
AUTOMATIC SPEECH RECOGNITION AND INTRINSIC SPEECH VARIATION

M. Benzeguiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore,
P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, C. Wellekens

Multitel, Eurecom, Universität Oldenburg, France Telecom, Acapela Group,
Loquendo, Politecnito Torino, Université d’Avignon, McGill University

ABSTRACT

This paper briefly reviews state of the art related to the topic of
speech variability sources in automatic speech recognition systems.
It focuses on some variations within the speech signal that make the
ASR task difficult. The variations detailed in the paper are intrinsic
to the speech and affect the different levels of the ASR processing
chain. For different sources of speech variation, the paper summa-
rizes the current knowledge and highlights specific feature extraction
or modeling weaknesses and current trends.

1. INTRODUCTION

Major progress is being recorded regularly on both the technology
and exploitation of Automatic Speech Recognition (ASR) and spo-
ken language systems. However, there are several technological bar-
riers to flexible solutions and user satisfaction under some circum-
stances. This is related to several factors, such as the sensitivity to
the environment (background noise), or the weak representation of
grammatical and semantic knowledge.

Current research is also emphasizing deficiencies in dealing with
speech intrinsic variations naturally present in speech. For instance,
specific aspects of the speech signal like foreign accents, precludes
the use by specific populations. Also, some applications, like di-
rectory assistance, stress the core recognition technology due to the
very high active vocabulary (application perplexity). There are ac-
tually many factors affecting the speech realization: regional, soci-
olinguistic, or related to the environment or the speaker itself. These
create a wide range of variations: speaker, gender, speech rate, vocal
effort, regional accents, speaking style, non stationarity...

2. VARIATION IN SPEECH

2.1. Speaker characteristics
Obviously, the speech signal not only conveys the linguistic infor-
mation (the message) but also a lot of information about the speaker
himself: gender, age, social and regional origin, health and emo-
tional state and, with a rather strong reliability, its identity. Apart
from the intra- speaker variability (emotion, health, age), it is com-
monly admitted that the speaker uniqueness results from a complex
combination of physiological and cultural aspects [1]. While inves-
tigating the variability between speakers through statistical analysis
methods, [2] found that the first two principal components corre-
spond to the gender and accent respectively. Gender would then
appear as the prime factor related to physiological differences, and
accent would be one of the most important from the cultural point of
view. This section deals mostly with physiological factors.

The complex shape of the vocal organs determines the unique
”timbre” of every speaker. The larynx which is the location of the
source of the speech signal conveys the pitch and important speaker
information. The vocal tract, can be modeled by a tube resonator [3].
The resonant frequencies (the formants) are structuring the global

shape of the instantaneous voice spectrum and are mostly defining
the phonetic content and quality of the vowels.

Standard feature extraction methods (PLP, MFCC) simply ig-
nore the pitch component. On the other hand, the effect of the vo-
cal tract shape on the intrinsic variability of the speech signal be-
tween different speakers has been widely studied and many solutions
to compensate for its impact on ASR performance have been pro-
posed: ”speaker independent” feature extraction, speaker normal-
ization, speaker adaptation. The formant structure of vowel spectra
has been the subject of early studies [4] that amongst other have
established the standard view that the F1-F2 plane is the most de-
scriptive, two-dimensional representation of the phonetic quality of
spoken vowel sounds. On the other hand, similar studies underlined
the speaker specificity of higher formants and spectral content above
2.5 kHz [5]. Other important studies [6] suggested that relative posi-
tions of the formant frequencies are rather constant for a given sound
spoken by different speakers and, as a corollary, that absolute for-
mant positions are speaker-specific. These observations are corrob-
orated by the acoustic theory applied to the tube resonator model of
the vocal tract which states that positions of the resonant frequencies
are inversely proportional to the length of the vocal tract [7]. This
observation is at the root of different techniques that increase the
robustness of ASR systems to inter-speaker variability.

The preponderance of lower frequencies for carrying the linguis-
tic information has been assessed by both perceptual and acoustical
analysis and justify the success of the non-linear frequency scales
such as Mel, Bark, Erb. Other approaches aim at building acoustic
features invariant to the frequency warping [8, 9]. A direct applica-
tion of the tube resonator model of the vocal tract lead to the dif-
ferent vocal tract length normalization (VTLN) techniques: speaker-
dependent formant mapping [10], transformation of the LPC pole
modeling [11], frequency warping, either linear [12] or non-linear
[13], all consists in modifying the position of the formants in order
to get closer to an ”average” canonical speaker. Incidentally, channel
compensation techniques such as the cepstral mean subtraction or
the RASTA filtering of spectral trajectories, also compensate for the
speaker-dependent component of the long-term spectrum [14, 15].

