
ScriptGen: an automated script generation tool for honeyd

Corrado Leita, Ken Mermoud, Marc Dacier

Institut Eurecom

Sophia Antipolis, France

{leita,mermoud,dacier}@eurecom.fr

Abstract

Honeyd [14] is a popular tool developed by Niels Provos

that offers a simple way to emulate services offered by sev-

eral machines on a single PC. It is a so called low interaction

honeypot. Responses to incoming requests are generated

thanks to ad-hoc scripts that need to be written by hand. As

a result, few scripts exist, especially for services handling

proprietary protocols. In this paper, we propose a method

to alleviate these problems by automatically generating new

scripts. We explain the method and describe its limitations.

We analyze the quality of the generated scripts thanks to

two different methods. On the one hand, we have launched

known attacks against a machine running our scripts; on the

other hand, we have deployed that machine on the Internet,

next to a high interaction honeypot during two months. For

those attackers that have targeted both machines, we can

verify if our scripts have, or not, been able to fool them. We

also discuss the various tuning parameters of the algorithm

that can be set to either increase the quality of the script or,

at the contrary, to reduce its complexity.

1 Introduction

Honeypots have recently received a lot of attention in

the research community. They can be used for several pur-

poses, ranging from the capture of zero-day attacks to the

long term gathering of data. Honeyd [14] is one of the

simplest and most popular solutions. It has been exten-

sively used, for instance, in the Leurre’com project where

dozens of similar platforms have been deployed in the world

[4, 5, 6, 7, 8, 9]. Unfortunately, Honeyd is based on specific

scripts that are required to emulate the various services lis-

tening to remote requests. Writing these scripts is a tedious

and sometimes impossible task, especially for proprietary

protocols for which no documentation exists. As a result,

there are not so many existing honeyd scripts. This makes

the fingerprinting of honeyd platforms rather simple and

they do not provide as much information as they could. Had

they more services offered, we would learn more about the

attackers. Our approach aims at generating these scripts au-

tomatically, without having to know anything neither about

the daemon implementing the service, nor about the proto-

col.

In the general case, this is probably impossible to do but

we have a much more modest goal. We want to provide

good answers to requests sent to a honeypot by attack tools.

This dramatically simplifies the problem in the sense that

the requests we need to answer to are generated by deter-

ministic automata, the exploits. They represent a very lim-

ited subset of the total possible input space in terms of pro-

tocol data units. They also typically exercise a very limited

number of execution paths in the execution tree of the ser-

vices we want to emulate.

Keeping this very specific application domain in mind,

we have developed a three steps approach to generate our

scripts:

1. We put a real machine on the Internet, as a honeypot,

and we record all traffic to and from that machine in

a tcpdump file. If the machine gets compromised, we

stop the experiment and clean it (i.e. reinstall it).

2. We analyze thanks to various techniques the sequences

of message exchanges between clients and servers. We

derive from this analysis a state machine that repre-

sents the observed requests and replies. We have one

state machine per listening port.

3. We derive from that state machine a honeyd script that

is able to recognize incoming packets and provide a

suitable answer.

Of course, as we will see in the paper, such an approach can

only offer an approximation of the real services. However,

for those interested in studying the attacks thanks to honey-

pots, the more packets they can exchange with the attackers,

the more information they have at their disposal to identify

the attack. Therefore, for that specific application domain,

we believe that the ability to automatically generate scripts

1

for all classical services that are targeted by the attackers

constitutes a major improvement to existing low interaction

honeypots such as honeyd.

To present our method, the paper is structured as follows.

Section 2 presents the method as well as the various algo-

rithms designed and implemented to generate the scripts.

Section 3 offers a discussion of the expected quality of the

simulation with respect to the price we are ready to pay in

terms of complexity of the script. Section 4 provides the re-

sults of experiments run during two months to validate the

method. Finally, Section 5 concludes the paper.

2 ScriptGen

2.1 Overview

ScriptGen can be described by four functional modules,

represented in figure 1:

• Message Sequence factory. This module is respon-

sible for extracting messages exchanged between a

client and a server from the tcpdump file. A no-

tion of sequence can be given for different protocols

(e.g. UDP, or IP-only based protocols); here we fo-

cus on TCP-based protocols. This module reconstructs

TCP streams, correctly handling retransmissions and

reordering.

• State Machine Builder. These messages are used as

building blocks to build a state machine. At this point,

it can lead to the generation of a very large, redundant

and highly inefficient state machine. It is usually re-

quired to control the complexity growth by defining

thresholds that limit the number of outgoing edges of

each state. In such case, clearly, the execution of the

script may reach a state where it may not be able to

reproduce perfectly the behavior of the real server.

• State Machine Simplifier. This is the core of Script-

Gen. This module is responsible for analyzing the

“raw” state machine and for introducing some sort of

semantics. This is achieved thanks to two distinct al-

gorithms interacting with each other. The first one, the

PI algorithm, is taken from [3] and described in Sub-

section 2.4.1. The second one is a novel contribution

of this paper. We call it the Region Analysis algorithm

and we explain it in Subsection 2.4.2. As a result, we

obtain a much simpler state machine where incoming

messages are not recognized as simple sequences of

bytes but instead as sequences of typed regions that

must fulfill certain properties.

