
Institut Eurécom
Department of Corporate Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-06-156
Augmenting Web Services Composition with Transactional

Requirements
April 2006

Frederic Montagut from SAP Labs France, Refik Molva from Institut Eurecom

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email : frederic.montagut@sap.com, refik.molva@eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: BMW Group,
Bouygues Telecom, Cisco Systems, France Telecom, Hitachi Europe, Sharp, STMicroelectronics,
Swisscom, Thales, SFR.

1

Abstract

Current Web services composition approaches do not take into account trans-
actional requirements defined by designers. The transactional challenges raised by
the composition of Web services are twofold: relaxed atomicity and dynamicity. In
this paper, we propose a new process to automate the design of transactional com-
posite Web services. Our solution enables the composition of Web services not
only according to functional requirements but also to transactional ones defined
using the Acceptable Termination States model. The resulting composite Web ser-
vice is compliant with the consistency requirements expressed by designers and
its execution can easily be coordinated using the coordination rules provided as an
outcome of our approach.

Keywords: Transaction, Transactional Web services, Composite Web service, Dis-
covery service

2

Contents

1 Introduction 4

2 Preliminary definitions and methodology 4
2.1 Consistent composite Web services 5
2.2 Methodology . 6

3 Transactional model 6
3.1 Transactional Properties of Services 6
3.2 Termination states . 7
3.3 Transactional consistency tool 9

4 Analysis of TS(W) 10
4.1 Inherent properties of TS(W) 10
4.2 Classification within TS(W) . 10

5 Forming ATS(W) 12

6 Deriving composite services from ATS 13
6.1 Acceptability of Ws with respect to ATS(W) 13
6.2 Transaction-aware assignment procedure 15

6.2.1 Extraction of TR . 15
6.2.2 Service assignment process 17

6.3 Coordination of Ws . 18
6.4 Example . 18

7 Related work 19

8 Conclusion 19

9 Acknowledgements 20

3

1 Introduction

Web services composition has been gaining momentum over the last years as
it leverages the capabilities of simple operations to offer complex services. These
complex services such as airline booking systems result from the aggregation of
Web services offered by different organizations. As for all cross-organizational
collaborative systems, the execution of composite services requires transactional
properties (TP) so that the overall consistency of data modified during the process
is ensured. Yet, existing Web services composition systems appear to be limited
when it comes to integrate at the composition phase the consistency requirements
defined by designers. Composite Web services indeed require different transac-
tional approaches than the one developed for usual database systems [6, 7]. The
transactional challenges raised by the composition of Web services are twofold.
First, like classical workflow systems, composite services raise less stringent re-
quirements for atomicity in that intermediate results produced by some components
may be kept without rollback despite the failure to complete the overall execution
of a composite service. Second, composite services are dynamic in that their com-
ponents can be automatically selected at run-time based on specific requests. To
cope with these challenges, the existing approaches only offer means to validate
transactional requirements (TR) once a composite Web service has been created
[4] but no solution to integrate these requirements as part of the composite service
building process.

In this paper, we propose a systematic procedure to automate the design of
transactional composite Web services. Given an abstract representation of a pro-
cess wherein instances of services are not yet assigned to component tasks, our
solution enables the selection of Web services not only according to functional
requirements but also to transactional ones. In our approach, TR are defined by de-
signers using the Acceptable Termination States model (ATS). The resulting com-
posite Web service is compliant with the defined consistency requirements and its
execution can be easily coordinated as our algorithm also provides coordination
rules that can be plugged into a transactional coordination protocol. The remainder
of the paper is organized as follows. Section 2 introduces the methodology of our
approach. In section 3, we present our transactional model. In section 4 we pro-
vide details on the termination states of a composite Web service then in section 5
we describe how TR are formed based on the properties of the termination states.
The transaction-aware composition process through which transactional compos-
ite Web services are designed is detailed in section 6. Finally, section 7 discusses
related work and section 9 presents the conclusion.

2 Preliminary definitions and methodology

Consistency is a crucial aspect of composite services execution. In order to
meet consistency requirements at early stages of the service composition process,

4

Composition

engine

Available services

1 2

W

1 2

W s

Instance of W

consistent with TR
TR defined for W

Figure 1: Principles

we need to consider TR a concrete parameter determining the choice of the com-
ponent Web services. In this section we present a high level definition of the con-
sistency requirements and a methodology taking into account these requirements
during the composition of Web services.

2.1 Consistent composite Web services

A composite Web service Ws consists of a set of n Web services Ws =
(sa)a∈[1,n] whose execution is managed according to a workflow W which defines
the execution order of a set of n tasks W = (ta)a∈[1,n] performed by these services
(for the sake of simplicity, we consider that one service executes only one task).
The assignment of services to tasks is performed by means of composition engines
based on functional requirements. Yet, the execution of a composite service may
have to meet TR aiming at the overall assurance of consistency. Our goal is to
design a service assignment process that takes into account the TR associated with
W in order to obtain a consistent instance Ws of W as depicted in Figure 1. We
consider that each Web service component might fulfill a different set of TP. For
instance a service can have the capability to compensate the effects of a given
operation or to re-execute the operation after failure whereas some other service
does not have any of these capabilities. It is thus necessary to select the appropriate
service to execute a task whose execution may be compensated if required. The
assignment procedure based on TR follows the same strategy as the one based on
functional requirements. It is a match-making procedure between the TP offered
by services and the TR associated to each task.

