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Abstract— Analyzing Internet traffic at packet level involves
generally large amounts of raw data, derived data, and results
from various analysis tasks. In addition, the analysis often
proceeds in an iterative manner and is done using ad-hoc methods
and many specialized software tools. These facts together lead
to severe management problems that we propose to address
using a DBMS-based approach, called InTraBase. The challenge
that we address in this paper is to have such a database
system (DBS) that allows to perform analysis efficiently. Off-
the-shelf DBMSs are often considered too heavy and slow for
such usage because of their complex transaction management
properties that are crucial for the usage that they were originally
designed for. We describe in this paper the design choices for
a generic DBS for packet-level traffic analysis that enable good
performance and describe how we implement them in the case of
the InTraBase. Furthermore, we demonstrate their importance
through performance measurements on the InTraBase. These
results provide valuable insights for researchers who intend to
utilize a DBMS for packet-level traffic analysis.

I. INTRODUCTION

Internet traffic analysis is a discipline that involves typically
large amounts of data. In off-line traffic analysis the raw traffic
data, such as TCP/IP packet headers, is generally processed
and analyzed in many ways. Each analysis task generates new
data that needs to be stored and possibly processed again later.
In other words, traffic analysis is often an iterative process: A
first analysis is performed and based on the results obtained,
new analysis goals are defined for the next iteration step.
Today, the state of the art of traffic analysis tools is handcrafted
scripts and a large number of software tools specialized for a
single task. These facts together lead to the following major
issues1:

Management: We identify two problems: 1) many tasks are
solved in an ad-hoc way using scripts that are developed from
scratch, instead of developing tools that are easy to reuse and
understand and 2) traffic analysis involves large amounts of
data. By data we mean not only the traffic traces containing
unprocessed packet data, but also all derived data generated by
each analysis task. However, the tools used generally do not
provide any support for managing these large amounts of data.
Therefore, the data is typically archived in plain files in a file

1These issues are also to some extent discussed in [10] and [9].
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Fig. 1. Cycles of Tasks for the Iterative Process of Off-line Traffic Analysis.

system. Depending on the number of files and the skills of the
researcher to properly organize them, the later retrieval of a
particular trace or data item may be a non-trivial problem. As
Paxson [12] has pointed out the researchers themselves often
cannot reproduce their own results.

Analysis cycle: A common workflow to analyze network
traffic proceeds in cycles (see Figure 1(a)). Since the semantics
of the data are not stored during the analysis process, reusing
intermediate results becomes cumbersome and usually the pro-
cess needs to restart again from the raw data after modifying
the scripts.

Scalability: Scalability is an important issue in traffic
analysis and poses a problem as the amount of data is typically
large. Already packet traces larger than 5 GB may pose
serious problems for certain tools because of too large memory
or run-time requirements. An example is the well-known tool
tcptrace [3].

In order to cope with the issues detailed above, we have
adopted an approach based on an object-relational database
management system (DBMS). It was first introduced in [14]
where we describe in detail how a DBMS-based method can
overcome the above mentioned problems. For example, Fig-
ures 1(a) and 1(b) illustrate the advantage of such an approach
to the traditional approach through the typical analysis process



TABLE I
CHARACTERISTICS OF DIFFERENT DBMS-BASED APPROACHES FOR TRAFFIC ANALYSIS.

Approach Aggregation Traffic Data Metadata SW Publicly Integrated On-
level volumes mgt mgt mgt available approach line

NetLogger/NetMiner [4] flow 10Gbit/s X X
LOBSTER [1] flow 10Gbit/s X X
Gigascope [6] (AT&T) packet stream Gbit/s X X
Internet Traffic Warehouse [5] (Telcordia) packet hundreds of MBytes/day X X X
IPMon [7] (Sprint Labs) packet TBytes X
InTraBase (Institut Eurecom) packet tens of GBytes/trace X X X X X

X = feature is supported
blank = feature is not at all supported or is implemented in an ad-hoc manner

cycle.
We have gathered significant experience on packet-level

TCP traffic analysis with our database system (DBS), called
InTraBase, by performing in-depth TCP traffic studies with
it [16] [15]. While DBMS-based traffic analysis methods are
very attractive because they can overcome the problems with
the traditional approaches stated above, the main challenge is
performance. Such an approach becomes useless if, in practice,
the performance does not allow to take full advantage of the
features provided by the DBMS to support complex analysis.
Because of their complex transaction management properties,
DBMSs are often considered too heavy, and, thus, too slow,
for intensive packet-level traffic analysis.

