10] had proposed a maximum
likelihood algorithm for speech segmentation. However, there are certain sub-
tle theoretical as well practical differences in the proposed approach and the
Brandt’s algorithm which are described in Section 3. Brandt’s approach was
again followed in [11], where the authors proposed several speech segmenta-
tion algorithms. However, none of these papers[10,11] attempted to perform
stationary spectral analysis as has been done in this paper. Using a parametric
model that the speech signal is generated by a time-varying auto-regressive
process, we have shown the relationship between ML segmentation and piece-
wise stationary spectral analysis in Section 4. Although, there has been plenty
of research on speech signal segmentation (including speaker change detec-
tion), quite limited work has been done to interlink signal segmentation and
quasi-stationary spectral analysis as has been done in this work.

In [11], the author has illustrated certain speech waveforms with segmentation
boundaries overlaid. The validity of their algorithm is shown by a segmenta-
tion experiment, which on an average, segments phonemes into 2.2 segments.
This result is quite useful as a pre-processor for the manual transcription of
speech signals. However, the author in [11] did not discuss or extend the ML
segmentation algorithm as a variable-scale quasi-stationary spectral analysis
technique suitable for ASR, as done in the present work.

In [3], Atal has described a temporal decomposition technique, with appli-
cations in speech coding, to represent the continuous variation of the LPC
parameters as a linearly weighted sum of a number of discrete elementary
components. These elementary components are designed such that they have

2 The power of the residual signal normalized by the number of samples in the
window
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the minimum temporal spread (highly localized in time) resulting in supe-
rior coding efficiency. However, the relationship between the optimization cri-
terion of “the minimum temporal spread” and the quasi-stationarity is not
obvious. Therefore, the discrete elementary components are not necessarily
quasi-stationary and vice-versa.

Coifman et al [6] have described a minimum entropy basis selection algorithm
to achieve the minimum information cost of a signal relative to the designed
orthonormal basis. In [8], Srinivasan et. al. have proposed a multi-scale QSS
technique for noisy speech enhancement which is based on Coifman’s tech-
nique [6]. In [4], Svendsen et al have proposed a ML segmentation algorithm
using a single fixed window size for speech analysis, followed by a clustering of
the frames which were spectrally similar for sub-word unit design. We empha-
size here that this is different from the approach proposed here where we use
variable size windows to achieve the objective of piecewise quasi-stationary
spectral analysis. More recently, Achan et al [13] have proposed a segmental
HMM for speech waveforms which identifies waveform samples at the bound-
aries between glottal pulse periods with applications in pitch estimation and
time-scale modifications.

Our emphasis in this paper is on better spectral modeling of the speech sig-
nal rather than achieving better coding efficiency or reduced information cost.
Nevertheless, we believe that these two objectives are somewhat fundamen-
tally related. The main contribution of the present paper is to demonstrate
that the variable-scale QSS spectral analysis technique can possibly improve
the ASR performance as compared to the fixed scale spectrum analysis. More-
over, we show the relationship between the maximum likelihood QSS detec-
tion algorithm and the well known spectral matching property of the LP error
measure [5]. Finally, we do a comparative study of the proposed variable-
scale spectrum based features and the minimum cross-entropy time-frequency
distributions developed by Loughlin et al [1].

In the sequel of this paper, Section 2 formulates the ML detection problem
for identifying the transition points between QSS. Section 3 compares the
proposed approach with Brandt’s[10] approach. In Section 4, we illustrate an
analogy of the proposed technique with spectral matching property of the LP
error measure. Finally, the experimental setup and results are described in
Section 5.
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2 ML Detection of the change-point in an AR Gaussian random
process

