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ABSTRACT

We propose a novel method for improving wireless network
capacity by resorting to a so-called “multi-cell access” (MCA)
scheme. An MCA scheme is reminiscent of the conventional
multiple access problem in multi-user networks. However,
in an MCA scheme cells (rather than users) compete for ac-
cess. Furthermore, an example of such a scheme is introduced
whereby a cell obtains a credit that is a function of the channel
gain of its scheduled user, and it is allowed to transmit with
a probability that is computed based on the credit value. The
network capacity under this scheme is analyzed and we pro-
pose an optimization method in the case where the probability
distribution for access is binary.

1. INTRODUCTION

Today’s wireless networks are optimized from the point of
view of the physical layer, but are hindered by inefficient
reuse of the spectral resource over the different cells (or trans-
mit-receive pairs) composing the networks. Careful spec-
tral reuse planning plays an important role in mitigating co-
channel interference, which limits the link capacity of ev-
ery transmit-receiver pair. However, static reuse schemes do
not exploit information available on variations in the underly-
ing physical layer. It is well known that significant capacity
gains can be reached by exploiting some form of coordina-
tion between the different cells occupying the same spectral
resource. Coordination may be done in either a centralized
or decentralized manner. In the former case, channel gain
information of all users in all cells is collected by a central-
ized coordinator that decides which users in which cells are
allowed to transmit simultaneously on a given resource while
incurring the least loss of capacity due to inter-cell interfer-
ence. This gives an interesting trade-off between multi-user
diversity due to intra-cell gain maximization and co-channel
interference minimization. [1]. In this regard, some inter-
esting results exist exploiting inter-cell coordination. In the
downlink of CDMA data networks, using a binary power al-
location is shown to provide gains over intermediate power

allocation [2]. In [3], a centralized heuristic algorithm works
by inserting co-channel users one by one, as long as the chan-
nel throughput increases. In [4] power-profile shaping based
resource assignment allows the BS to transmit with different
powers in different portions of the frame and users are allotted
slots according to the amount of interference tolerated.

In all of the above approaches, the key underlying idea
is that substantial gains are achieved by switching off trans-
mission in cells which do not contribute enough capacity to
outweigh the interference degradation caused by them to the
rest of the network. However, in a realistic network, central-
ized multi-cell coordination is hard to realize, especially in
fast fading environments.

In this paper, we address the problem of decentralized co-
ordination. To this end, we introduce the concept of multi-cell
access (MCA) schemes, whereby the network cells (rather
than the users) directly compete for access to the spectral re-
source. Thus, at any given scheduling period, out of say N
cells, only K cells will be allowed to be active simultane-
ously. The other cells will stay silent for that scheduling pe-
riod, but can compete again during the next scheduling period.
An interesting perspective on MCA schemes is to consider it
as a generalized form of frequency reuse pattern design. In
contrast with traditional cellular networks, the obtained pat-
tern (formed by the K allowed cells out of possible N ) is
random, possibly highly irregular (Figure 1), and varies from
one scheduling period to the next as a function of the channel
state information of the cell users.

MCA schemes are somewhat similar to the modified
ALOHA protocol proposed in [5], where the uplink transmit
probability of users in the ALOHA protocol is adapted to
exploit multi-user diversity to maximize the system through-
put. Even though the goal of increased capacity is the same,
the modified ALOHA protocol is for one common receiver
(single-cell). MCA schemes, on the other hand, consider con-
current interfering transmissions (multi-cell), and do not only
exploit multiuser diversity but also employ interference miti-
gation to obtain network capacity gains.
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Fig. 1. Possible irregular reuse pattern at a given scheduling
period due to multi-cell access.

In this paper we propose:

• A fully decentralized MCA scheme governed by a ran-
dom access mechanism in which the probability of ac-
cess for each cell is a function of a credit obtained by
this cell.

• A typical instance of credit is given by the instanta-
neous rate of the scheduled user in the cell.

• An analysis of the mean network capacity function given
the fading statistics.