A typical off-the-shelf DBMS is optimized for a usage
pattern that is very different from the one we have with the
InTraBase. For example, the InTraBase generally does not
need to process many concurrent queries, and thus, we can
relax the parameters affecting the concurrent query processing
as much as possible in order to reduce performance overhead.
Therefore, tuning the DBMS to fit this specific usage is very
important. Furthermore, the characteristics of the traffic data
often lead to a certain specific query being extremely popular:
“give me all the packets from this connection in chronological
order”. Hence, to have acceptable performance, the design of
the DBS must take the nature of the data into account and
focus on optimizing the performance of this popular query.

Table I summarizes the differences between the various ex-
isting DBMS-based approaches for traffic analysis. The main
characteristics that differentiate InTraBase from the others are:
(i) InTraBase does pure off-line analysis and does not address
the packet capturing or on-line monitoring related issues at all,
(ii) InTraBase is designed for intensive packet-level analysis
on (iii) moderate size (< 50 GB) traffic traces. It is not a tool
to do, for instance, real-time network health monitoring for a
large ISP due to the immense amounts of data that would need
to be treated constantly, but it is rather a research tool for fine-
grained analysis of Internet traffic. We refer the reader to [14]
for more details on the comparison to the other approaches
listed in Table I.

We describe in this paper the main principle when de-
signing a DBS to support efficient analysis of packet-level
network traffic measurements and how to enforce this prin-
ciple. We base the design decisions on the characteristics of
this measurement data and the typical analysis process cycle.

We demonstrate the importance of correct design through
performance measurements in the particular case of managing
TCP/IP packet traces with the InTraBase.

In Sections II and III we describe first in a general manner
the important issues to consider when managing packet-level
traffic data with a DBMS, and then explain for each particular
issue how it is taken into account in the case of the InTraBase.
We discuss results from performance measurements in Section
IV and finally conclude with Section V.

II. MANAGING PACKET-LEVEL TRAFFIC DATA WITH A
DBMS

A. Storing and Querying Packets

Packet-level traffic data is commonly recorded in plain files
as packet traces which may contain hundreds of millions of
packets and millions of connections each. When storing this
data into the database, it is out of the question to store packets
from each connection into a separate table given the potential
large number of connections in a typical packet trace file. The
reason is that handling millions of tables in a single database
becomes very inefficient. In addition, querying more than a
single connection at once becomes very cumbersome since
each additional connection means joining an additional table
into the query. Storing packets from each trace into the same
table would eventually lead to performance problems when
the table size grows excessively. Hence, a logical approach is
to store packets from each trace into a separate table. In this
way, since the objective is to analyze packet traces smaller
than 50 Gbytes, the maximum table size stays reasonable.

The analysis tasks are generally performed for predefined
groups of packets within a trace. In the case of TCP traffic,
this group is typically a connection or a flow2. The latter can
be used also for traffic generated by a connectionless protocol
such as UDP. Having done extensively TCP traffic analysis,
the most common query that we have used is:
SELECT * FROM trace1 packets

WHERE connection id=x
ORDER BY timestamp

The above query, hereafter referred to as the c-query (from
connection and common), returns all the attributes (e.g. for
TCP traffic all the IP and TCP header fields and a timestamp)
of all the packets that belong to connection x from table

2A flow is usually defined as a part of a connection using a timeout or a
maximum packet count.