Consider an instance of a pth order AR Gaussian process, x[n], n ∈ [1, N ]
whose generative LP filter parameters can either be A0 = [1, a0(1), a0(2)....a0(p)]
or can change from A1 = [1, a1(1), a1(2)....a1(p)] to A2 = [1, a2(1), a2(2)....a2(p)]
at time n1 where n1 ∈ [1, N ]. As usual, the excitation signal is assumed to be
drawn from a white Gaussian process and its power can change from σ = σ1 to
σ = σ2. The general form of the Power Spectral Density (PSD) of this signal
is then known to be

Pxx(f) =
σ2

|1 −
∑p

i=1 a(i) exp(−j2πif) |2
(1)

where a(i)s are the LPC parameters. The hypothesis test consists of:

• H0: No change in the PSD of the signal x(n) over all n ∈ [1, N ], LP filter
parameters are A0 and the excitation (residual) signal power is σ0.

• H1: Change in the PSD of the signal x(n) at n1, where n1 ∈ [1, N ], LP filter
parameters change from A1 to A2 and the excitation(residual) signal power
changes from σ1 to σ2.

Let, Â0 denote the maximum likelihood estimate (MLE) of the LP filter pa-
rameters and σ̂0 denote the MLE of the residual signal power under the hy-
pothesis H0. The MLE estimate of the filter parameters is equal to their
MMSE estimate due to the Gaussian distribution assumption [2] and, hence,
can be computed using the Levinson Durbin algorithm [9] without significant
computational cost.

Let x1 denote [x(1), x(2), ...x(n1)] and x2 denote [x(n1 + 1), ...x(N)]. Under
hypothesis H1, (Â1, σ̂1) are the MLE of (A1, σ1) estimated on x1, and (Â2,
σ̂2) are the MLE of (A2, σ2) estimated on x2, where x1 and x2 have been
assumed to be independent of each other. A Generalized Likelihood Ratio
Test (GLRT) [14] would then pick hypothesis H1 if

log L(x) = log(
p(x1|Â1, σ̂1)p(x2|Â2, σ̂2)

p(x|Â0, σ̂0)
) > γ (2)

where γ is a decision threshold that will have to be tuned on some development
set. Given that the total number of samples in x1 and x2 is the same as in x0,
their likelihoods can be compared directly in (2). Under the hypothesis H0 the
entire segment x = [x(1)...x(N)] is considered stationary and the MLE Â0 is
computed via the Levinson-Durbin algorithm using all the samples in segment
x. It can be shown that the MLE σ̂0 is the power of the residual signal [2,14].
Under H1, we assume that there are two distinct QSS, namely x1 and x2.
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The MLE Â1 and Â2 are computed via the Levinson-Durbin algorithm using
samples from their corresponding QSS. MLE σ̂1 and σ̂2 are computed as the
power of the corresponding residual signals. In fact, p(x|Â0, σ̂0) is equal to the
probability of residual signal obtained using the filter parameters Â0, yielding:

p(x|Â0, σ̂0)=
1

(2πσ̂2
0)

N/2
exp

[

−1

2σ̂2
0

N
∑

n=1

(e2
0(n))

]

(3)

where e0(n) is the residual error and

e0(n) = x(n) −
p

∑

i=1

a0(i)x(n − i), n ∈ [1, N ]

and

σ̂2
0 =

1

N

N
∑

n=1

e2
0(n)

Similarly, p(x1|Â1, σ̂1) and p(x2|Â2, σ̂2) are the likelihoods of the residual sig-
nal vectors of the AR models A1 and A2, respectively, and have the same
functional forms as above. Substituting these expressions into (2) yields

log L(x) =
1

2
log

[

σ̂N
0

σ̂n1

1 σ̂
(N−n1)
2

]

(4)

In the present form, the GLRT log L(x) has now a natural interpretation.
Indeed, if there is a transition point in the segment x then it has, in effect, 2p
degrees of freedom. Under hypothesis H0, we encode x using only p degrees
of freedom (LP parameters Â0) and, therefore, the coding (residual) error σ̂2

0

will be high. However, under hypothesis H1, we use 2p degrees of freedom (LP
parameters Â1 and Â2) to encode x. Therefore, the coding (residual) errors
σ̂2

1 and σ̂2
2 can be minimized to reach the lowest possible value. 3 This will

result in L(x) > 1. On the other hand, if there is no AR switching point in the
segment x then it can be shown that, for large n1 and N , the coding errors
are all equal (σ̂2

0 = σ̂2
1 = σ̂2

2). This will result in L(x) ' 1.