• Script Generator. This last module is responsible for

creating a honeyd-compatible script from the simpli-

fied state machine.

2.2 Message Sequence Factory

A message sequence is an ordered list of messages. A

message is seen as a piece of the interaction between the

client and the server. More formally, a message is defined

as the longest consecutive set of bytes going in the same

direction (e.g. client to server or vice versa). A TCP ses-

sion can be decomposed into a list of messages. That list

represents the observed dialog between the client and the

server. The length of a sequence is defined as the number of

messages sent either by the client or the server.

Many solutions have been deployed to efficiently re-

assemble TCP packets. For instance, responders like iSink

[15] are built as a Click kernel module [11] in order to use

a fast flow reassembler, while another possible solution is

used in [13] and consists in directly using an existent IDS.

We did not use any of those solutions and decided to imple-

ment our own to easily customize it to our needs.

2.2.1 Rebuilding TCP sequences

One of the first design problems is to define an optimized

algorithm to parse the tcpdump file and rebuild the conver-

sation between clients and server, correctly handling du-

plicated and out-of-order packets. We have to take into

account the fact that the client may not respect the classi-

cal TCP state machine in order, for instance, to implement

IDS evasion techniques. Therefore, ScriptGen rebuilds TCP

flows on the basis of the following assumptions:

• A packet is interesting only if it’s carrying a payload.

Every pure-ACK packet, for instance, is ignored by

ScriptGen. Retransmissions are also ignored. Only

packets containing a TCP payload are considered.

• A TCP session starts with the first SYN packet. For

every new SYN packet, ScriptGen allocates all the data

structures necessary to handle the new flow.

• A TCP session ends with the first FIN/RST packet en-

countered. When one of the two communicating par-

ties decides to end the conversation, the conversation

is considered finished.

• The TCP sequence number is used as an index of an

array where we store the payload. This enables Script-

Gen to handle out of order packets as well as retrans-

missions. In that last case, the very first packet is ac-

cepted. Following ones are discarded.

We acknowledge the fact that these assumptions may cause

trouble in the general case. For instance, packet checksum

is not computed and therefore transmission errors are not

detected; also, incorrect sequence numbers in the IP header

may lead to the allocation of huge amounts of memory.

2

M e s s a g eF a c t o r y S M B u i l d e r S M S i m p l i fi e r S c r i p tG e n e r a t o rM e s s a g eS e q u e n c e s C o m p l e xS t a t e M a c h i n e S i m p l i fi e dS t a t e M a c h i n eP rot ocol port
E mul ati on S cri ptT C P D U M P S e q u e n c eR e q u e s t

M axi mum C ompl exi t y V ari ousparams (Th resh old s)
Addi ti onal Fil t ers

Figure 1. General structure

Nevertheless, based on our experience with several months

of data, they appear to be satisfactory for our specific needs.

2.3 State Machine Builder

The State Machine Builder creates a complex State Ma-

chine from the message sequences generated by the Mes-

sage Sequence Factory. The state machine is created in an

iterative way, by adding all observed message sequences

one by one.

The State Machine is composed of edges and states. For

a given state, the outgoing edges represent the possible tran-

sitions towards the next future state. Each edge is labeled

with a message representing the client request which will

trigger that transition, while each state is labeled with a

message representing the answer that the server will send

back to the client when entering it. Every edge label has

also a weight. The weight represents the frequency with

which samples have traversed that specific transition.

It is worth pointing out that if the answer provided by a

server is a function not only of the past exchanges but also

of some external factor, such as, for instance, the time of

the day, then a given state could have more than one label.

In other words, a given exchange of messages may lead to

two, or more, different answers from the server. Therefore,

server labels are maintained in arrays. The frequency of

each label is also kept. The most frequent one is the default

choice when the script has to generate a reply.

In order to avoid overly complex State Machines, two

thresholds are defined: the maximum fan-out of one state

and the maximum number of states. The maximum fan-out

is the maximum allowed number of outgoing edges from

one state.

Figure 2 shows a simple example of State Machine. The

first state is labeled with the server message S0. Of course,

C 1C 2C 3[S 0] [S 1 , S 1 '][S 2][S 3]
Figure 2. Simple example of State Machine

if the protocol is not sending a welcome message when

the connection is opened, then this message will be empty.

There are three outgoing edges representing three differ-

ent client messages: C1, C2 and C3. Each of the edges is

connected to a state having a label containing one or more

server messages.

2.4 State Machine Simplifier

The previous algorithm creates a basic state machine

without any notion of protocol semantics. This state ma-

chine is specific to the sample tcpdump file from which it

has been generated and lacks generality: it is not able to

handle anything that has not already been seen. In the next

steps, we simplify and generalize this state machine.