trace1 packets in chronological order. As indicated in
Figure 2, this query is executed in the beginning of each
typical analysis task and the analysis results, e.g. the number
of reordered packets, are computed by inspecting the query
results row by row. Finally, the result is stored into another
table or alternatively printed on the screen. Note that even if
the c-query is made more complex (e.g. by adding WHERE
rules or by joining in another table), the query processor of
the DBMS would translate it into the original c-query and
perform additional filtering and querying separately and merge
the results in the end. In other words, fetching packets for
a specified connection from the database boils every time
down to executing the c-query. We ignore the common queries
that do not involve querying packet-level data because their
contribution to the performance is negligible due to orders of
magnitudes smaller data sets. For example, before executing
analysis tasks in the way described in Figure 2, one may wish
to select a set of connections having certain characteristics
(e.g. more than 100 packets) for which these analysis tasks are
performed. The table storing per-connection statistics contains
only a very small fraction of the amount of rows that are stored
in the table holding the packets.

compute Result

SELECT * FROM trace1_packets

store or display Result

I/O intensive

CPU intensive

I/O or CPU intensive

                   WHERE connection_id=x
                   ORDER BY timestamp

Fig. 2. Executing a typical analysis task.

Case Study on InTraBase:
InTraBase runs on PostgreSQL DBMS mainly because of its
object-relational nature that allows to extend the functionality
through procedural language (PL) functions [14]. The layout
of the tables of the InTraBase are shown in Figure 3. We
can divide the tables into base tables and RCA (Root Cause
Analysis)3 tables.

Base tables are packets, connections, traces, and
cid2tuple. The table traces contains annotations about
all the packet traces that are uploaded in the database. The
packets table holds all packets for a single trace. The table
connections holds connection level summary data for all
traces. The cnxid attribute identifies a single connection
in a packet trace, reverse differentiates between the two
directions of traffic within a connection, and tid identifies
a single trace. Cid2tuple is a table to store a mapping

3The naming comes from the fact that they are used for TCP Root Cause
Analysis [16].

between unique cnxids and 4-tuples formed by source and
destination IP addresses and TCP ports. The attributes of
the packets table are directly from the verbose output of
tcpdump for TCP packets. The attributes of the other tables
were chosen.

The remaining tables form the set of RCA tables. Each
connection may be partitioned into several bulk transfer peri-
ods (BTP) and application limited periods (ALP) which are
stored into the bulk transfer and app period tables,
respectively. In addition, the n lim parameter can have values
from 0 to 1 with 0.05 steps for each connection. For details
about the BTPs and ALPs and the n lim parameter, we refer
the reader to [15]. Each BTP stored in the bulk transfer
table has additional characteristics computed and stored into
the bnbw test, rwnd test, and retr test tables.

Populating the base tables has been carefully explained in
[14]. The RCA tables are populated with the help of procedural
language (PL) functions written in PL/pgSQL and PL/r, and
C-language functions. Defining PL and C-language functions
is one of the ways in which PostgreSQL allows to extend
the functionality of the object-relational DBS. Each function
operates in the way described in Figure 2. It queries packets
for a given connection, computes one or several results, and
stores them into one of the RCA tables.

B. Tuning the DBMS

A standard off-the-shelf DBMS is optimized for processing
a large number of concurrent queries. It takes care of issues
related to parallel access to data and enforces atomicity of
transactions, etc. However, our experiences with the InTra-
Base suggest that the typical usage of a packet-level traffic
analysis DBS for research purposes generates a very different
workload: few users seldom issuing queries that commonly
are very I/O intensive touching large amounts of data (see
Section II-A for the c-query). In addition, several queries are
rarely executed simultaneously. In this case the DBMS must
be tuned to conform to the special usage.

The fact that concurrent query processing is rare allows
to set most of the buffer sizes high since they are normally
defined on per process, i.e. query, basis. For the majority of
DBMSs, it is possible to tune parameters such as memory
available for a sorting or index creation. Since the c-query
involves an ORDER BY operation and the queried connection
can contain up to millions of packets, it is important to set the
amount of memory available for sorting as high as possible.