Once assigned, the services (sa)a∈[1,n] are coordinated with respect to the TR
during the process execution. The coordination protocol is indeed based on rules
deduced from the TR. These rules specify the final states of execution or termina-
tion states each service has to reach so that the overall process reaches a consistent
termination state. Two phase-commit the famous coordination protocol uses for
instance the simple rule: all tasks performed by different services have to be com-
pensated if one of them fails. The challenges of the transactional approach are
therefore twofold.

• Specify a Web service assignment procedure that creates consistent instance
of W according to defined TR

5

0

1

x

Initial

Active

Completed

CompensatedAborted

Failed Cancelled

Figure 2: State model

• Specify the coordination protocol managing the execution of consistent com-
posite services

2.2 Methodology

In our approach, the services part of Ws are selected according to their TP
by means of a match-making procedure. We therefore need first to specify the
semantic associated to the TP defined for services. The match-making procedure
is indeed based on this semantic. This semantic is also to be used in order to define
a tool allowing workflow designers to specify their TR for a given workflow. Using
these TR, we are able to assign services to workflow tasks based on rules which are
detailed later on. Once the composite service is defined, we can define a protocol
in order to coordinate these services according to the TR specified at the workflow
designing phase.

3 Transactional model

In this section, we define the semantic specifying the TP offered by services
before specifying the consistency evaluation tool associated to this semantic. Our
semantic model is based on the ”transactional Web service description” defined in
[4].

3.1 Transactional Properties of Services

In [4] a model specifying semantically the TP of Web services is presented.
This model is based on the classification of computational tasks made in [13, 15]
which considers three different types of TP. An operation and by extension a Web
service executing this task can be:

• Compensatable: the results produced by the task can be rolled back

• Retriable: the task is sure to complete successfully after a finite number of
tries

• Pivot: the task is neither compensatable nor retriable

6

These TP allows to define four types of services: Retriable (r), Compensatable (c),
Retriable and Compensatable (rc) and Pivot (p).

To properly detail the model, we can map the TP with the state of data mod-
ified by the services during the execution of computational tasks. This mapping
is depicted in Figure 2. Basically, data can be in three different states: initial (0),
unknown (x), completed (1). In the state (0), it means either that the task exe-
cution has not yet started initial, the execution has been stopped, aborted before
starting, or the execution has been properly completed and the modifications have
been rolled back, compensated. In state (1) it means that the task execution has
been properly completed. In state (x) it means either that the task execution is
not yet finished active, the execution has been stopped, canceled before comple-
tion, or the execution has failed. Particularly, the states aborted, compensated,
completed, canceled, and failed are the possible final states of execution of these
tasks. Figure 3 details the transition diagram for the four types of transactional
services. We must distinguish within this model the inherent termination states:
failed and completed which result from the normal course of a task execution
and the one resulting from a coordination message received during a coordination
protocol instance: compensated, aborted and canceled which force a task execu-
tion to either stop or rollback. The TP of the services are only differentiated by the
states failed, and compensated which indeed respectively specify the retriability
and compesatability aspects.

Definition 3-1. We have for a given service s:

• failed is not a termination state of s ⇔ s is retriable

• compensated is a termination state of s ⇔ s is compensatable

From the state transition diagram, we can also derive some simple rules. The
states failed, completed and canceled can only be reached if the service is in the
state active. The state compensated can only be reached if the service is in the
state completed. The state aborted can only be reached if the service is in the state
initial.

3.2 Termination states

The crucial point of the transactional model specifying the TP of services is
the analysis of their possible termination states. The ultimate goal is indeed to be
able to define consistent termination states for a workflow i.e. determining for each
service executing a workflow task which termination states it is allowed to reach.

Definition 3-2. We define the operator termination state ts(x) which specifies
the possible termination states of the element x. This element x can be:

• a service s and ts(s) ∈ {aborted,canceled,failed,completed,
compensated}

7

In
it
ia
l

A
c
ti
v
e

C
o
m
p
le
te
d

C
o
m
p
e
n
s
a
te
d

A
b
o
rt
e
d

F
a
ile
d

C
a
n
c
e
lle
d

In
it
ia
l

A
c
ti
v
e

C
o
m
p
le
te
d

A
b
o
rt
e
d

F
a
ile
d

C
a
n
c
e
lle
d

In
it
ia
l

A
c
ti
v
e

C
o
m
p
le
te
d

C
o
m
p
e
n
s
a
te
d

A
b
o
rt
e
d

F
a
ile
d

C
a
n
c
e
lle
d

In
it
ia
l

A
c
ti
v
e

C
o
m
p
le
te
d

A
b
o
rt
e
d

F
a
ile
d

C
a
n
c
e
lle
d

R
e
tr
ia
b
le
/C
o
m
p
e
n
s
a
ta
b
le

R
e
tr
ia
b
le

C
o
m
p
e
n
s
a
ta
b
le

P
iv
o
t

Figure 3: Service state diagram according to their Transactional Properties

8

• a workflow task t and ts(t) ∈ {aborted, canceled, failed, completed,
compensated}

• a workflow composed of n tasks W = (ta)a∈[1,n] and ts(W) = (ts(t1),
ts(t2), ..., ts(tn))

• a composite service Ws of W composed of n services Ws = (sa)a∈[1,n] and
ts(Ws) = (ts(s1), ts(s2), ..., ts(sn))

The operator TS(x) represents the finite set of all possible termination states of
the element x, TS(x) = (tsk(x))k∈[1,j]. We have especially, TS(Ws) ⊆ TS(W)
since the set TS(Ws) represents the actual termination states that can be reached
by Ws according to the TP of the services assigned to W . We also define for x
workflow or composite service and a ∈ [1, n]:

• ts(x, ta): the value of ts(ta) in ts(x)

• tscomp(x): the termination state of x such that ∀ a ∈ [1, n] ts(x, ta) =
completed.