A simple Instant Messaging protocol, whose sample

messages are shown in table 1, is given in order to better

understand the problem. Once connected to a server, we

observe the client sending 12 messages. Each of them is

3

1. GET MSG FROM <bob>

2. SEND MSG TO <john> DATA: "Hi!"

3. GET MSG FROM <marty>

4. SEND MSG TO <ken> DATA: "I’m coming"

5. GET MSG FROM <corrado>

6. GET MSG FROM <liz>

7. SEND MSG TO <bill> DATA: "Be patient"

8. GET MSG FROM <robert>

9. SEND MSG TO <diego> DATA: "Sorry"

10.SEND MSG TO <miki> DATA: "It’s beautiful"

11.SEND MSG TO <dan> DATA: "See you"

12.GET MSG FROM <rei>

Table 1. Simple IM protocol

represented in the initial state machine by an edge with a

specific label, coming out of the initial state. In this case,

the number of outgoing edges from the root node is propor-

tional to the number of usernames and messages sent in the

system, which is certainly not good. The State Machine is

then too specific, and will not be able for instance to handle

a new user that was not present in the sample file. There is

a need for abstraction in order to generate from this list of

transition labels some more generic patterns.

This problem is due to the fact that we ignore the se-

mantics of the messages. We should, in fact, have only two

edges leaving the initial state. One would be labeled “GET

MSG FROM <username>” and the other one “SEND MSG

TO <username> DATA”. As we aim at deriving scripts au-

tomatically, without trying to understand the protocol, we

need to find a technique that is able to retrieve that notion of

semantics for us. This is where the simplification module

comes into play. It is based on two distinct notions, macro-

clustering and microclustering, explained here below.

2.4.1 The basics

In the macroclustering phase, we run a breadth-first visit

of the initial state machine and gradually collapse together

states whose edges are considered to be semantically simi-

lar. Finding “semantically similar messages” implies that

we are, somehow, able to infer the semantics of the ex-

changed messages. This is a problem partially addressed

by the Protocol Informatics Project (PI) [3]. They have

proposed a clever approach to reverse engineer protocols

thanks to novel pattern extraction algorithms initially de-

veloped for processing DNA sequences and proteins.

PI is supposed to facilitate manual analysis of protocols.

We have used it slightly differently to automatically rec-

ognize semantically equivalent messages and, from there,

simplify the state machine as explained before.

PI offers a fast algorithm to perform multiple alignment

on a set of protocol samples. Applied to the outgoing edges

of each node, PI is able to identify the major classes of mes-

sages (distinguishing in the example in table 1 GET mes-

sages from SEND messages) and align messages of each

class using simple heuristics. The result of the PI alignment

for the GET cluster is shown in table 2. ScriptGen uses PI

output as a building block inside a more complex algorithm

called Region Analysis.

2.4.2 Region Analysis

Figure 3 shows the relationship between PI and the whole

Region Analysis process. PI aligns the sequences and pro-

duces a first clustering proposal (macroclustering). Then,

we have defined a new algorithm called Region Analysis

that takes advantage of PI output to produce what we call

microclusters.

Looking at the aligned sequences produced by PI on a

byte per byte basis (see table 2), we can compute for each

aligned byte:

• its most frequent type of data (binary, ASCII, zero-

value, ...)

• its most frequent value

• the mutation rate (that is, the variability) of the values

• the presence of gaps in that byte (we have seen samples

where that byte was not defined).

On this basis a region is defined as a sequence of bytes

which i) have the same type, ii) have similar mutation rates,

iii) contain the same kind of data and iv) have, or not,

gaps. A region can be seen as a piece of the message which

has some homogeneous characteristics and, therefore car-

ries probably the same kind of semantic information (e.g. a

variable, an atomic command, white spaces, etc..)

Macroclustering builds clusters using a definition of dis-

tance which simply counts the amount of different bytes be-

tween two aligned sequences. However, sometimes a single

bit difference, e.g. in a bitmask, can be something important

to identify. Therefore, to complement that first approach,

microclustering computes another distance thanks to the

concept of region-wide mutation rate, that is the variability

of the value assumed by the region for each sequence. Fo-

cusing on each region, microclustering assumes that if some

values are coming frequently, they probably carry with them

some sort of semantic information. In the example in figure

4, we see that macroclustering cannot make any distinction

between an HTTP GET which is retrieving an image file

and one that is retrieving an HTML file. Indeed, the dis-

tance between those two sequences is not significant enough

to put them into different clusters. However, when looking

at each region, microclustering searches for frequent values

and creates new microclusters using them. Microclustering

introduces an interesting property in the Region Analysis

simplification algorithm: frequently used functional parts

4

0012 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c x77 x71 x72 x61 x66 ___ ___ ___ x3e

0001 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c ___ x75 x73 x65 x72 ___ ___ x61 x3e

0005 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c ___ x64 x73 x61 x66 ___ ___ x61 x3e

0006 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c ___ ___ ___ x68 x66 x67 x68 x66 x3e

0003 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c ___ ___ ___ x61 x62 x63 ___ ___ x3e

0008 x47 x45 x54 x4d x53 x47 x46 x52 x4f x4d x3c x65 x71 x74 x73 x64 x67 ___ ___ x3e

DT AAA AAA AAA SSS AAA AAA AAA SSS AAA AAA AAA AAA SSS AAA GGG AAA AAA AAA AAA AAA GGG AAA AAA

MT 000 000 000 000 000 000 000 000 000 000 000 000 000 000 050 066 066 066 066 050 033 050 000

ASCII G E T _ M S G _ F R O M _ < ? ? ? ? ? ? ? ? >

Table 2. Result of PI alignment

P I R e g i o nA n a l y s i smacro jclusters regi ons mi cro ycl ust ers
m u l t i p l e a l i g n m e n t

Figure 3. Region analysis sequence of operations

G E T A BCD . H T T P / 1 . 1g i fg i fh t mh t m
G E T A B . H T T P / 1 . 1g i fg i fG E T CD . H T T P / 1 . 1h t mh t m

G E T * . * H T T P / 1 . 1
G E T * . g i f H T T P / 1 . 1

G E T * . h t m H T T P / 1 . 1
Figure 4. Example of microclustering

of the protocol (for which there is a high number of sam-

ples in the sequences) have higher probability of being put

in a separate microcluster. So the emulation will be more

refined for the most common functional parts.