An interesting and useful property of the GLRT in (4) is that it is invariant to
any multplicative scale factor of signal x. For example let us consider a scaled
segment y = c × x, where c is a constant. As the LP filter and the inverse
LP filter are both linear filters, a scaled input signal will result in an output
signal with the same multiplicative scale factor. Therefore, the residual signals

3 When Â
1

and Â
2

are estimated, strictly based on the samples from the corre-
sponding quasi-stationary segments.
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obtained after analyzing y will be e
y
0(n) = c×e0(n), e

y
1(n) = c×e1(n), e

y
2(n) =

c × e2(n) ∀n ∈ [1, N ]. Therefore the GLRT in (4) will become,

log L(y) =
1

2
log

[

cN σ̂N
0

cn1σ̂n1

1 cN−n1σ̂
(N−n1)
2

]

(5)

= log L(x)

This ensures that even if the speech signal might have varying power levels
(different scale factors) GLRT in (5) can still be compared to a fixed threshold
γ. However, if there are abrupt energy changes within a segment, then the
GLRT will most likely classify them as different QSSs.
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Fig. 1. Typical plot of the Generalized log likelihood ratio test (GLRT) for a voiced
speech segment. The sharp downward spikes in the GLRT are due to the presence of
a glottal pulse at the beginning of the right analysis window (x2). The GLRT peaks
around the sample 500 which marks as a strong AR model switching point

An example is illustrated in Fig. 1. The top pane shows a segment of a voiced
speech signal. In the bottom figure, we plot the GLRT as the function of the
hypothesized change over point n. Whenever, the right window i.e the segment
x2 spans the glottal pulse in the beginning of the window, the GLRT exhibits
strong downward spikes (negative values of the GLRT), which is due to the
fact that the LP filter cannot predict large samples occurring in the beginning
of the window. However, these negative spikes of the GLRT do not affect our
decision as we are comparing GLRT to a large positive threshold (typically
3.5). Therefore, in a way, we are comparing only the positive envelope of the
GLRT to a pre-selected positive threshold. Consequently, the sharp negative
spikes in GLRT caused due to the occurrence of a glottal pulse in right win-
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Fig. 2. Typical plot of the Generalized log likelihood ratio test (GLRT) for an un-
voiced speech segment that consists of two piece-wise quasi-stationary segments
(PQSS). The GLRT peaks around the sample 200 which is indeed an AR model
switching point.

dow i.e x2 will bring down the GLRT value, thus preventing the GLRT from
exceeding a positive threshold. This has a desirable effect that as long as the
pitch periods are nearly similar(stationary voiced segment), they will never be
segmented into different QSSs. Instead, they will be glued together to form
one QSS. The minimum sizes of the left and the right windows are 160 and 100
samples respectively and the reasons for this choice are explained in Section 5.
This also explains the zero value of the GLRT at the beginning and the end of
the whole test segment. The GLRT peaks around sample 500 which marks a
strong AR model switching point. In Fig. 2, we plot the GLRT of an unvoiced
speech segment that consists of two QSSs. As can be seen from the Fig. 2, in
the case of the unvoiced speech, the GLRT has a rather smooth envelope due
to the absence of the glottal pulses. The GLRT peaks around sample 200 that
marks an AR model switching point. The algorithm presented in this paper
does not make any distinction between voiced and unvoiced speech segments.
GLRT of all the segments in an utterance are compared to a fixed threshold
that has been tuned on a development set. This results in a sequence of speech
segments that are usually of variable lengths. We note that the segments re-
turned by the algorithm are quasi-stationary only in a probabilistic sense that
the event that two adjacent segments are instances of the same stationary
process is e−Threshold times as likely as the event that they are instances of two
different stationary processes. Therefore the choice of the threshold decides
the trade-off between false acceptance and false rejection of QSSs. However,
as we are primarily interested in improved recognition accuracies, we have
tuned the threshold on a development set based on the recognition accuracies.
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3 Comparison with Brandt’s algorithm

