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Abstract— In the framework of audio signal analysis, there have been the audio signal. For treating harmonic structured signals, Parks
recent significant advances in two directions: sparse and sictured et al. consider the estimation of pure periodic signals with period
representation. In fact, sparse decompositions of audio gnals are equal to an integer number of samples [8], [9]. In these references
shown to be effective, and appear to be extremely useful in nmy . oo R
signal processing applications: compression, source sapsion, noise  the authors propose a Maximum Likelihood approach to analyze
reduction... A second point of view tries to take advantage fothe  pure periodic signals. They show that the resulting procedure can
harmonic structure of the audio signal. It models a note sigal as  be interpreted as a signal projection onto suitable subspaces. In [10],
a periodic signal with (slow) global variation of amplitude (reflecting [11], we extended the results of those references, and we merged

attack, sustain, decay) and frequency (limited time warpim). . . . S .
In this paper, we compare the two approaches through experim@nts the modulated sinusoidal modeling and the periodic signal analysis

involving various audio signals. We consider particularly application ~ technigues, by considering periodic signals with non-integer period
of the two approaches to noise reduction, and underdetermied Blind  and global amplitude variation and time warping. And, we show

Source Separation. that this model provides a good tradeoff between modeling and
estimation errors.
The structured vs. sparse duality considered here is one of

The majority of blind separation algorithms are based on thgarametric representations (in terms of periodic waveform, global
theory of Independent Component Analysis. The idea is to estimaignplitude and phase) vs. partially parametric representations (am-
the inverse mixing matrix using statistical independence of sourGslitude of fixed atoms). This paper compares the performance of
signals. However, one area of research in Blind Source Separatigfiyctured vs. sparse representations applied to noise reduction,
(BSS), the Underdetermined BSS, is relatively unexplored. It refetgnd underdetermined BSS. A general presentation of the sparse
to the case when there are less mixtures than sources. The ungdgpresentation of audio signal, and the Matching Pursuit algorithm
determined BSS poses a challenge because the mixing matrixgge proposed in section II. In section IlI, audio signal extraction
not invertible and the traditional ICA methods do not work. Andpased on the global modulation model is described . Finally, the
contrary to most blind separation algorithms, the source extractigfymputational complexity, and performance of the two approaches
itself requires additional assumptions on the source statistics §fe compared in section IV.
structure. Several approaches in the literature are proposed to solve
the problem exploiting essentially the time-frequency sparcity of |l. AUDIO PROCESSING WITHSPARSEREPRESENTATION
the source signals [1], [2]. So that, they decompose the degenera{eTimeFrequency atomic decomposition

blind separation problem into several overdetermined problems. The d i ¢ signal family of functi that
On the other hand, for the representation of audio signals, € decomposition ol sighals over family of functions tha

there have been recent significant advances in two direction&.c well localized both in time and frequency has found many

sparse and structured representations. In fact, audio signals cont Rpllcatlons in signal processing and harmonic analysis. Depending

superimposed structures such as transients and stationary paggon the choice of time-frequency atoms, the decomposition might

I. INTRODUCTION

or multiple notes and instruments; and have been shown to ha gue very d'ffefe”‘ prqpertles.
general family of time-frequency atoms can be generated by

sparse decompositions in a variety of time-frequency dictionaries. = : . . . .

The goal is to decompose the audio signal onto a small nhumb Eallng, translating and modulating a single w_mdow funcyan €
of basis functions, called "atoms” (typically time-frequency atoms, (R). For any scale > 0, frequer_lcy modulatiog and translation
such as local cosines, or time-scale atoms, such as wavelets). TheV€ denotey = (s, u,€) and define

fundamental problem is that the bigger the dictionary (i.e. the more (t) = 1 (t_iu)ezft )
redundant), the more likely to have a good match between the 9 \/Eg S '

signal qnd the atoms, but th.e Iqrger the set of possible solutlon.s. A}%e index~ is an element of the sdt = &+ x R2.

computing the optimal solution is an NP-hard problem, sub-optimal The family D — . . ¢ \v redundant. T i
greedy strategies are introduced to decompose, in an iterative e family D = (g5(t)),,cr is extremely redundant. To repre

fashion, any signal into a linear expansion of waveforms belonginSent efficiently any functiory (), we must select an appropriate

to the given dictionary [3], [5], [6], [7]. in the second point of Countable subset of AtoNi8y, (t))e v SO thatf(t) can be written
view, one tries to take advantage of the harmonically structure of

“+ o0
f(t) = Z angr, (t)
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f(t). Windowed transforms (such as Windowed Fourier Transformlll. AuDIO PROCESSING WITHSTRUCTURED REPRESENTATION
Wln(_jowed C05|_n_e Tran§form) and wavelet transforms correspor}g Signal Modl

to different families of time-frequency atoms, that are frames or
bases ofL?(R) [3]. In a windowed transform, all the atomg,, In sinusoidal modeling, the signal is modeled as a sum of
have a constant scalg, = so and are thus mainly localized over evolving sinusoids:

an interval whose size is proportional 49. On the other hand, the P
wavele? transform decomposes signals over time-frequency atoms s(t) = ZAk(t) cos (0 (1)) . @)

of varying scales, called wavelets. A wavelet famity,, (t)),,c v =0

is built by relating the frequency parametgy to the scales,, via

n = 5—0 where¢ is a constant. The resulting family is compose
of dilations and translations of a single function.

gwhered,(t) represents the instantaneous phase ofkttiepartial.