Thus, the Region Analysis process achieves the targeted

goal: it is able to add generality to a complex and specific

state machine and it identifies the regions carrying a seman-

tic value, that is, regions to be taken into consideration when

determining the future state during simulation.

2.4.3 Dependency handling

Some of the identified regions play a specific role in the ex-

change of messages. They are those changing elements sent

by a client that it expects to see sent back by the server. Ses-

sion IDs are one such example. It is thus important to search

for dependencies between regions of subsequent messages.

ScriptGen handles this kind of dependency between

client messages and the future server answers by taking into

consideration what it calls Random Regions. Random Re-

gions are regions having a very high mutation rate, near to

100%. The dependency handler looks at the value of these

regions for each sample sequence, and tries to find the same

value in the corresponding server answer. If there is a match

that is common to all the sample sequences traversing that

specific transition, then the dependency handler stores the

5

link that will be used during the emulation of the state ma-

chine.

Other types of dependencies come to mind that could be

searched for. One can think of counters that are increased,

or sequence numbers to which other values are added, etc.

Not all dependencies can be automatically found and iden-

tifying precisely which ones can or cannot be handled by a

similar approach is left for future research.

2.5 Script Generator

Once the State Machine is simplified, it is necessary to

store it in such a way that it can be simply and efficiently

emulated by a Python script usable by Honeyd. In our first

prototype, this has been implemented as a simple service

script: a new instance of the interpreter is created for each

incoming client connection. For each state, the emulator

prints the label (if present) and then fetches the client re-

sponse, using the Region Analysis output to decide the fu-

ture state. This is clearly not satisfactory from a perfor-

mance point of view for a heavy loaded honeypot but is

good enough as a proof of concept to validate the method.

It is important to choose a good algorithm to match in-

coming messages with all possible transitions. Reusing the

same alignment algorithm is not feasible since it requires

a huge amount of resources, much more than what is usu-

ally available in deployed honeypots. A simpler technique

had to be found. The Script Generator focuses on the re-

gions that Region Analysis has identified as important from

a semantic point of view. They are called Fixed Regions as

opposed to the Mutating Regions which are likely to con-

tain changing parameters. The emulator implements a reg-

ular expression matching algorithm where only the Fixed

Regions are considered with variable intervals of unknown

characters between them. In case of a match, the emula-

tor calculates a similarity score between the incoming mes-

sage and the found message. The transition with the highest

score is then chosen to reach a new state.

3 Expected Quality of the results

3.1 Known limitations

The approach described in the previous Section presents

a series of problems and limitations which we are well

aware of. The emulated protocol won’t behave exactly like

the original protocol since some approximations have been

introduced. It is possible to distinguish between two types

of limitations: deviations due to the approximation intro-

duced by simplification, and those that are implicit in the

approach followed.

3.1.1 Deviations due to approximation

ScriptGen has been designed to be completely automated,

without any possibility of helping the simplification with

additional information about the protocol behavior. This

can be seen as an advantage, since it allows the emulation

of any protocol of any kind without any knowledge about

it. But this may also lead to challenges in performing a sim-

plification which does not degrade too much the emulation

quality.

First of all, the quality of the emulation depends heavily

on the value of the thresholds chosen in the whole process.

These thresholds influence the growth of the state machine

(maximum fan-out) and its complexity (maximum number

of nodes), and also the strength of the simplification (clus-

tering thresholds). It may be difficult to find a good com-

bination of these parameters, and it may be interesting to

study their impact in order to find out if it is possible to iden-

tify combinations that can be considered good in all cases,

or if the optimal value is protocol-dependent. This question

will be addressed in some more depth in section 3.2.

Also, the sample tcpdump file has a huge impact on the

final result. In fact, the characteristics of the protocol are

uniquely deduced from this sample file. On the one hand,

the knowledge of the protocol that can be used by the em-

ulator is limited to the sample’s content: the emulator will

not be able to handle an activity that was not enclosed in it.

On the other hand, the simplification uses the frequency of

the various activities seen in it to define the various func-

tional parts, identifying the semantically important regions.

Only good interaction samples, using all the functionality of

the protocol and presenting good diversity will lead to good

results. To better understand this concept, an example may

be useful. Thinking back to the simple protocol exposed in

table 1 on page 4, a bad sample file may contain only the

following sequences:

GET MSG FROM <user1>

GET MSG FROM <user2>

Those two sequences, when parsed by Region Analysis,

would lead to identifying a transition in the state machine

triggered by all the sequences matching the following regu-

lar expression:

GET MSG FROM <user?>

Of course this would be wrong, and a new user logging as

“dave” would not trigger the transition, probably forcing the

emulation to end prematurely. This is just a simple example,

but highlights the importance that a good sampling has in

the generation of the state machine.