The GLRTs in both Brandt’s approach and the proposed approach are the
same as in (4). This is not surprising as in both the approaches GLRT is
a maximum likelihood solution under the assumption that the speech sig-
nal is a realization of a Gaussian AR process where the AR parameters can
change over time. However, the differences lie in the methods employed to
estimate the residual powers σ0, σ1, σ2. In our approach, the AR parameters
A0,A1,A2 and the residual powers σ0, σ1, σ2. are estimated by solving the
least squares equations [9] over their corresponding segments, x0,x1,x2 re-
spectively. To solve these least squares equations, we use the so-called auto-
correlation method [9](page:486) that leads to an autocorrelation matrix that
is Toeplitz. Toeplitz matrices can be inverted quite efficiently using the Levin-
son Durbin algorithm[9](pages:254). Therefore the computational overload of
our approach is quite low.

Whereas, Brandt used the so-called covariance method [9](page:486) to solve
for the AR parameters and the residual powers, σ0, σ1, σ2.. This method leads
to an autocorrelation matrix that is non-Toeplitz, thus excluding the use of fast
Levinson-Durbin algorithm. Brandt has used the lattice-filters[9](pages:280)
to estimate the AR parameters and the residual powers. Lattice filters are also
quite efficient as compared to the Gram-Schmidt orthogonalization, but less so
as compared to Levinson-Durbin algorithm. Therefore, the proposed approach
is faster than Brandt’s approach. Use of the autocorrelation method [9] guar-
antees a minimum phase all-pole filter[9]. However, the covariance method [9]
does not necessarily lead to a minimum phase all-pole filter. Therefore, the
proposed approach ensures a stable all-pole filter as opposed to Brandt’s ap-
proach.

In Brandt’s algorithm, the left window i.e x1 uses a growing memory covari-
ance ladder algorithm and the right window x2 uses a sliding memory covari-
ance ladder algorithm. Initialization of the growing memory covariance ladder
algorithm requires certain intermediate quantities that are provided by the
sliding memory covariance ladder algorithm which operates on x2. Hence, the
AR parameters A1 and the residual power σ1 are indirectly influenced by the
samples in the right window x2. To compensate for this, Brandt’s algorithm
uses a second search called “jump time optimization process” to estimate the
stationarity change-over point.

Whereas, in our approach the AR parameters A1,A2 and the residuals σ1, σ2

are estimated using samples strictly from their corresponding segments i.e.
x1,x2 respectively. Therefore, in the proposed approach there is just one step
stationarity change point detection. Whenever the GLRT in (4) exceeds the
threshold γ, a stationarity change point is recorded. This is in contrast to
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Brandt’s method where this step is followed by a “jump time optimization
process” which, finally estimates the stationarity change point.

4 Relation of GLRT to Spectral Matching

In the section will show the relationship between the maximum likelihood seg-
mentation and the spectral matching which is one of the main contributions
of this paper. As is well known the LP error measure possesses the spectral
matching property [5]. Specifically, given a speech segment x, let its power
spectrum (periodogram) be denoted by X(ejω). Let the all pole model spec-
trum of the segment x be denoted as X̂0(e

jω). Then it can be shown that the
MMSE error σ2

0 of the LP filter estimated over the entire segment x is given
by [5].