As the music signal is quasi-periodié(t) can be decomposed
into
B. Matching Pursuit (MP) for audio signal decomposition Or(t) = 2wkt fo + 2mpr(t) (8)

Let us consider a family of vector® = (g, ), included in &  whereyy (t) characterizes the evolution of the instantaneous phases
Hilbert spaced with a unit norm||g,|| = 1. For a givenf € H,  around thek" harmonic; and can be assumed to be lowpass.

getting the best/™ order approximant, i.e. The Global Modulation assumption implies that all harmonic am-
o plitudes evolve proportionally in time; and that the instantaneous
I- Z CmGym
m=1

frequency of each harmonic is proportional to the harmonic index:
is an NP-hard problem. The matching pursuit [3] is a greedy

2rpr(n) =27k p(n) + P
strategy to decompose a signal into a linear combination of atoms summary, we model an audio signal as the superposition of
chosen among the dictionary. It iteratively defines a_fmth order  harmonic components with a global amplitude modulation and time
residualR™ " f (starting with R f = f) in the following way. warping (that can be interpreted in terms of phase variations):

1) Compute for ally € T’ y(n) = s(n) + v(n)
(R )’ ©)

= >, Ar(n) cos (2mknfo + 2mpr(n)) +v(n)
= A(n)Y_, A cos (27rkfo (n + %) + <I>k) + v(n)
2) Choose an element,,, € D which "closely” matches the
residualR™ ' f in the sense that

M

far =Y ¢mgs,, = arg min

CmsYm

)

m=1

©)

where
e v, IS an additive white Gaussian noise.

|<Rm_1f,g%n> - sup|<Rm—1f7 97>|2 (4) « A(n) represents the amplitude modulating signal. It allows
yer an evolution of the note power, reflecting attack, sustain, and
decay.

3) Compute the new residual by removing the component along

the selected atom ©(n) denotes the phase modulating signal (that can be inter-

preted in terms of time warping). The time warping focuses
R™f—R™1f_ ( Ry, Gy} G 5) on the time evol_utlon of the |nstar_1taneous frequency, and
allows the modeling of several musical phenomena (vibrato,

The error|R" f|| is proved to decay to zero [4]. Thus, we obtain glissando...)

the atomic decomposition of the signal In [10], we have expressed the time warping in terms of an
- interpolation operation over a basic periodic signal. The audio signal
m— can be written as:
f= Z <R lf»g’vm>g’vm
m=t Y=AF 1
C. Harmonic Matching Pursuit (HMP) for audio signal decompo- =5
sition where :

Gribonval and Bacry propose a variant of the MP algorithm Y =[y1)- "y(N)]TT’ represents the c_;bservatl_on vector.
for audio applications [6]. They introduce the harmonic dictionary S =1[s(1) - s(N)] 7 represents the s_lgnal of interest.
which extends the Gabor dictionary(f) is Gaussian) and better =~ ¥ = [v(1)---v(N)]", denotes the noise vector.
fits the harmonic structure of audio signals. At each step, an? = [Q(l)"'e([ﬂ)]' characterizes the harmonic signature over
atom and all its (approximately) harmonically related atoms geqssentlally.one period )
selected. Thanks to the quasiorthogonality of the Gabor atomis? = diag[A(1)--- A(N)], represents the global amplitude
({g~p> 9, ) = 6), the Harmonic MP has the same structure as thgodulation signal.

standard MP, where the inner product is replaced by the correlation’” IS an N x [T mterpola_mon matr!x _characterlzmg the time
function: warping. See [10] for a detailed description.

K 5 B. Audio Sgnal Estimation
C R gsne) = ; |5il,12§| [(R™, gl ©6) The previous model is linear i, A, or F' (separately) [ being

parameterized nonlinearly. Trying to estimate all factors jointly is
where K is the number of partials in a given harmonic atom. a difficult nonlinear problem. Indeed, as the noise is assumed to be



a white Gaussian signal, the ML approach leads to the followingu,(n) is a triangular window), the quasi-periodic signal model
least-squares problem: can be interpreted as a sum of a scaled, translated, and modulated
harmonic atoms. The basic atom window is given by:

min [y —AFo|? (11)
16 g(t) =wa(n) Z Ay cos (2mkn fo + ®o) = wa(n)f(n)  (16)
where A and F' are parameterized in terms of subsamples. The k
estimation can easily be performed iteratively though [10]: However, the dictionary is not fixed (as in the classic atom decom-

1) Periodic Sgnature Estimation: If we assume that the matrices position approaches); the atoms are adapted to the signal.