6

3.1.2 Implicit limitations

ScriptGen implicitly introduces some limits that prevent it

from being able to emulate all possible protocols. The first

limit can be found in the fact that the notion of state in

ScriptGen is local to the TCP session or to the UDP re-

quest/reply tuple. This leads to the fact that handling causal-

ity between different conversations (e.g. FTP control/data

sessions) is not possible. Also, if the server response de-

pends on a definition of state which is out of the scope of a

TCP session (for instance, time of the day) ScriptGen won’t

be able to handle it and so the results of the simulation may

not be precise.

Also, ScriptGen is obviously not able to cope with en-

crypted channels: it is able to replay only payloads that

have been already seen in the tcpdump file. Cryptogra-

phy offers mechanisms, like challenge-based authentica-

tion, especially intended to prevent a malicious user from

re-authenticating by replaying the same payload, as Script-

Gen would do.

3.2 Similarity tests

It can be interesting to study the impact of the simplifica-

tion parameters on the quality of the emulation, defining as

quality the similarity between the behavior of the emulated

server and the behavior of the real one. To investigate this

concept, we have developed a simple tool. This tool is able

to parse a sample tcpdump file containing pieces of interac-

tion between clients and a real server, and to replay these se-

quences to benchmark the emulated server. The idea is quite

simple: we want to send the client messages to the emulated

server, and to compare its answers with those contained in

the tcpdump file itself using byte-oriented pairwise similar-

ity. We understand that the next version of TCPopera offers

the same replay feature [10]. TCPopera is a TCP traffic ma-

nipulation tool that extends the capabilities of TCPreplay

[2] to reproduce realistic traffic. We will most likely use it

in the future to conduct more tests but it was unfortunately

not yet publicly available when we needed it.

During this test two parameters have been taken into con-

sideration:

• Macroclustering threshold (W): this threshold controls

the impact of macroclustering, defining the minimum

distance between two sequences that should lead to put

them into two different clusters. If W is small, Region

Analysis will create many small clusters, leading to a

complex and detailed state machine. If W is big, then

Region Analysis will create a few big clusters that will

eventually be split a second time by microclustering.

• Microclustering threshold (w): this threshold controls

the way microclustering behaves, defining the fre-

quency of the value of a region that should lead to the

 10

 15

 20

 25

 30

 35

 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 10

 15

 20

 25

 30

 35

 40

"nodes.dat"

micro (w)

macro (W)

Figure 5. Number of nodes

creation of a separate microcluster representing only

that value. So when w is set to small values, microclus-

tering will split macroclusters into many microclusters.

On the other hand, if w is set to high values microclus-

tering will not have any effect.

3.2.1 The testbed

The test environment consists of one honeyd virtual host,

emulating the NETBIOS Session Service (port TCP/139),

and a client host running the sequences against the emu-

lated server. The state machine has been built based on a

sample interaction taken from a VMware honeypot from the

Leurre’com project [4, 5, 6, 7, 8, 9]. The test has been run

in the ideal case, in which the sequences used to evaluate

the emulation are the same than those used to build its State

Machine. The emulator, in this case, will never face un-

known activities.

3.2.2 Results

The results are shown in figure 5 and 6. Figure 5 shows

the variation of the number of nodes of the simplified state

machine as a function of the microclustering and macro-

clustering thresholds. As it is possible to see, the shape in

figure 5 is quite regular and, as expected, leads to the high-

est number of nodes in the following two cases:

• W=0, meaning that every sequence belongs to a differ-

ent macrocluster

• w=0, meaning that for every macrocluster, every se-

quence is assigned to a different microcluster

It is clear that in those two cases the number of nodes cannot

be reduced by Region Analysis. The highest simplification

will correspond to the point in which w=1 and W=1, since

7

A.

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

micro (w)

macro (W)

B.

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

micro (w)

macro (W)

C.

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

micro (w)

macro (W)

D.

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

micro (w)

macro (W)

Figure 6. Score for some sequences

in that case sequences are grouped into big macroclusters,

and microclustering effect is null.

Figure 6 represents the behavior of the similarity score

for four different sequences as a function of the microclus-

tering and macroclustering thresholds. The similarity score

is an index of the pairwise similarity between the sequences

generated by the emulated server and those generated by the

real one. Lighter colors correspond to higher scores, darker

colors to lower ones. It needs a bit more interpretation since

the results are not straightforward.

Diagrams A and B correspond to two sequences behav-

ing in the expected way, with a similarity score which fol-

lows the amount of simplification. Going towards the point

(1,1) the score degrades: it is interesting to see that the score

does not decrease gradually as the number of nodes of the

state machine, but one can observe abrupt changes for some

distinct values of W and/or w. This can be explained with

the execution of a new collapse in the simplification algo-

rithm on the state machine path followed by the sequence,

that leads to putting into the same cluster transitions that

belong to different functional parts.