On the other side, general adaptation techniques reduce speaker
specificities and tends to further reduce the gap between speaker-
dependent and speaker-independent ASR by adapting the acoustic
models to a particular speaker [16, 17]

2.2. Foreign and regional accents
As introduced earlier, accent is one of the major components of inter-
speaker variability, as demonstrated in [2]. And indeed, compared to
native speech recognition, performances degrades when recognizing
accented speech and even more for non-native speech recognition
[18]. In fact accented speech is associated to a shift within the feature
space [19]. For native accents the shift is applied by large groups of
speakers, is more or less important, more or less global, but overall
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acoustic confusability is not changed significantly. On the opposite,
for foreign accents, the shift is very variable, is influenced by the
native language, and depends also on the level of proficiency of the
speaker.

Regional variants correspond to significantly different data, and
enriched modelling is generally used to handle such variants. This
can be achieved through the use of multiple acoustic models asso-
ciated to large groups of speakers as in [20] or through the intro-
duction of detailed pronunciation variants at the lexical level [21].
However adding too many systematic pronunciation variants may be
harmful [22].

Non-native speech recognition is not properly handled by na-
tive speech models, no matter how much dialect data is included in
the training [23]. This is due to the fact that non-native speakers
can replace an unfamiliar phoneme in the target language, which
is absent in their native language phoneme inventory, with the one
considered as the closest in their native language phoneme inven-
tory [24]. This behaviour makes the non-native alterations depen-
dent on both the native language and the speaker. Some sounds may
be replaced by other sounds, or inserted or omitted, and such inser-
tion/omission behaviour cannot be handled by the usual triphone-
based modelling [25]. In the specific context of speaker dependent
recognition, adaptation techniques can be used [18]. For speaker
independent systems this is not feasible. Introducing multiple pho-
netic transcriptions that handle alterations produced by non-native
speakers is a usual approach, and is generally associated to a com-
bination of phone models of the native language with phone models
of the target language [26]. When a single foreign accent is handled,
some accented data can be used for training or adapting the acoustic
models [27]. Proper and foreign name processing is another topic
strongly related with foreign accent [28].

Multilingual phone models are investigated since many years in
the hope of achieving language independent units [29]. Language
independent phone models are often useful when little or no data
exists in a particular language and their use reduces the size of the
phoneme inventory of multilingual speech recognition systems. The
mapping between phoneme models of different languages can be de-
rived from data [30] or determined from phonetic knowledge [31],
but this is far from obvious as each language has his own character-
istic set of phonetic units and associated distinctive features. More-
over, a phonemic distinguishing feature for a given language may
hardly be audible to a native of another language.

Altough accent robustness is a desirable property of spoken lan-
guage systems, accent classification is also studied since many years
[32]. As a contiguous topic, speech recognition technology is also
used in foreign language learning for rating the quality of the pro-
nunciation [33].

2.3. Speaking rate and style
Speaking rate, expressed for instance in phonemes or syllables per
second, is an important factor of intra-speaker variability. When
speaking a a fast rate, the timing and acoustic realization of syllables
are strongly affected due in part to the limitations of the articulatory
machinery.

In automatic speech recognition, the significant performance degra-
dations caused by speech rate variations stimulated many studies
for modeling the spectral effects of speech rate variations. All the
schemes presented in the literature make use of a speech rate estima-
tor, based on different methods, providing the number of phones or
syllables per second. The most common methods rely upon the eval-
uation of the frequency of phonemes or syllables in a sentence [34],
through a preliminary segmentation of the test utterance; other ap-

proaches perform a normalization by dividing the measured phone
duration by the average duration of the underlying phone [35]. Some
approaches adress the pronunciation correlates of fast speech. In [36],
the authors rely upon an explicit modeling strategy, using different
variants of pronunciation.

In casual situations or under time pressure, sluring pronuciations
of certain phonemes indeed happen. Besides physiology, this builds
on the speech redundancy and it has been hypothesized that this slur-
ring affects more strongly sections that are more easily predicted. In
contrast, speech portions where confusability is higher tend to be
articulated more carefully [37].

In circumstances where the transmission and intelligibility of the
message is at risk, a person can make use of an opposite articulatory
behaviour, and for instance articulate more distinctly. Another re-
lated phenomenon happens in noisy environments where the speaker
adapts s(maybe unconsciously) with the communicative purpose of
increasing the intelligibility. This effect of augmented tension on the
vocal folds as well as augmented loudness is known as the Lombard
reflex [38].

These are crucial issues and research on speaking style speci-
ficities as well as spontaneous speech modeling is hence very ac-
tive. Techniques to increase accuracy towards spontaneous speech
have mostly focused on pronunciation studies1. Also, the strong
dependy of pronunciation phenomena with respect to the syllable
structure has been highlighted [39, 40]. As a consequence, exten-
sions of acoustic modeling dependency to the phoneme position in a
syllable and to the syllable position in word and sentences have been
proposed [39].

Variations in spontaneous speech can also extend beyond the
typical phonological alterations outlined previously. Phenomena called
disfluencies can also be present, such as false starts, repetitions, hes-
itations and filled pauses. The reader will find useful information
in [41, 42].