• An optimization procedure for the basic case where the
probability of access has a binary distribution (0, 1).

In the case of the probability of access taking binary val-
ues only, the probability is simply a step function of the credit
which, in this case, is the user rate; the cell is active if its
best user exhibits a rate beyond a given threshold and remains
silent if the rate falls below the threshold. We show that the
advantage of this method is that it combines multi-user di-
versity with multi-cell coordination in a low-complexity and
decentralized manner. The optimal threshold is computed nu-
merically and tested in the context of a realistic wireless net-
work. Overall network capacity gains are calculated over a
traditional interference-limited network, and compared with
the case of all cells being active.

2. SYSTEM MODEL

Consider a multicell system, such as the one depicted in Fig-
ure 2, in which a set of access points (AP) communicate with
user terminals (UT), all using the same spectral resource.
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Fig. 2. An interference limited cellular system employing full
resource reuse.

2.1. Signal Model

We consider the downlink of an N cell system with Un users
distributed randomly in each cell n. The received signal at
user un is given by

Yun
=

√

Gun,nXun
+

N
∑

i=1
i6=n

√

Gun,iXui
+ Zun

,

where Gun,i is the channel gain between any arbitrary AP i
and user un in cell n, and Xun

is the signal from the serving
AP. The noise Zun

is additive white Gaussian. The signal to
interference-plus-noise ratio (SINR) is then given by

Γun
=

Gun,nPun

N0 +

N
∑

i=1
i6=n

Gun,iPui

,

where Pui
= E[|Xui

|2] and N0 = E[|Zun
|2] is the thermal

noise power. Using the Shannon capacity, summing over all
the cells, we can express the network capacity of the system
(in bits/Hz/sec/cell) as

C =
1

N

N
∑

n=1

log
(

1 + Γun

)

. (1)

Previously reported scheduling algorithms try to optimize the
network capacity C given information on the Gun,n and per-
haps also the Gun,i of all cells. This sets significant require-
ments to the amount of feedback in the system, as well as the
complexity of the algorithms. A distributed solution is thus
highly desirable from an implementaion point of view.



3. ACCESS SCHEME

We now proceed to present the MCA scheme based on a ran-
dom access mechanism requiring only local channel informa-
tion. This enables us to find the expected network capacity for
such a system. Furthermore, we show how to optimize this
expected network capacity when the probability of access has
a binary distribution, given the fading statistics.

In the proposed MCA scheme, a cell obtains permission
to transmit when it has enough credit. To keep the algorithm
distributed, the credit is only based on the intra-cell channel
state information. The credit measures how worthwhile to the
overall network capacity a given cell is at a given instant of
time. In this paper, the credit measure is given by the channel
gain of the scheduled user in the cell in question.

3.1. Probabilistic access

In the proposed framework we further extend the random ac-
cess protocol idea to the multi-cell scenario, i.e. a cell will be
transmitting to its scheduled user with a probability derived
from the credit. Thus, the MCA scheme here lets the access
point transmit to its user with the best channel gain, with a
given probability P(g), where g is the channel gain of the
user. The function P(g) can take on any shape as long as it
satisfies 0 ≤ P(g) ≤ 1 and P(g2) ≥ P(g1) for g2 > g1.

3.2. Expected Network Capacity

In view of the random access mechanism described above,
we wish to evaluate the multi-cell network capacity. First, the
expectation of a cell being activated is

F =

∫ ∞

0

P(g)f
(U)
G (g) d g,

where P(g) is the probability of cell activation for a cell whose
best user exhibits a channel gain g, and f

(U)
G (g) is the corre-

sponding pdf for the distribution of the best channel gain in a
cell with U independent users.

3.2.1. Interference modeling

To allow a decentralized algorithm, we model the interference
so that it is independent of the individual realizations of the
inter-cell channel gains.

To this end we use the interference-ideal network assump-
tion, valid for large full reuse networks [6] which states that
the total interference that the users receive is weakly depen-
dent on its location in the cell if many sources of interference
are present (dense network).