Diagrams C and D show two sequences having a more

peculiar behavior: with big macroclusters, average values

for the microclustering threshold lead to worse values than

when microclustering is disabled (w=1). This means that

microclustering can lead in some situations to incorrect re-

sults, worse than the results it would be possible to obtain

by disabling it. A possible explanation for this phenomenon

can be found by thinking back to the interaction between

microclustering and multiple alignment. Multiple align-

ment’s objective is to maximize the similarities between the

bytes of the different sequences by inserting gaps in order

to align them. In a certain way, multiple alignment’s final

objective is to maximize the impact of microclustering by

focusing exactly on those similarities and by assigning a se-

mantic value to them. This approach is theoretically good,

assuming a set of samples of infinite size. Indeed, in that

case, mutating regions, without any semantic value, will be

interpreted as such and correctly handled by microcluster-

ing. If the set of samples has finite size, Region Analysis

and more specifically microclustering are not able to dis-

tinguish between occasional similarities between bytes and

similarities due to a real semantic value of that specific pro-

tocol region. In the testbed the tcpdump sample is kept as

small as possible for simplicity and for computational rea-

sons, and so this can lead to insufficient sample data for

microclustering to work correctly.

4 Experimental validation

The most interesting question that was left unanswered

so far is if the quality of the ScriptGen-based honeypots is

8

good enough to fool attack tools in exchanging with them

more messages and hence more information about them-

selves than with a normal honeyd platform without any

script. Similarity scores are useless to answer that question

since they are not able to give clues on the real behavior of

the emulation: there is no way of knowing whether the de-

viations observed in those tests can be considered relevant

enough to stop the conversation with the client or not.

In order to address this point, a real ScriptGen honeypot

has been deployed on the Internet in March and April 2005.

The following ports were being emulated using honeyd [14]

scripts:

• TCP Port 80 (HTTP), emulated by ScriptGen

• TCP Port 135 (DCE endpoint resolution), only opened

• UDP Port 137 (NetBios Name Service), emulated by

ScriptGen

• TCP Port 139 (NetBios Session Service), emulated by

ScriptGen

The sample tcpdump file has been built using samples of

interaction extracted from high interaction honeypots data

provided by the Leurre’com project [4, 5, 6, 7, 8, 9]. That

file contained requests from 1107 different clients observed

in a 5 months period against a VMware honeypot.

4.1 NetBios scanners

A first attempt to evaluate the performance of the Script-

Gen emulation has consisted in trying to run different well

known NetBios scanners1 against our automatically gener-

ated script. All the scanners have correctly identified the

host using the NetBios Name Service, correctly fetching the

informations from the emulated host exactly like from a real

one. So the ScriptGen honeypot is able to behave correctly

in these simple scenarios, being equivalent to the emulation

given by a high interaction honeypot running VMware.

4.2 Comparison with a high interaction honeypot

To have a better and more complete evaluation of the

ScriptGen-based honeypot, it has been deployed on the In-

ternet and put on the same subnet with the VMware high

interaction honeypot. It has thus been possible to compare

the reactions of the two different honeypot implementations

placed in an homogeneous environment.

In [12], authors conclude that IP addresses can be con-

sidered free of the so called “DHCP artifacts” for periods

1“SoftPerfect Network Scanner” (http://www.softperfect.com); “Ad-

vanced IP Scanner” (http://www.radmin.com); “Angry IP Scanner”

(http://www.angryziber.com)

Clients seen by ScriptGen honeypot 333

Clients seen by VMware honeypot 325

Clients seen by both 45

Clients seen by both performing non-null activity 30

Table 3. Results of the comparison

VM length SG length Sim.Vector

16 4 [C:1.0 S:1.0 C:1.0 S:0.8]

18 4 [C:1.0 S:1.0 C:1.0 S:0.8]

12 4 [C:1.0 S:1.0 C:1.0 S:0.8]

16 4 [C:1.0 S:1.0 C:1.0 S:0.8]

Table 4. Activity comparison

shorter than 24 hours. This means that on such periods,

each IP address can be uniquely bound to a single attacking

client, even if it is dynamically assigned (as it often happens

when clients are connecting to the Internet through ISPs).

So analyzing the two months of collected data day by day,

it has been possible to search for clients performing their

activities on both honeypots, finding IP addresses common

to both environments.

Table 3 shows the results that have been extracted from

the observation of the tcpdump files for the two environ-

ments during the two months. For the sake of conciseness,

we focus only on the NetBios TCP port 139 for which we

had the most complex ScriptGen state machine. Both envi-

ronments see the same amount of attacks (around 300) but

only 45 attackers have hit both of them.

In table 4 it is possible to see the behavior of a single

sample client attacking both environments. The first two

columns show the length of the observed sequences gener-

ated by the client, that is the number of client and server

messages the sequence is composed of. It is possible to see

that the ScriptGen environment is performing in quite a pe-

culiar way, generating conversations always of length 4 in

the dialog with the client. This behavior can be observed

in the conversations with many different clients, since 1992

sequences (67% of the total) generated by the ScriptGen

honeypot always have exactly that length. It may be inter-

esting to compare the messages sent by the ScriptGen hon-

eypot with those sent by the VMware environment to better

understand the reasons for this phenomenon. This is done

in the third column of table 4 using Similarity Vectors. Sim-

ilarity Vectors are arrays of similarity scores for the various

messages in the sequence: in this case each message of the

SG sequence is compared with each message of the VM

one. The table shows that the first client request, the corre-

sponding answer and then the second client request in the

two environments are identical. There is instead a discor-

9

dance in the answer that the two environments are giving

to the second client request (80% similarity score): this dis-

cordance may lead the client to refuse the ScriptGen answer

and to prematurely close the TCP session. Another fact that

seems to confirm this hypothesis is that while each client

usually performs each activity only once on the VMware

environment, there are multiple subsequent attempts of run-

ning the activity on the ScriptGen honeypot.