2.4. Age
Age is another major cause of variability and mismatch in speech
recognition systems. The first reason is of physiological nature [43].
Children have shorter vocal tract and vocal folds compared with
adults. This results in higher position of formants and fundamen-
tal frequency. The high fundamental frequency is reflected as a large
distance between the harmonics, resulting in poor spectral resolu-
tion of voiced sounds. The difference in vocal tract size results in a
non-linear increase of the formant frequencies.

In order to reduce this effect, previous studies have focused on
the acoustic analysis of children speech [44, 45]. This work has
put in evidence the challenges faced by Speech Recognition systems
that will be developed to automatically recognize children speech.
For example, it has been shown that children below the age of 10
exhibit a wider range of vowel durations relative to older children
and adults, larger spectral and suprasegmental variations, and wider
variability in formant locations and fundamental frequencies in the
speech signal.

Obvisously, younger children may not have a correct pronunci-
ation. Sometimes they have not yet learnt how to articulate specific
phonemes [46]. Finally, children are using language in a different
way. The vocabulary is smaller but may also contain words that don’t
appear in grown-up speech. The correct inflectional forms of certain
words may not have been acquired fully, especially for those words
that are exceptions to common rules. Spontaneous speech is also
believed to be less grammatical than for adults. A number of differ-
ent solutions have been proposed, modification of the pronunciation

1besides language modeling which is out of the scope of this paper
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dictionary, and the use of language models which are customized for
children speech have all been tried [47].

Several studies have attempted to address this problem by adapt-
ing the acoustic features of children speech to match that of acoustic
models trained from adult speech [48]. Such approaches include
vocal tract length normalization (VTLN) [49] as well as spectral
normalization [50]. However, most of these studies point to lack
of children acoustic data and resources to estimate speech recogni-
tion parameters relative to the over abundance of existing resources
for adult speech recognition. Simply training a conventional speech
recognizer on children speech is not sufficient to yield high accu-
racies, as demonstrated by Wilpon and Jacobsen [51]. Recently,
corpora for children speech recognition have begun to emerge (for
instance [52, 53] and [54] of the PF-STAR project).

2.5. Emotions
Similarly to the previously discussed speech intrinsic variations, emo-
tional state is found to significantly influence the speech spectrum. It
is recognized that a speaker mood change has a considerable impact
on the features extracted from his speech, hence directly affecting
the basis of all speech recognition systems.

Studies on speaker emotions is a fairly recent, emerging field and
most of today literature that remotely deals with emotions in speech
recognition is concentrated on attempting to classify a “stressed”
speech signal into its correct emotion category. The purpose of these
efforts is to further improve man-machine communication. The stud-
ies that interest us are different. Being interested in speech intrinsic
variabilities, we focus our attention on the recognition of speech pro-
duced in different emotional states. The stressed speech categories
studied are generally a collection of all the previously described in-
trinsic variabilities: loud, soft, Lombard, fast, angry, scared; and
noise.

As Hansen formulates it in [55], approaches for robust recogni-
tion can be summarized under three areas: (i) better training meth-
ods, (ii) improved front-end processing, and (iii) improved back-end
processing or robust recognition measures. A majority of work un-
dertaken up to now revolves around inspecting the specific differ-
ences in the speech signal under the different stress conditions. Con-
cerning the research specifically geared towards robust recognition,
the first approach, based on improved training methods, comprises
the following works: multi-style training [56], and simulated stress
token generation [57]. As for all the improved training methods,
recognition performance is increased only around the training con-
ditions and degradation in results is observed as the test conditions
drift from the original training data.

The second category of research is front-end processing, the goal
being to devise feature extraction methods tailored for the recogni-
tion of stressed and non-stressed speech simultaneously [55, 58].

Finally, some interest has been focused on improving back-end
processing as means of robust recognition. These techniques rely
on adapting the model structure within the recognition system to ac-
count for the variability in the input signal. Consequently to the
drawback of the “improved modeling” approach, one practice has
been to bring the training and test conditions closer by space projec-
tion [59].

2.6. Conclusion2

In general, this review further motivates research on the acoustic,
phonetic and pronuncition limitations of ASR, and also pinpoints

2The topics adressed here are only briefly touched upon. A more compre-
hensive overview will however be provided at the scientific workshop orga-
nized by the DIVINES project httm://www.divines-project.org in May 2006.

specific representation weaknesses. It is for instance aknowledged
that pronunciation discrepancies is a major factor of reduced perfor-
mance (in the case of accented and spontaneous speech)

Breakthroughs and improvements in general feature extraction
and modeling techniques that provide more resistance to speech and
production diversity are hence desirable. General techniques such
as compensation, adaptation, multiple models, additional acoustic
cues and more accurate/detailed models are popular to adress the
problems posed by speech variation. Also, driven by the commodi-
tization of computational resources, there is a still ongoing trend in
trying to build bigger and hopefully better systems, that attempt to
take advantage of increasingly large amounts of training data. [60].

Such complementary and multidisciplinary perspectives are cur-
rently receiving more interest and, coupled with up-to-date knowl-
edge from phonetics as well as auditory and cognitive sciences, are
probably keys to significantly push the technology forward.
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