Thus we obtain, for large N ,

N
∑

i=1
i6=n

Gun,iPui
≈ GI

N
∑

i=1
i6=n

Pui
.

where GI is the average interference gain value.
Using a standard path loss model [7] and N = 19 cells,

Monte Carlo simulations show that, for 99% of the users,
the out-of-cell interference differs by less than 1 dB from that
given by the interference-ideal assumption.

Finally, in this work a binary power allocation policy is
considered i.e. all the AP’s transmit with a power of either 0
or Pmax, as this has been shown to achieve close to optimal
power control policy [8].

Thus, for a network with a large number of cells, the ex-
pected value of the interference becomes

I = GI(N − 1)FPmax.

The expected network capacity of the system is then

E[C] =

∫ ∞

0

P(g̃)f
(U)
G (g̃)

· log2

(

1 +
g̃Pmax

N0 + I

)

d g̃.

(2)

The interference-ideal assumption facilitates us in evaluting
the expression of the expected capacity, but the assumption
breaks down if a significant number of cells are not on, and the
expected capacity will differ from the real capacity. Another
approximation used in the derivation of (2) is the interchange
of the expectation operator and the logarithm. Since the log-
arithm is a convex function the error of this interchange is
bounded by Jensen’s inequality. Though, we will show in the
simulations that the expected capacity in (2) is close enough
to the real capacity in (1) to be used in the maximization of
system capacity.

3.3. Optimization Of Network Capacity

The problem is then to find the function P(g) satisfying the
criteria in Section 3.1 which maximizes C∗, the average net-
work capacity:

C∗ = max
P(g)

{E[C]}. (3)

Although the problem in (3) is a difficult one in general,
the advantage of this particular MCA scheme lies in the possi-
bility of doing offline optimization of the function P(g). Once
determined, this function can be used by each individual AP
to determine if it will be active or not. This can be demon-
started with a simple binary access probability distribution.

3.4. Binary Access Probability Distribution

To see how the framework given above can offer increased
capacity, we look at the case where the probability of access
has a binary distribution:

P(g)

{

1 if g ≥ T

0 if g < T .
,



for some threshold T . When T = 0 the probability of access
is 1, independent of the channel gain g, which means that all
cells are turned on. Then the expectation of a cell being turned
on becomes a function of T ,

F (T ) =

∫ ∞

T

f
(U)
G (g) d g = 1 − F

(U)
G (T )

and
F ′(T ) = −f

(U)
G (T ).

We then find the optimal threshold T , i.e. the maximum of
E[C(T )], by looking at the derivative of E[C(T )].

First we note that the noise-plus-interference-term as well
as the kernel of the network capacity integral become func-
tions of T , i.e.

I(T ) = N0 + GI(N − 1)F (T )Pmax,

and

h(g̃, T ) = log2

(

1 +
g̃Pmax

I(T )

)

f
(U)
G (g̃),

respectively. Using a binary distribution for P(g) the expres-
sion for the network capacity becomes

E[C(T )] =

∫ ∞

T

h(g̃, T ) d g̃.

The derivative of the network capacity with respect to T
is then (by the Leibniz’ Integral Rule)

∂

∂T
{E[C(T )]} =

∂

∂T

[
∫ ∞

T

h(g̃, T ) d g̃

]

=

∫ ∞

T

∂

∂T
[h(g̃, T )] d g̃ − h(T, T ).

The derivative of h(g̃, T ) with respect to T is

∂

∂T
[h(g̃, T )] =

∂

∂T

»

log2

„

1 +
g̃Pmax

I(T )

«

f
(U)
G

(g̃)

–

=
GI(N − 1)f

(U)
G

(T )P 2
maxg̃f

(U)
G

(g̃)

ln 2 · I(T )(I(T ) + g̃Pmax)
,

which gives

∂

∂T
{E[C(T )]} =

GI(N − 1)f
(U)
G (T )P 2

max

ln 2 · I(T )

·

∫ ∞

T

g̃f
(U)
G (g̃)

I(T ) + g̃Pmax
d g̃ − h(T, T ).