σ2
0 =

∫ π

−π

X(ejω)

X̂0(ejω)
dω where, (6)

X̂0(e
jω) =

1

|1 −
∑p

i=1 a0(i) exp(−j2πif) |2
(7)

Therefore minimizing the residual error σ2
0 is equivalent to the minimization of

the integrated ratio of the signal power spectrum X(ejω) to its approximation
X̂0(e

jω) [5]. Substituting (6) in (4) we obtain,

log L(x) =
1

2
log

(

∫ π
−π

X(ejω)

X̂0(ejω)
dω

)N

(

∫ π
−π

X1(ejω)

X̂1(ejω)
dω

)n1
(

∫ π
−π

X2(ejω)

X̂2(ejω)
dω

)N−n1
(8)

where, X(ejω), X1(e
jω) and X2(e

jω) are the power spectra of the segments x,
x1 and x2 respectively. Similarly X̂0(e

jω), X̂1(e
jω) and X̂2(e

jω) are the MMSE
pth order all-pole model spectra estimated over the segments x, x1 and x2

respectively. Therefore, X̂0(e
jω), X̂1(e

jω) and X̂2(e
jω) are the best LP spectral

matches to their corresponding power spectra. One way of interpreting (8) is
that it is a measure of the relative goodness between the best LP spectral
match achieved by modeling x as a single QSS and the best LP spectral
matches obtained by assuming x to consist of two distinct QSS, namely x1

and x2. This is further explained as follows. If x1 and x2 are indeed two
distinct QSS, then X1(e

jω) and X2(e
jω) will be quite different and X(ejω) will

be a gross average of these two spectra. In other words, the frequency support
of X(ejω) will be a union of those of the X1(e

jω) and X2(e
jω). X̂1(e

jω) and
X̂2(e

jω), having p poles each, will match their corresponding power spectra
reasonably well, resulting in a lower value of the denominator in (8). However,
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X̂0(e
jω) will be a relatively poorer spectral match to X(ejω) as it has only

p poles to account for the wider frequency support. Therefore we incur a
higher spectral mismatch by assuming x to be a single QSS when in fact
it is composed of two distinct QSS x1 and x2. This results in the GLRT
log L(x) taking up a high value. Whereas if x1 and x2 are the instances of the
same quasi-stationary process, then so is x. Therefore X1(e

jω), X2(e
jω) and

X(ejω) are nearly the same with similar all-pole models, resulting in a value
of the GLRT close to zero. The above discussion points to the fact that the
QSS analysis based on the proposed GLRT is constantly striving to achieve a
better time varying spectral modeling of the underlying signal as compared to
single fixed scale spectral analysis. However, the above discussion is true only
if the speech signal can be assumed to have been generated from a Gaussian
AR process of a fixed order p, where the AR parameters can change over
time. This limitation arises from the fact that one needs to assume a signal
generative model based on which one can develop a criterion of stationarity.
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Fig. 3. Quasi stationary segments (QSS) of a speech signal as detected by the
algorithm with γ = 3.5 and LP order p = 14.

5 Experiments and Results

We have used the GLRT L(x) in (4) to perform QSS spectral analysis of speech
signals for ASR applications. We initialize the algorithm with a left window
size W L = 20ms and a right window size W R = 12.5ms. We compute their
corresponding MMSE residuals and the MMSE residual of the union of the two
windows using the Levinson-Durbin algorithm. Then, the GLRT is computed
using (4) and is compared to the threshold. The choice of the threshold γ = 3.5
was decided on the basis of ASR results on a development set. In figure (3),
we illustrate the boundaries of the QSS as detected by the algorithm with
γ = 3.5. In general, the ASR results are slightly sensitive to the threshold,
although not in a huge way. If the GLRT is greater than the threshold γ, W L

is considered the largest possible QSS and we obtain a spectral estimate using
all the samples in W L. Otherwise,W L is incremented by INCR=1.25ms and
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the whole process is repeated until GLRT exceeds γ or W L becomes equal to
the maximum window size WMAX=60ms. The computation of a MFCC feature
vector from a very small segment (such as 10ms) is inherently very noisy. 4

Therefore, the minimum duration of a QSS as detected by the algorithm was
constrained to be 20ms. Ideally the right window size W R should be as small
as possible so that we can instantaneously detect a stationarity change point.
However, a reliable estimate of the AR parameters and the corresponding
residual signal requires sufficiently large number of samples in the analysis
window. Therefore as a compromise between these two opposing factors, we
have chosen the W R = 12.5ms. Throughout the experiments, a fixed LP order
p = 14 was used.