A, F are given, the periodic signatuéecan be isolated as IV RESULTS

Y=AF9+V=HO0+V (12) A Complexity issues
In [3], the authors propose a fast implementation of the Matching
. Pursuit algorithm based on a structured update of the inner product
9= (HTH) HTY . (13) in (3); and using FFT-based algorithms with appropriate window.
They show that the Harmonic Matching Pursuit algorithm has a
Hence the periodic signature gets estimated by using the data o¥@mplexity of O(K N log N) per iteration (the complexity of the
the whole note duration. MP algorithm is deduced by making = 1).

2) Instantaneous Amplitude Estimation: In the same manner, the  On the other hand, the Quasi-Periodic Signal Extraction (QPSE)
instantaneous amplitude signal can get estimated using a Leaglgorithm can be also be implemented in an efficient way. In fact,
Squares technique [11]. However, we have remarked that theterpolation matrices are structured, sparse matrices. Then one
proposed technique is very sensitive to the initialization. Hencean show that the extraction algorithm can be implemented with
we have proposed to initialize the amplitude estimation based QNO(NT) + O(T?) complexity per iteration (wher& denotes the
the estimated powers of the noisy data and the noise. basic period of the quasi-periodic signal).

By assuming the instantaneous amplitude to be piecewise constaélt,
A(n) gets estimated using: )

Then minimizing (12) w.r.td leads to

Noise Reduction

The quality of an audio signal captured in real-world envi-
R 1 R 7 . S .
An) = :<y2(n) ~ (y(n) —s(n))2>n (14) ronments is invariably degraded. py f’;\coustlc mtgrference. Th|§
02 interference can be broadly classified into two distinct categories:
where( . ) denotes temporal averaging over the piecewise intervgdditive and convolutive. The noise reduction can be described as
containingn; S = AF# denotes the latest estimate of the signafi€ Processing of audio signals to reduce the additive noise.
The QPSE algorithm can be applied to extract the audio compo-

of interest.
3) Instantaneous Frequency Estimation: As for the instantaneous nents of the received signal. If the noise variaifeg) is available,
Hjus information can be used to enhance the estimation of the

amplitude, the instantaneous frequency gets estimated on a fran i -
instantaneous amplltudéA(n) =1/ (y2(n) —o2),, )

by-frame basis. In each frame, the instantaneous frequency 2 )
optimized using (3): MP-based approaches are also proposed to solve the noise

reduction problem [15]. Once the received signal is decomposed

min ‘Y - Eﬁ(f)gH into atoms, the noise reduction is performed by classifying the
Ai‘ < (15)  atoms into "noise” vs. "signal”; then resynthesizing the enhanced
Fo = Qmaz audio signal.

where Af denotes the maximum relative frequency variation in To compare the enhancement accuracy of the two approaches,
the current frame compared to the previous frame, reflecting aMe have experimented with a real music signal. The proposed
assumed limited frequency variation rate. The optimal instantaneoignal represents a single note (pitch = 84 Hz) played by an
frequency value for the current frame gets determined from a fini@coustic guitar. The record has a duration of 1s and is sampled

set of discrete values within the thus limited range. at 22.050 Khz. A synthetic Gaussian white noise is added to the
audio signal. Furthermore, we consider the global signal-to-noise
C. Structured Signal Model vs. Atomic Decomposition ratio (SN Rou:) (possibly limited to the steady-state portion) as an
We model an audio signal as a superposition of harmoniebjective evaluation criterion
components with a global amplitude and frequency modulation: ZN_ s2(n)
SNRout = 10log — ==t ——~
s(n) = A(n) > Ax cos (2rk (fon + p(n)) + ) L, (s(n) = 5(n)
k

which is consistent with previous enhancement studies [13], [14].
The instantaneous amplituded(n)), and phase(¢(n)) are as- Fig. 1 plots curves of the averaged output SNR (evaluated by
sumed to be lowpass. Hence they can be downsampled. The Mente-Carlo techniques) of Matching Pursuit and Quasi-Periodic
maining samples can be estimated using mathematical interpolati&ignal Extraction techniques.
ie.,
We observe that the QPSE and MP approaches have compa-
An) = ZAP“’A(” —pTa), o(n) = Z‘qu%(” —qTy) rable enhancement performance. However, the QPSE approach
P 1 outperforms the MP in the steady-state region (where the quasi-
where{A,, v,} are the degrees of freedom of the mod&ls,T,,) periodic model allows a better fit of the audio signal). The MP
are respectively the downsampling factors of the instantaneoiss better in the transition region, where the structure of QPSE is
amplitude and phase, arffha(n), w,(n)) are given interpolation too constrained. We remark also that knowing the noise variance
windows. does not significantly increase the enhancement performance for
If we assume that the instantaneous frequency is piecewise constdre QPSE approach.
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