We have analyzed the conversation with a protocol ana-

lyzer [1] and found out that the reason for ScriptGen’s em-

ulation failure has to be found in a preliminary and still in-

complete implementation of the Dependency Handling (see

section 2.4.3 on page 5). SMB Header in fact contains a

field called Process ID, which uniquely identifies the con-

sumer process within a virtual connection. The server an-

swer must contain the same Process ID than the request to

be considered valid and to be accepted by the client. Since

the Dependency Handling support is still in a preliminary

stage inside ScriptGen, it was inactive during the emulation

and so the emulator has used in the answer the Process ID

that had been seen in the tcpdump samples, without modify-

ing it in order to satisfy the dependency: as a consequence,

the answer was naturally rejected by the client who subse-

quently then closes the conversation.

We have fixed the problem and we have replayed the

messages observed in the VMware environment against this

new script, and the new results have highlighted the impor-

tance of the dependency handling feature. Several correct

messages have then been exchanged; however, the emulator

does provide erroneous replies a few steps before the end.

This can be due to the fact that the observed client activity

was not present in the initial tcpdump sample file. In fact,

the emulator is able to handle correctly only behaviors that

have been previously seen in the sample data, and may not

be able to handle new kinds of activities that may be gen-

erated by a new tool or worm that was not yet spread in

the period during which the sample has been built. This is

confirmed by the fact that after a certain point in the conver-

sation the certainty level with which the emulator is inter-

nally choosing the future state drastically drops to less than

50%. Even if this level is not acceptable, ScriptGen emula-

tor chooses to carry on the conversation in any case, since

there may still be a remote possibility of sending a good

answer.

ScriptGen emulators, as already mentioned, may not al-

ways handle correctly newly encountered activities. In the

context of the Leurre’com project [4, 5, 6, 7, 8, 9] we are

more interested in gathering long term statistical data over

attacks, therefore detecting promptly new activities is not

one of our main objectives. Nevertheless low certainty lev-

els may be interpreted as a signal of this situation, and there-

fore they may trigger appropriate reactions. An incremental

version of the Region Analysis algorithm, allowing to refine

an existing state machine with new samples, is still a work

in progress.

4.3 Region Analysis validation

In Section 2.4.2 on page 4 the Region Analysis is posited

as being able to identify the semantically important parts

of the protocol, in order to generate some sort of pattern

matching able to discriminate between incoming client re-

quests and correctly choose the future state. Here it may

be interesting to see the impact of Region Analysis on a

real case example, analyzing the label of one of the tran-

sitions of the NetBios Session Service state machine (TCP

port 139) used in the ScriptGen honeypot. The analyzed

packet is a Negotiate Protocol Request, sent by the client

in the initial opening steps of a conversation on that port.

To understand the meaning of the various fields, a protocol

analyzer has been used [1]. The fields that Region Analysis

considers as important for discriminating between the var-

ious incoming packets are shown below, together with the

values considered as discriminating for the transition:

NetBIOS Session Service

• Message type: Session Message

• Flags: 0x00

• (Message length is correctly not considered as discrim-

inating)

SMB Header

• Server component: SMB

• SMB Command: Negotiate Protocol

• NT Status: STATUS_SUCCESS

• Flags: 0x18 (characterize the type of query)

• (Flags2 are considered as mutating, and include re-

quest for Unicode Strings and other stuff)

• Signature: all zeroes

• Reserver: all zeroes

• (Process ID is correctly considered as mutating)

• (UserID is mutating)

• (MultiplexID is mutating)

Negotiate Protocol Request

• (WordCount is mutating)

• (ByteCount is mutating)

• (The list of dialects is considered as mutating)

10

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 15 20 25 30 35 40

S
c
o
re

Number of nodes

’score.dat’

Figure 7. Similarity score as a function of

complexity

So Region Analysis is correctly identifying the fields that do

really have a semantic meaning (as, for instance, the name

of the SMB Command) and is able to distinguish them from

those that don’t carry any semantic value (as the Process

ID). The original state machine would not have been able to

correctly handle a packet having a different Process ID from

the one used in the sample, since it did not have any way of

knowing the semantic value of that difference. After Region

Analysis, the emulator is able to know that the Process ID

field does not carry any semantic information for the choice

of the future state, and correctly ignores such differences.

This highlights the importance of the macroclusterings

and microclusterings and that a trivial bytewise pattern

matching approach is certainly not an appropriate way to

handle this issue.

4.4 Relationship between complexity and emula­
tion quality

It has been shown in the previous Section that the Script-

Gen honeypot has been able to carry on a conversation for a

certain number of steps. The question is if there is any sort

of control over the number of steps, in order to be able to

carry on the conversation with the client as long as needed.