For the remaining of the paper, W = (ta)a∈[1,n] represents a workflow of n tasks
and Ws = (sa)a∈[1,n] a composite service of W .

3.3 Transactional consistency tool

We use the Acceptable Termination States (ATS) [14] model as the consis-
tency evaluation tool for our workflow. ATS defines the termination states a work-
flow is allowed to reach so that its execution is judged consistent.

Definition 3-3. ATS(W) is the subset of TS(W) whose elements are con-
sidered consistent by workflow designers. A consistent termination state of W is
called an acceptable termination state atsk(W) and we note ATS(W) =
(atsk(W))k∈[1,i] the set of Acceptable Termination States of W i.e. the TR of W .

ATS(W) and TS(W) can be represented by a table which defines for each
termination state the tuple of termination states reached by the workflow task as
depicted in Figure 4. As mentioned in the definition, the specification of the set
ATS(W) is done at the workflow designing phase. ATS(W) is mainly used as
a decision table for a coordination protocol so that Ws can reach an acceptable
termination state knowing the termination state of at least one task. The role of a
coordination protocol indeed consists in sending messages to services in order to
reach a consistent termination state given the current state of the workflow execu-
tion. The coordination decision, i.e. the termination state that has to be reached,
made given a state of the workflow execution has to be unique, this is the main
characteristic of a coordination protocol. In order to cope with this requirement,
ATS(W) which is used as input for the coordination decision-making process has
therefore to verify some properties that we detail later on.

9

4 Analysis of TS(W)

Since ATS(W) ⊆ TS(W), ATS(W) inherits the characteristics of TS(W)
and we logically need to analyze first TS(W). In this section, we first precise some
basic properties of TS(W) derived from inherent execution rules of a workflow W
before examining TS(W) from a coordination perspective.

4.1 Inherent properties of TS(W)

We state here some basic properties relevant to the elements of TS(W) and
derived from the transactional model presented above. TS(W) is the set of all
possible termination states of W based on the termination states model we chose
for services. Yet, within a composite service execution, it is not possible to reach
all the combinations represented by a n-tuple (ts(t1), ts(t2), ..., ts(tn)) assuming
∀ a ∈ [1,n] ts(ta) ∈ {aborted, canceled, failed, completed, compensated}. The
first restriction is introduced by the sequential aspect of a workflow:

(P1) A task becomes activated⇔ all the tasks executed beforehand according to
the execution plan of W have reached the state completed

(P1) simply means that to start the execution of a workflow task, it is required to
have properly completed all the workflow tasks required to be executed beforehand.

Second, we consider in our model that only one single task can fail at a time
and that the states aborted, compensated and canceled can only be reached by
a task in a given tsk(W) if one of the services executing a task of W has failed.
This means that the coordination protocol is allowed to force the abortion, the
compensation or the cancellation only in case of failure of a service. We get (P2):

(P2) if ∃ a, k ∈ [1, n] × [1, j] such that tsk(W, ta) ∈ {compensated, aborted,
canceled} ⇒ ∃ ! l ∈ [1, n] such that tsk(W, tl) = failed.

4.2 Classification within TS(W)

As we explained above the unicity of the coordination decision during the ex-
ecution of a coordination protocol is a major requirement. We try here to identify
the elements of TS(W) that correspond to different coordination decisions given
the same state of a workflow execution. The goal is to use this classification to
determine ATS(W). Using the properties P1 and P2, a simple analysis of the state
transition model reveals that there are two situations whereby a protocol coordina-
tion has different possibilities of coordination given the state of a workflow task.
Let a, b ∈ [1, n] and assume that the task tb has failed:

• the task ta is in the state completed and either it remains in this state or it is
compensated

• the task ta is in the state active and either it is canceled or the coordinator
let it reach the state completed

10

From these two statements, we define the incompatibility from a coordination
perspective and the flexibility.

Definition 4-1. Let k, l ∈ [1, j]. tsk(W) and tsl(W) are said incompatible
from a coordination perspective ⇔
∃ a,b ∈ [1, n] such that tsk(W, ta) = completed, tsk(W, tb) = tsl(W, tb) =
failed and tsl(W, ta) = compensated. Otherwise, tsl(W) and tsk(W) are said
compatible from a coordination perspective.

The value in {compensated, completed} reached by a task ta in a termination
state tsk(W) whereby tsk(W, tb) = failed is called recovery strategy of ta against
tb in tsk(W). By extension, we can consider the recovery strategy of a set of tasks
against a given task.