Write-Ahead Logging (WAL), a.k.a. redo logging [8], is a
standard approach to transaction logging in DBMSs. Since
we can assume little parallel access to data, the WAL pa-
rameters can be set as lazy as possible, by setting the commit
delays to the maximum, in order to let the underlying operating
system (OS) optimize the I/O operations.

Caching plays a very important role in the performance of
the DBS. The amount of memory available for caching is also
a modifiable parameter in most of the DBMSs. Caching can
greatly improve the performance of per-connection or per-flow
querying of packets in cases where same groups of packets,



Fig. 3. The Layout of the Core Tables in the InTraBase. Indexes are denoted with numbers in parenthesis following the attribute: e.g. table connections
has an index consisting of tid and cnxid attributes.

i.e. specific connections, are analyzed over and over again in
different analysis tasks. In this case the data would be read
from the disk once and cached for the following queries.
Clearly, the execution order of the queries needs to be carefully
chosen. In addition, as we explain in the next section, the
caching techniques used need also to be well chosen.

Case Study on InTraBase:
The InTraBase is running on PostgreSQL on top of Linux
2.6.3. The hardware consists of an Intel Xeon Biprocessor 2.2
GHz with a SCSI RAID system and 6 GB RAM. PostgreSQL
allows to set the parameter work mem that controls the
amount of memory available for internal sort operations and
hash tables. We set this to no higher than 1.5 GB in order
to avoid out-of-memory problems: On a 32-bit system the
maximum process size is around 3 GB and in certain cases
several sort operations (typically not more than two) may be
run in parallel each of which is allowed to consume the amount
of memory specified by work mem. Also, 1.5 GB should be
sufficient in most cases to sort in main memory all the packets
of a single connection. WAL commit delays were set to 100
ms (the maximum).

III. MINIMIZING THE COST OF I/O OPERATIONS

Our goal is to optimize the execution of an analysis task
displayed in Figure 2. Optimizing the middle step in Figure 2
is always specific to the analysis task and, therefore, generic
solutions for that do not exist. Based on our experience,
regardless of the analysis task, the number of results stored
or displayed per task is typically very small compared to the
number of packets queried in the first step. Thus, the last step
in Figure 2 is rarely the bottleneck and it is the first step
that we focus on. This step reads the tuples that represent the
packets from disk and it is therefore generally I/O bound. We
derive from the above the main design principle:

• Minimize the I/O time for the c-query.

A. Indexes for Fast Lookup

The two most important concepts in DBMSs for I/O opti-
mization are indexing and clustering [13]. Indexes allow fast
lookup of specific rows from tables. They can be thought of
as hash lookups of logical records. In the case of our c-query,
since each queried packet belongs to the same group, we can
increase the performance by adding an index on the connection
or flow identifier to each table containing packets. This enables
the DBMS to do an index scan with the help of the created
index, touching only the required disk blocks, instead of doing
a sequential scan on the contents of the entire table, touching
all the disk blocks associated with the table, each time the
query is executed. Since the c-query includes ordering by
timestamp, one might think that it would be beneficial to create
another index on the timestamp attribute or add the timestamp
into the index on connection identifier. In this way, the DBMS
can perform simply an index scan on the new index and does
not need to sort in addition. There is a caveat, though: Index
scanning using this combined index is computationally much
more expensive than with the simple connection identifier
index. With InTraBase, the query processor of the DBMS
reports almost hundredfold per-row cost estimates for the
index scan using the combined index when compared to the
plain connection identifier index. Therefore, the combined
index is useful only when a small fraction of packets of the
connection is queried. We have found it useful when studying
the option negotiation (e.g. MSS and window scaling) during
the TCP connection establishment, for instance.