The likelihood ratio test is quite widely used for speaker segmentation [12]
where the average length of a single speaker segment may last from 1sec to
several seconds. This provides a relatively large amount of samples to estimate
the parameters of the probability density functions as compared to the present
problem where we have to first estimate the generative AR parameters and
the corresponding residuals to detect stationarity change over point within
20ms to 60ms. Moreover, in speaker change detection one can use the apriori-
information that a speaker will at least speak for a second or so. Therefore
most of the time it can be safely assumed that there will not be more than
two speakers within one second long speech segment. Hence, a local maxima of
the GLRT within a time-span of one second can be used as a speaker-change
point. This approach has been successfully used in [12]. However, in our case
the QSSs can have much more variable durations ranging from 3ms to 80ms 5 .
Therefore, there is no minimum duration in which we can assume that only
two QSSs will be present, thus excluding the use of local maxima of the GLRT
as an estimate of the stationarity change-over point.

Before proceeding further, however, we feel necessary to briefly discuss certain
inconsistencies between variable-scale spectral analysis and state-of-the-art
Hidden Markov models ASR using Gaussian mixture models (HMM-GMM).
HMM-GMM systems typically use spectral features based on a constant win-
dow size (typically 20ms) and a constant shift size (typically 10ms). The shift
size determines the Nyquist frequency of the cepstral modulation spectrum [7],
which is typically measured by the delta features of the static MFCC or PLP
features. In a variable-scale piecewise quasi-stationary analysis, the shift size
should preferably be equal to the size of the detected QSS. Otherwise, if the
shift size is x% of the duration of the QSS, then the next detected QSS will be

4 Due to very few DFT samples falling under the the Mel-filter bins resulting in
high variance of the mel-filter bank energies
5 However, as we require sufficiently large number of samples to reasonably estimate
the AR parameters and the residuals to compute the GLRT, the proposed algorithm
can only detect QSSs larger than and equal to 20ms
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the same but of duration (100−x)% and the following one will be of duration
(100 − 2x)% and so on until we have shifted past the entire duration of the
QSS. This results in the undesirable effect that the same QSS gets analyzed
by successively smaller windows, hence increasing the variance of the feature
vector of this QSS. On the other hand, the use of a shift size equal to the
variable window size will change the Nyquist frequency of the cepstral mod-
ulation spectrum [7]. Therefore, the modulation frequency pass-band of the
delta filters [7] will vary from frame to frame and may suffer from aliasing for
shift sizes in excess of 20ms.

To avoid fluctuating Nyquist frequency of the cepstral modulation spectrum[7],
a fixed shift size of 12.5ms was used in the algorithm. As explained above,
this sometimes resulted in the undesirable effect that the same QSS gets ana-
lyzed by progressively smaller windows. To alleviate this problem, the zeroth
cepstral coefficient c(0), which is a non-linear function of the windowed signal
energy and, hence, of the window size, was normalized such that its depen-
dence on the window size is minimized.