Elaborating the results obtained in 3.2 for a given se-

quence in order to correlate the number of nodes of the state

machine with the obtained similarity score, it is possible to

obtain the curve shown in figure 7. From this curve it is pos-

sible to obtain a direct relationship between the complexity

of the state machine and the similarity score, that is the aver-

age of the values in the vectors seen in the previous section.

The similarity score is equal to 1.0 if and only if the con-

versation generated by the emulated server is identical in

content and length to the conversation that would be gener-

ated by a real server. If the conversation is shorter, the score

will be lower. So a higher similarity score corresponds to

a higher number of steps in the conversation between client

and server.

It is then possible to state that there is a proportion be-

tween the complexity of the state machine and the quality

of the emulation, in a trade-off between simulation quality

and use of resources. The more resources are available for

the script, the better the evaluation of the emulated service.

5 Conclusions

ScriptGen is a tool able to create honeyd-compatible em-

ulators for any protocol using a given sample of interaction.

No assumptions are made about the nature of the protocol,

so it can be applied to a very wide range of different proto-

cols without any a priori knowledge of their behavior.

When tested with the SMB protocol, ScriptGen has

shown a certain sensitivity to the choice of the simplifica-

tion parameters and to the sample tcpdump file showing the

theoretical interaction. In any case it has generated emula-

tors that were good enough to carry on a valid conversation

with a client for a certain number of steps. This number de-

pends on the complexity of the built emulator. The greater

that complexity, the better the results in fooling the attack

tools.

Preliminary results with this approach are extremely en-

couraging. They open a new avenue for research and also

provide some practical results that will enable honeyd users

to dramatically improve the emulation capabilities offered

by this architecture. There is certainly room for improve-

ment: dependency handling has to be enhanced and more

validation needs to be carried out. Also, dynamic evolution

of the state machine when new activities are encountered

may represent a new interesting research topic. However, as

it is, the method brings novel and important contributions on

the table, namely i) enrichment of the PI algorithm thanks

to the region analysis algorithm, ii) a novel method to au-

tomatically create honeyd scripts for a very large class of

services and protocols, even if proprietary, iii) a sound val-

idation methodology which provides convincing arguments

in favor of the usefulness of the method.

References

[1] Ethereal, the world’s most popular protocol analyzer.

http://www.ethereal.com accessed at 03/09/2005.

[2] The tcpreplay official homepage. tcpreplay.

sourceforge.net accessed at 03/09/2005.

[3] M. A. Beddoe. Network protocol analysis using bioinfor-

matics algorithms. http://www.insidiae.com/PI

accessed at 03/09/2005, 2005.

11

[4] M. Dacier, F. Pouget, and H. Debar. Attack processes found

on the internet. In NATO Symposium IST-041/RSY-013,

Toulouse, France, April 2004.

[5] M. Dacier, F. Pouget, and H. Debar. Honeypot-based foren-

sics. In Proceedings of AusCERT Asia Pacific Information

Technology Security Conference 2004, Brisbane, Australia,

May 2004.

[6] M. Dacier, F. Pouget, and H. Debar. Honeypots, a practi-

cal mean to validate malicious fault assumptions. In Pro-

ceedings of the 10th Pacific Ream Dependable Computing

Conference (PRDC04), Tahiti, February 2004.

[7] M. Dacier, F. Pouget, and H. Debar. Towards a better un-

derstanding of internet threats to enhance survivability. In

Proceedings of the International Infrastructure Survivabil-

ity Workshop 2004 (IISW’04), Lisbonne, Portugal, Decem-

ber 2004.

[8] M. Dacier, F. Pouget, and H. Debar. Honeynets: foundations

for the development of early warning information systems.

In J. Kowalik, J. Gorski, and A. Sachenko, editors, Proceed-

ings of the Cyberspace Security and Defense: Research Is-

sues, 2005.

[9] M. Dacier, F. Pouget, and H. Debar. Leurre.com: On the

advantages of deploying a large scale distributed honeypot

platform. In Proceedings of the E-Crime and Computer

Conference 2005 (ECCE’05), Monaco, March 2005.

[10] G. H. Hong and S. F. Wu. On interactive internet traffic re-

play. In 8th Symposium on Recent Advanced Intrusion De-

tection (RAID), LNCS, Seattle, September 2005. Springer.

[11] E. Kohler. The Click modular router. PhD thesis, MIT,

November 2000.

[12] D. Moore, C. Shannon, and J. Brown. Code red: a case study

on the spread and victims of an internet worm. In Proceed-

ings of ACM SIGCOMM Internet Measurement Workshop,

November 2002.

[13] Pang, Yegneswaran, Barford, Paxson, and Peterson. Charac-

teristics of background radiation. In Proceedings of the 4th

ACM SIGCOMM conference on the Internet Measurement,

2004.

[14] N. Provos. A virtual honeypot framework. In Proceedings of

the 12th USENIX Security Symposium, pages 1–14, August

2004.

[15] V. Yegneswaran, P. Barford, and D. Plonka. On the design

and use of internet sinks for network abuse monitoring. In

Proceedings of the Network and Distributed Security Sym-

posium (NDSS), February 2004.

12