If two termination states are compatible, they correspond to the same recovery
strategy against a given task. In fact, we have two cases for the compatibility of
two termination states tsk(W) and tsl(W). Given two tasks ta and tb such that
tsk(W, tb) = tsl(W, tb) = failed:

• tsk(W, ta) = tsl(W, ta)

• tsk(W, ta) ∈ {compensated, completed} and
tsl(W, ta) ∈ {aborted, canceled}

The second case is only possible to reach if ta is executed in parallel with tb.
Intuitively, the failure of the service assigned to tb occurs at different instants in
tsk(W) and tsl(W).

Definition 4-2. Let a, b ∈ [1, n]. A task ta is flexible against tb ⇔ ∃ k ∈ [1, j]
such that tsk(W, tb) = failed and tsk(W, ta) = canceled. Such a termination
state is said to be flexible to ta against tb. The set of termination states of W
flexible to ta against tb is denoted FTS(ta, tb).

From these definitions, we now study the termination states of W according to
the compatibility and flexibility criterias in order to identify the termination states
that follow a common strategy of coordination.

Definition 4-3. Let a ∈ [1, n]. A termination state of W tsk(W) is called gen-
erator of ta ⇔ tsk(W, ta) = failed and ∀ b ∈ [1, n] such that tb is executed
before or in parallel of ta, tsk(W, tb) ∈ {completed, compensated}. The set
of termination states of W compatible with tsk(W) generator of ta is denoted
CTS(tsk(W), ta).
The set CTS(tsk(W), ta) specifies all the termination states of W that follow the
same recovery strategy as tsk(W) against ta.

Definition 4-4. Let tsk(W) ∈ TS(W) be a generator of ta. Coordinating an
instance Ws of W in case of the failure of ta consists in choosing the recovery
strategy of each task of W against ta and the za < n tasks (tai)i∈[1,za] flexible to
ta whose execution is not canceled when ta fails. We call coordination strategy of
Ws against ta the set CS(Ws, tsk(W),

11

(tai)i∈[1,za], ta) = CTS(tsk(W), ta) −
⋃za

i=1 FTS(tai , ta). If the service sa as-
signed to ta is retriable then CS(Ws, tsk(W), (tai)i∈[1,za], ta) = ∅

Ws is said to be coordinated according to CS(Ws, tsk(W), (tai)i∈[1,za], ta)
if in case of the failure of ta, Ws reaches a termination state in
CS(Ws, tsk(W), (tai)i∈[1,za], ta). Of course, it assumes that the TP of Ws are
sufficient to reach tsk(W).
From these definitions, we can deduce a set of properties:

Theorem 4-5. Ws can only be coordinated according to a unique coordination
strategy at a time.

Proof: Let a ∈ [1, n]. Two termination states tsk(W) and tsl(W) generator of
ta are incompatible.

Theorem 4-6. Let a, k ∈ [1, n]× [1, j] such that tsk(W, ta) = failed but not
generator of ta. If tsk(W) ∈ TS(Ws)⇒ ∃ l ∈ [1, j] such that tsl(W) ∈ TS(Ws)
is a generator of ta compatible with tsk(W).

Proof: We define tsl(W) by: tsl(W, ta) = failed,
∀ i ∈ [1, n]− {a} tsl(W, ti) = tsk(W, ti)
if tsk(W, ti) ∈ {completed, compensated, aborted}, tsl(W, ti) = completed
otherwise.

Given a task ta the idea is to classify the elements of TS(W) using the sets
of termination states compatible with the generators of ta. Using this approach,
we can identify the different recovery strategies and the coordination strategies
associated with the failure of ta as we decide which tasks can be canceled.

5 Forming ATS(W)

Defining ATS(W) is deciding at design time the termination states of W that
are consistent. ATS(W) is to be inputted to a coordination protocol in order to
provide it with a set of rules which leads to a unique coordination decision in any
cases. According to the definitions and properties we introduce above, we can now
explicit some rules on ATS(W) so that the unicity requirement of coordination
decisions is respected.

Definition 5-1. Let a, k ∈ [1, n] × [1, j] such that tsk(W, ta) = failed and
tsk(W) ∈ ATS(W). ATS(W) is valid ⇔ ∃ ! l ∈ [1, j] such that tsl(W) gener-
ator of ta compatible with tsk(W) and CTS(tsl(W), ta)−

⋃za
i=1 FTS(tai , ta) ⊂

ATS(W) for a set of tasks (tai)i∈[1,za] flexible to ta.

The unicity of the termination state generator of a given task comes from the
incompatibility definition and the unicity of the coordination strategy. A valid
ATS(W) therefore contains for all tsk(W) in which a task fails a unique coor-
dination strategy associated to this failure and the termination states contained in
this coordination strategy are compatible with tsk(W). In Figure 4, an example of
possible ATS is presented for the simple workflow W1. It just consists in selecting

12

the termination states of the table TS(W1) that we consider consistent and respect
the validity rule for the created ATS(W1).

6 Deriving composite services from ATS

In this section, we introduce a new type of service assignment procedure: the
transaction-aware service assignment procedure which aims at assigning n services
to the n tasks ta in order to create an instance of W acceptable with respect to a
valid ATS(W). The goal of this procedure is to integrate within the instantiation
process of workflows a systematic method ensuring the transactional consistency
of the obtained composite service. We first define a validity criteria for the in-
stance Ws of W with respect to ATS(W), the service assignment algorithm is
then detailed. Finally, we specify the coordination strategy associated to the in-
stance created from our assignment scheme.