(4)

The optimal threshold can now be found through a simple gra-
dient search, by starting with an initial value T0 and itertively
improving the estimate by following the search direction

sk = −
∂

∂Tk

{E[C(Tk)]}

until |E[C(Tk+1)] − E[C(Tk)]| is sufficiently small.

3.5. Fairness Issues

It is known that resource allocation in wireless networks give
rise to an interesting trade-off between fairness and network
capacity performance. As we focus here on network capacity
maximization schemes, it is expected here as well that fair-
ness issues will arise. Some cells might experience long peri-
ods of silence due to prolonged detrimental fading conditions
or poor user distribution. It is beyond the scope of this paper
to investigate detailed solutions to this problem. However,
we draw the reader’s attention to the fact that solutions, akin
to the single-cell scheduling scenario giving various levels of
fairness-capacity trade-off, can be used in the multi-cell con-
text, e.g. use of proportional-fair type measures [9]. Hence we
may cite using a capacity measure for each cell that is normal-
ized by the throughput of the cell (in this case the thresold is
applied to the capacity measure rather than the channel gain).
Another practical solution consists in using multiple orthogo-
nal units of spectral resource rather than a single one. In this
case, a cell that is kept silent for one code, frequency, or time
slot may be active on another slot. However, investigations of
the fairness-capacity trade-off are left for another companion
paper.

4. SIMULATIONS

The performance evaluation is based on Monte Carlo sim-
ulations running over 100 000 random channel realizations.
A hexagonal cellular system (cfr. Figure 2) functioning at
1800 MHz is considered, consisting of N = 19 cells of 1
Km. radius. Each cell schedules users at random for each
frame, an approximation to round-robin scheduling, where all
users are randomly placed according to a uniform distribution.
Channel gains for both inter-cell and intra-cell AP-UT links
are based on a COST-231 path loss model [7] including log-
normal shadowing plus fast-fading. Log-normal shadowing is
a zero mean Gaussian distributed random variable in dB with
a standard deviation of 10 dB. Fast-fading is modeled by i.i.d.
CN (0, 1) random variables and PMAX = 1W. The network
capacity is shown in Figure 3.

To calculate the optimal threshold we use the gradient
search outlined at the end of Section 3.4. This yields an es-
timated optimal threshold of T = 7.56. The estimate for the
threshold is somewhat off from the true optimal value due
to the two approxmiation factors mention earlier, namely the
interference ideal assumption and the interchange of the ex-
pectation operator and the logarithm. An additional source of
errors is if the analytical model for the fading statistics dif-
fer from the realistic channel model (distance based pathloss
including log-normal shadowing plus fast-fading).

A natural scheme for comparison of the network capacity
is keeping all cells on. This corresponds to having a threshold
of T = 0. We see that compared to having T = 0 there is an
improvement in the network capacity of 19.6%. Using this
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Fig. 3. Network capacity vs. threshold for a network with
N = 19 cells. The optimal gain is observed for a threshold
T ≈ 7.5, confirming the benefit of the proposed MCA scheme
compared to having all cells active.

threshold there is only a 0.1% loss in capacity compared to
using the optimal threshold, using measurements from the re-
alistic network. Thus, there is a potential gain in the network
capacity of 19.7% compared to keeping all the cells active.

The cell activity ratio corresponding to the network capac-
ity in Figure 3 is shown in Figure 4. We see that the optimal
threshold corresponds to an average cell activity ratio of 0.63.

5. CONCLUSION

In this work we have presented a framework for a fully decen-
tralized multi-cell access scheme based on a random access
mechanism. Each cell is given a credit and access is granted
with a given probability dependent on this credit. The ex-
pected network capacity of the scheme was found, given the
fading statistics. Furthermore, the case where the probability
of access has a binary distribution was demonstrated through
Monte Carlo simulations. The simulation parameters were
equivalent of those used in realistic wireless networks. Sig-
nificant gains in the network capacity was observed compared
to keeping all cells on.
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