In order to assess the effectiveness of the proposed algorithm, speech recog-
nition experiments were conducted on the OGI Numbers corpus [19]. This
database contains spontaneously spoken free-format connected numbers over
a telephone channel. The lexicon consists of 31 words. Figure (4) illustrates
the distribution of the QSSs as detected by the proposed algorithm. Nearly
47% segments were analyzed with the smallest window size of 20ms and they
mostly corresponded to short-time limited segments. However, voiced seg-
ments and long silences were mostly analyzed by using longer windows in
the range 30ms − 60ms. The short peak at 60ms is due to the accumulated
value over all the segments that should have been longer than 60ms but were
constrained by our choice of the largest window size.
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Fig. 4. Distribution of the QSS window sizes detected and then used in the training
set

Throughout the experiments, MFCC coefficients and their temporal deriva-
tives were used as speech features. However, five feature sets were compared.
In [1], Loughlin et al proposed using a geometric mean of multiple spectro-
grams of different window sizes to overcome the time-frequency limitation of
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any single spectrogram. They showed that combining the information content
from multiple spectrograms in form of their geometric mean, is optimal for
minimizing the cross entropy between the multiple spectra. We have followed
their approach to derive MFCC features (noted as Minimum cross-entropy
MFCC) from the geometric mean of the multiple power spectra computed
over varying window sizes, specifically 20ms, 30ms, 40ms and 50ms.

(1) [39 dim. MFCC:] computed over a fixed window of length 20ms.
(2) [39 dim. MFCC:] computed over a fixed window of length 50ms.
(3) [78 dim. Concatenated MFCC:] a concatenation of the above two feature

vectors.
(4) [Minimum cross entropy,39 dim MFCC:] MFCC computed from the geo-

metric mean of the power spectra computed from 20ms, 30ms, 40ms and
50ms long windows.

(5) [Variable-scale QSS MFCC+Deltas:] For a given frame, the window size
is dynamically chosen using the proposed algorithm ensuring that the
windowed segment is quasi-stationary.

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based
speech recognition systems were trained using public domain software HTK [18]
on the clean training set from the original Numbers corpus. The speech recog-
nition results in clean conditions for various spectral analysis techniques are
given in table 1. The fixed scale MFCC features using 20ms and 50ms long
analysis windows have 5.8% and 5.9% word error rate (WER) respectively.
The concatenation of MFCC feature vectors derived from 20ms and 50ms
long windows has a 5.7% WER and it has twice the number of HMM-GMM
parameters as compared to the rest of the systems 6 . The slight improvement
in this case may be due to the multiple scale information present in this fea-
ture, albeit in an ad-hoc way. The minimum cross-entropy MFCC features
which were derived from the geometric mean of the power spectra computed
over 20ms, 30ms, 40ms and 50ms long analysis windows, have a WER of 5.7%.
The proposed variable-scale system which adaptively chooses a window size
in the range [20ms, 60ms], followed by the usual MFCC computation, has a
5.0% WER. This corresponds to a relative improvement of nearly 10% over
the rest of the techniques

6 Conclusion

We have demonstrated that the variable-scale piecewise quasi-stationary spec-
tral analysis of speech signal can possibly improve the state-of-the-art ASR.
Such a technique can partially overcome the time-frequency resolution lim-

6 Due to twice the feature dimension as compared to the rest of the systems
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Table 1
Word error rate in clean conditions

MFCC 20ms 5.8

MFCC 50ms 5.9

Concat. MFCC (20ms, 50ms) 5.7

Min. Cross entropy based MFCC 5.7

Proposed Variable-scale QSS MFCC 5.0

itations of the fixed scale spectral analysis techniques. However, it can be
argued that most of the frequency resolution is anyway lost due to Mel-filter
binning of the DFT samples. Nevertheless, a spectrum(DFT) estimated over
a quasi-stationary segment will help to reduce the variance of the estimated
Mel-filter bank energies and consequently those of the MFCC feature vectors.
However, as we need certain minimum number of samples to estimate the
AR parameters and the residuals, our algorithm cannot detect QSSs below
20ms. Comparisons were drawn with the other competing multi-scale tech-
niques such as the minimum cross-entropy spectrum. The proposed technique
led to the minimum WER as compared to the rest of the techniques. Although,
the performance gains are modest, we believe that further work on variable
scale quasi-stationary analysis can overcome the limitations of a fixed scale
spectral analysis of speech signal leading to better ASR performances.
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