6.1 Acceptability of Ws with respect to ATS(W)

Definition 6-1. Ws is an acceptable instance of W with respect to ATS(W)
⇔ TS(Ws) ⊆ ATS(W).

Now we express the condition TS(Ws) ⊆ ATS(W) in terms of coordina-
tion strategies. The termination state generator of ta present in ATS(W) is noted
tska(W). The set of tasks whose execution is not canceled when ta fails is noted
(tai)i∈[1,za].

Theorem 6-2. TS(Ws) ⊆ ATS(W)⇔ ∀ a ∈ [1, n]
CS(Ws, tska(W), (tai)i∈[1,za], ta) ⊂ ATS(W).

Proof: straightforward derivation from 4-6 and 5-1 .
An instance Ws of W is therefore an acceptable one⇔ it is coordinated according
to a set of n coordination strategies contained in ATS(W). It should be noted that
if failed 6∈ ATS(W, ta) where ATS(W, ta) represents the acceptable termina-
tion states of the task ta in ATS(W) then CS(Ws, tska(W), (tai)i∈[1,za], ta) = ∅.
From 4-6 and 6-1, we can derive the existence condition of an acceptable instance
of W with respect to a valid ATS(W).

Theorem 6-3. Let a, k ∈ [1, n] × [1, j] such that tsk(W, ta) = failed and
tsk(W) ∈ ATS(W). ∃ Ws acceptable instance of W with respect to ATS(W)
such that tsk(W) ∈ TS(Ws) ⇔ ∃ ! l ∈ [1, j] such that tsl(W) ∈ TS(Ws) is a
generator of ta compatible with tsk(W) in ATS(W).

This theorem only states that an ATS(W) allowing the failure of a given task
can be used to coordinate a composite service also allowing the failure of the same
task⇔ATS(W) contains a complete coordination strategy associated to this task,
i.e. it is valid.

13

1

2
 3

4

1

W

T
S

(W

 1
)

T
as

k
1

T
as

k
2

T
as

k
3

T
as

k
4

ts

 1

co
m

pl
et

ed

co
m

pl
et

ed

co
m

pl
et

ed

co
m

pl
et

ed

ts

 2

co
m

pl
et

ed

co
m

pl
et

ed

co
m

pl
et

ed

fa
ile

d

ts

 3

co

m
pl

et
ed

co

m
pl

et
ed

co

m
pe

ns
at

ed

fa
ile

d

ts

 4

co

m
pl

et
ed

co

m
pe

ns
at

ed

co
m

pe
ns

at
ed

fa

ile
d

ts

 5

co
m

pl
et

ed

co
m

pe
ns

at
ed

co

m
pl

et
ed

fa

ile
d

ts

 6

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

co
m

pe
ns

at
ed

fa

ile
d

ts

 7

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

co
m

pl
et

ed

fa
ile

d

ts

 8

co

m
pe

ns
at

ed

co
m

pl
et

ed

co
m

pl
et

ed

fa
ile

d

ts

 9

co

m
pe

ns
at

ed

co
m

pl
et

ed

co
m

pe
ns

at
ed

fa

ile
d

ts

 10

co

m
pl

et
ed

co

m
pl

et
ed

fa

ile
d

ab
or

te
d

ts

 11

co

m
pl

et
ed

co

m
pe

ns
at

ed

fa
ile

d

ab

or
te

d

ts

 12

co
m

pl
et

ed

ca
nc

el
ed

fa

ile
d

ab
or

te
d

ts

 13

co

m
pe

ns
at

ed

co
m

pl
et

ed

fa
ile

d

ab

or
te

d

ts

 14

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

fa
ile

d

ab

or
te

d

ts

 15

co
m

pe
ns

at
ed

ca

nc
el

ed

fa
ile

d

ab

or
te

d

ts

 16

co
m

pl
et

ed

fa
ile

d

co

m
pl

et
ed

ab

or
te

d

ts

 17

co
m

pl
et

ed

fa
ile

d

co

m
pe

ns
at

ed

ab
or

te
d

ts

 18

co

m
pl

et
ed

fa

ile
d

ca
nc

el
ed

ab

or
te

d

ts

 19

co
m

pe
ns

at
ed

fa

ile
d

co
m

pl
et

ed

ab
or

te
d

ts

 20

co

m
pe

ns
at

ed

fa
ile

d

co

m
pe

ns
at

ed

ab
or

te
d

ts

 21

co

m
pe

ns
at

ed

fa
ile

d

ca

nc
el

ed

ab
or

te
d

ts

 22

fa

ile
d

ab
or

te
d

ab
or

te
d

ab
or

te
d

T
as

k
1

T
as

k
2

T
as

k
3

T
as

k
4

at
s
 1

ts

 1

co

m
pl

et
ed

co

m
pl

et
ed

co

m
pl

et
ed

co

m
pl

et
ed

at

s
 2

ts

 6

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

co
m

pe
ns

at
ed

fa

ile
d

at
s
 3

ts

 14

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

fa
ile

d

ab

or
te

d

at

s
 4

ts

 15

co

m
pe

ns
at

ed

ca
nc

el
ed

fa

ile
d

ab
or

te
d

at
s
 5

ts

 20

co
m

pe
ns

at
ed

fa

ile
d

co
m

pe
ns

at
ed

ab

or
te

d

at

s
 6

ts

 21

co

m
pe

ns
at

ed

fa
ile

d

ca

nc
el

ed

ab
or

te
d

A
T

S

 1
(

W

 1
)

T
as

k
1

T
as

k
2

T
as

k
3

T
as

k
4

at
s
 1

ts

 1

co

m
pl

et
ed

co

m
pl

et
ed

co

m
pl

et
ed

co

m
pl

et
ed

at

s
 2

ts

 4

co
m

pl
et

ed

co
m

pe
ns

at
ed

co

m
pe

ns
at

ed

fa
ile

d

at

s
 3

ts

 17

co

m
pl

et
ed

fa

ile
d

co
m

pe
ns

at
ed

ab

or
te

d

A
T

S

 2
(
W

 1
)

A
N

D
-

S
pl

it

A

N
D

-

Jo

in

T
as

k
1

s
 1
1

ye
s

no

s
 1
2

no

ye
s

T
as

k
2

s
 2
1

no

no

T
as

k
3

s
 3
1

ye
s

ye
s

s
 3
2

no

ye
s

T
as

k
4

s
 4
1

ye
s

no

A
va

ila
b

le

S
er

vi
ce

s

R

et
ri

ab
le

C

o
m

p
en

sa
ta

b
le

Figure 4: Example of Transactional Composite Service

14

6.2 Transaction-aware assignment procedure

In this section, we present the procedure that is used to assign services to tasks
based on TR. This algorithm uses ATS(W) as a set of requirements during the
service assignment procedure and thus identifies from a pool of available services
those whose TP match the TR associated to workflow tasks defined in ATS(W)
in terms of acceptable termination states. The assignment procedure is an iterative
process, services are assigned to tasks one after the other. The assignment proce-
dure therefore creates at each step i a partial instance of W noted W i

s . We can
define as well the set TS(W i

s) which represents the termination states of W that
the TP of the i services already assigned allow to reach. Intuitively the accept-
able termination states refer to the degree of flexibility offered when choosing the
services with respect to the different coordination strategies verified in ATS(W).
This degree of flexibility is influenced by two parameters:

• The list of acceptable termination states for each workflow task. This list can
be determined using ATS(W). This is a direct requirement which specifies
the termination states allowed for each task and therefore introduces require-
ments on the service’s TP to be assigned to a given task: this service can only
reach the states defined in ATS(W) for the considered task.

• The assignment process is iterative and therefore, as we assign new services
to tasks, TS(W i

s) changes and the TP required to the assignment of fur-
ther services too. For instance, we are sure to no longer reach the termina-
tion states CTS(tsk(W), ta) allowing the failure of the task ta in ATS(W)
when we assign a service (r) to ta. In this specific case, we no longer care
about the states reached by other tasks in CTS(tsk(W), ta) and therefore
there is no TR introduced for the tasks to which services have not already
been assigned.

We therefore need to define first the TR for the assignment of a service after i
steps in the assignment procedure.

6.2.1 Extraction of TR

From the two requirements above, we define for a task ta :

• ATS(W, ta): Set of acceptable termination states of ta which is derived
from ATS(W)

• DIS(ta,W i
s): This is the set of TR that the service assigned to ta must

meet based on the previous assignments. This set is determined based on the
following reasoning:

(DIS1): the service must be compensatable ⇔
compensated ∈ DIS(ta,W i

s)

(DIS2): the service must be retriable ⇔ failed 6∈ DIS(ta,W i
s)

15

Using these two sets, we are able to compute
MinTP (sa, ta,W

i
s) = ATS(W, ta)

⋂
DIS(ta,W i

s)
which defines the TP a service sa has at least to comply with in order to be assigned
to the task ta at the i + 1 assignment step. We simply check the retriability and
compensatability properties for the set MinTP (sa, ta,W

i
s):

• failed 6∈ MinTP (sa, ta,W
i
s) ⇔ sa has to verify the retriability property

• compensated ∈ MinTP (sa, ta,W
i
s) ⇔ sa has to verify the compensatabil-

ity property

The set ATS(W, ta) is easily derived from ATS(W). We need now to com-
pute DIS(ta,W i

s). We assume that we are at the i + 1 step of an assignment
procedure, i.e. the current partial instance of W is W i

s . Computing DIS(ta,W i
s)

means determining if (DIS1) and (DIS2) are true. From these two statements we
can derive three properties:

1. (DIS1) implies that state compensated can definitely be reached by ta

2. (DIS2) implies that ta can not fail

3. (DIS2) implies that ta can not be canceled

The two first properties can be directly derived from (DIS1) and (DIS2). The
third one is derived from the fact that if a task can not be canceled when a task
fails, then it has to finish its execution and reach at least the state completed. In
this case, if a service can not be canceled then it can not fail, which is the third
property. To verify whether 1., 2. and 3. are true, we introduce the theorems 6-4,
6-5 and 6-6.

Theorem 6-4. Let a∈ [1, n]. The state compensated can definitely be reached
by ta ⇔ ∃ b ∈ [1, n]− {a} verifying (6-4b): sb not retriable is assigned to tb and
∃ tsk(W) ∈ ATS(W) generator of tb such that tsk(W, ta) = compensated.

Proof: ⇐ : Since the service sb is not retriable, it can fail and tsk(W) ∈
ATS(W) generator of tb such that tsk(W, ta) = compensated is in TS(Ws).

⇒ : Derived from (P2) and 4-6.
The two following theorems are proved similarly:
Theorem 6-5. Let a ∈ [1, n]. ta can not fail⇔∃ b ∈ [1, n]−{a} verifying (6-

5b): (sb not compensatable is assigned to tb and ∃ tsk(W) ∈ ATS(W) generator
of ta such that tsk(W, tb) = compensated) or (tb is flexible to ta and sb not retri-
able is assigned to tb and ∀ tsk(W) ∈ ATS(W) such that tsk(W, ta) = failed,
tsk(W, tb) 6= canceled).

Theorem 6-6. Let a, b ∈ [1, n] such that ta is flexible to tb. ta is not canceled
when tb fails⇔ (6-6b): sb not retriable is assigned to tb and ∀ tsk(W) ∈ATS(W)
such that tsk(W, tb) = failed, tsk(W, ta) 6= canceled.

According to the theorems 6-4, 6-5 and 6-6, in order to compute DIS(ta,W i
s),

we have to compare ta with each of the i tasks tb ∈ W − {ta} to which a service

16

sb has been already assigned. This is an iterative procedure and at the initialisation
phase, since no task has been yet compared to ta, sa can be (p): DIS(ta,W i

s) =
{failed}.

1. if tb verifies (6-4b) ⇒ compensated ∈ DIS(ta,W i
s)

2. if tb verifies (6-5b) ⇒ failed 6∈ DIS(ta,W i
s)

3. if tb is flexible to ta and verifies (6-6b) ⇒ failed 6∈ DIS(ta,W i
s)

The verification stops if failed 6∈ DIS(ta,W i
s) and

compensated ∈ DIS(ta,W i
s). With MinTP (sa, ta,W

i
s), we are able to select

the appropriate service to be assigned to a given task according to TR.

6.2.2 Service assignment process

Services are assigned to each workflow task based on an iterative process. De-
pending on the TR and the TP of the services available for each task, different
scenarios can occur:

(i) services (rc) are available for the task. It is not necessary to compute TR as
such services match all TR.

(ii) only services (p) are available for the task. We need to compute the TR
associated to the task and either pivot is sufficient or there is no solution.

(iii) services (r) and (c) but no (rc) are available for the task. We need to compute
the TR associated to the task and we have three cases. First, (retriability and
compensatability) is required in which case there is no solution. Second,
retriability (resp. compensatability) is required and we assign a service (r)
(resp. (c)) to the task. Third, there is no requirement.

The idea is therefore to assign first services to the tasks verifying (i) and (ii) since
there is no flexibility in the choice of the service. Tasks verifying (iii) are finally
analyzed. Based on the TR raised by the remaining tasks, we first assign services
to tasks with a non-empty TR. We then handle the assignment for tasks with an
empty TR. Note that the TR of all the tasks to which services are not yet assigned
are also affected (updated) as a result of the current service assignment. If no task
has TR then we assign the services (r) to assure the completion of the remaining
tasks’ execution.

Theorem 6-7. The service assignment procedure creates an instance of W
that is acceptable with respect to a valid ATS(W).

Proof: Let Ws be an instance of W resulting from the service assignment pro-
cedure and a service sa assigned to a task ta in Ws. The definition 6-1 has to be
verified and we therefore consider (A) and (B) (with the notations of 6-2):

17

(A) ∀ a ∈ [1, n], failed ∈ ATS(W, ta)⇒ CS(Ws, tska(W), (tai)i∈[1,za], ta) ⊂
ATS(W)

(B) ∀ a ∈ [1, n], failed 6∈ ATS(W, ta)⇒ CS(Ws, tska(W), (tai)i∈[1,za], ta) ⊂
ATS(W)

(A): We suppose that failed ∈ATS(W, ta) then we have two possibilities: sa

is retriable and
CS(Ws, tska(W), (tai)i∈[1,za], ta) = ∅ ⊂ ATS(W). sa can fail and with 1, 2 and
3 we get tska(W) ∈ TS(Ws) and therefore CS(Ws, tska(W), (tai)k∈[1,za], ta) ⊂
ATS(W) since ATS(W) is valid.

(B): We suppose that failed 6∈ATS(W, ta) then failed 6∈ MinTP (sa, ta,W
i
s)

and sa is retriable. Therefore, CS(Ws, tska(W), (tai)i∈[1,za], ta) = ∅⊂ATS(W).
CS(Ws, tska(W), (tai)i∈[1,za], ta) ⊂ ATS(W) and Ws is an acceptable instance
of W with respect to ATS(W).

6.3 Coordination of Ws

Now, using (A) and (B) defined in the proof of 6-7 and keeping the same nota-
tions, we are able to specify the coordination strategy of Ws against each workflow
task. We get indeed the following theorem.

Theorem 6-8. Let Ws be an acceptable instance of W with respect to ATS(W).
We note (tai)i∈[1,nr] the set of tasks to which no retriable services have been as-
signed. TS(Ws)={tscomp(Ws)}

⋃ ⋃nr
i=1(CTS(tskai

(W), tai)−⋃zai
j=1 FTS(taij

,tai
)).

Having computed TS(Ws), we can deduce the coordination rules associated to
the execution of Ws.

6.4 Example

We consider the workflow W1 of Figure 4. Designers have defined ATS2(W1)
as the TR and the set of available services for each task of W1 is specified in the
Figure. The goal is to assign services to workflow tasks so that the instance of W1 is
valid with respect to ATS2(W1) and we apply the presented assignment procedure.
We first start to assign the services (rc) for which it is not necessary to compute
any TR. s31 which is the only available service (rc) is therefore assigned to task 3.
We then try to assign the services (p), and we verify whether s21 can be assigned
to task 2. We compute MinTP (sa, t2,W

1
1s) = ATS2(W1, t2)

⋂
DIS(t2,W 1

1s).
ATS2(W1, t2) = {completed, compensated, failed} and DIS(t2,W 1

1s) =
{failed} as s31 the only service already assigned is (rc) and the theorems 6-4, 6-5
and 6-6 are not verified. Thus MinTP (sa, t2,W

1
1s) = {failed} and s21 can be

assigned to task 2 as it matches the TR. Now we compute the TR of task 1 and we
get MinTP (sa, t1,W

2
1s) = ∅, a service can therefore be assigned to task 1 if it is

retriable, which is the case of s11. Finally, we compute the TR of task 4 and we

18

get MinTP (sa, t4,W
3
1s) = ∅ as theorem 6-5 is verified with the service s21. The

service s41 can thus be assigned to task 4 as it matches the TR of the task.

7 Related work

Transactional consistency of workflows and database systems has been an ac-
tive research topic over the last 15 years yet it is still an open issue in the area
of Web services [5, 8, 12] and especially composite Web services. Composite
Web services indeed introduce new requirements for transactional systems such
as dynamicity, semantic description and relaxed atomicity. Existing transactional
models for advanced applications [6] are lacking of flexibility to integrate these
requirements [3] as for instance they are not designed to support the execution of
dynamically generated collaboration of services. In comparison, our solution al-
lows the specification of TR supporting relaxed atomicity for an abstract workflow
specification and the selection of semantically described services respecting the
defined TR.

Our work is based on [4] which presents the first approach specifying relaxed
atomicity requirements for Composite Web services based on the ATS tool and a
transactional semantic. Despite a solid contribution, this work appears to be limited
if we consider the possible integration into automatic Web services composition
systems. It indeed only details transactional rules to validate a given composite
service with respect to defined TR. In this approach, TR do not play any role in
the component services selection process which may result in several attempts for
designers to determine a valid composition of services. On the contrary, our solu-
tion provides a systematic procedure enabling the automatic design of transactional
composite Web services. Besides, our contribution also defines the mathematical
foundations to specify valid ATS for workflows using the defined concept of coor-
dination strategy.

Finally, our solution can be used to augment recent standardization efforts lead
in the area of transactional coordination of Web services [1, 11]. Our approach
indeed provides adaptive coordination specifications based on the TP of the com-
ponent services instantiating a given workflow. Existing Web services coordination
specifications [9, 10] are indeed not flexible enough as they do not neither allow
workflow designers to specify their TR nor take into account the TP offered by Web
services.

8 Conclusion

We presented a systematic procedure to automate the design of transactional
composite Web services. Our solution enables the selection of component Web
services not only according to functional requirements but also to transactional
ones. Transactional requirements are defined by designers and serve as an input
to define both reliable composite Web services and coordination protocols used to

19

ensure the consistency of their execution. On the one hand this service assignment
approach can be used to augment existing Web services composition systems [2]
as it can be fully integrated in existing functional match-making procedures. On
the other hand, our approach defines adaptive coordination rules that can be de-
ployed on Web services coordination specifications [11] in order to increase their
flexibility.

9 Acknowledgements

This work has been financed by SAP Labs France.

References
[1] M. Abbott and al. Business transaction protocol, 2005.
[2] V. Agarwal, K. Dasgupta, N.Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Sri-

vastava. A service creation environment based on end to end composition of web
services. In Proceedings of the WWW conference, 2005.

[3] G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Gnthr, and C. Mohan. Ad-
vanced transaction models in workflow contexts. In Proc. 12th International Con-
ference on Data Engineering, New Orleans, February 1996.

[4] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atomicity of composite
web services. In Proc. of the 14th international conference on World Wide Web,
2005.

[5] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in web
services. Commun. ACM, 46(10), 2003.

[6] A. K. Elmagarmid. Database Transaction Models for Advanced Applications. Mor-
gan Kaufmann, 1992.

[7] P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough. In
Proc. of the 7th International Enterprise Distributed Object Computing Conference
(EDOC’03), 2003.

[8] M. Gudgin. Secure, reliable, transacted; innovation in web services architecture. In
Proc. of the ACM International Conference on Management of Data, Paris, France,
2004.

[9] D. Langworthy and al. Ws-atomictransaction, 2005.
[10] D. Langworthy and al. Ws-businessactivity, 2005.
[11] D. Langworthy and al. Ws-coordination, 2005.
[12] M. Little. Transactions and web services. Commun. ACM, 46(10):49–54, 2003.
[13] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A transaction model for

multidatabase systems. In Proc. of the 12th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS92), 1992.

[14] M. Rusinkiewicz and A. Sheth. Specification and execution of transactional work-
flows. In Modern database systems: the object model, interoperability, and beyond,
1995.

[15] H. Schuldt, G. Alonso, and H. Schek. Concurrency control and recovery in transac-
tional process management. In Proc. of the Conference on Principles of Database
Systems, 1999.

20