B. Clustering to Minimize Cost of I/O Reads

Clustering means grouping together data by physically
reordering it on the hard disk. The advantage is improved
performance for operations that access the grouped data due
to accessing only adjacent disk blocks instead of scanning
through the entire disk in the worst case. The speedup may
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Fig. 4. The effect of clustering with two different types of traffic traces of the same size. Black stripes are packets belonging to a given connection and their
horizontal distance from each other reflects the physical distance on the disk.

sometimes be tremendous but depends highly on the charac-
teristics of the data and the clustering parameters. For the case
of packet-level traffic data, consider Figure 4 that illustrates
the effect of clustering through two different examples. The
two traffic traces are of the same size in terms of number of
packets but have different durations. In order to speed up the
c-query, we cluster the packet data with respect to connections
or flows. The packets of each traffic trace are originally stored
on the disk in their arrival order. That is why the impact of
clustering on a packet trace captured on a high speed link with
numerous parallel connections, Figure 4(b), is much bigger
than on a trace captured at a low speed link with only few
parallel connections, Figure 4(a). It is clear that the penalty of
the random seeks necessary for reading all the packets of the
connection in the unclustered case compared to the sequential
reads in the clustered case is much higher in Figure 4(b) than
in Figure 4(a).

C. Parallel I/O

The I/O time can further be reduced by means of parallel
I/O. There are several ways to go. It is possible to implement
it on application level with parallel DBSs. This approach gives
a lot of control over the parallelism through load balancing,
for instance, but may suffer from severe overhead due to
complexity (e.g. distributed transaction handling). A simpler
approach is to implement it on the lowest layer possible,
that is, using RAID (redundant array of independent disks)
on striping mode. RAID striping is typically implemented so
that adjacent blocks are written on different disks in order
to maximize the parallelism in the case of sequential disk
access. For example, when striping over n disks, any n

adjacent disk blocks would be stored on different disks. Since
we have already clustered the data in connections, and thus,
access adjacent disk blocks whenever executing the c-query,
we obtain maximal parallelism with I/O operations.

D. Caching

In addition to minimizing the I/O time of the c-query,
it is equally important to avoid repeating it unnecessarily.
Therefore, caching is important. If the same c-query is ex-
ecuted several times in a row, the query results should remain
cached in the main memory after the first query in order to
avoid repeating the expensive I/O operations. It is possible
to cache the data on different layers: on the OS layer or on

the application layer. All modern OSs implement some sort of
caching techniques. The same applies to most modern DBMSs.
However, they may all use different techniques and, therefore,
implementing this principle is specific to each DBS. We will
describe the case for the InTraBase in the next section.

E. Case Study on InTraBase

We have addressed in [14] the performance of populating
the base tables as well as the disk space consumption when
storing packet-level data in a database. Populating the RCA
tables boils down to executing several times analysis tasks
described in Figure 2. Similarly does most of subsequent
“manual” analysis tasks that we do, such as plotting different
parameters (throughput, sent and received packets etc.) of a
specific connection against time in order to understand its
evolution.

To comply with the main principle, we have indexed and
clustered some of the tables on the InTraBase. The indexes of
the tables are marked with numbers in parenthesis following
the attribute. The packets table is clustered based on the
index on cnxid. We would not gain much by clustering the
data in the other tables since in the other tables each index
value returns only a few rows, i.e. two rows per connection
or a maximum of a few hundred rows with app period and
bulk transfer tables in the case of a very large connec-
tion. Also, these tables would need a periodical reclustering
since the contents are changing when ever a new packet trace
is inserted into the system. The server used for the InTraBase
is operating a RAID consisting of eight SCSI disks capable
of running in striping mode.

Indexing and clustering cause some additional overhead:
indexes consume disk space and clustering is a rather ex-
pensive operation. We observed in [14] that the indexes
cause approximately 15% overhead in disk space consumption.
Clustering a 5 GB packet trace took us 28 minutes and creating
an index for the cnxid attribute for the clustered table 5
minutes with the InTraBase4. Both are acceptable considering
that they are one time operations and that the potential gain is
enormous as we will demonstrate in Section IV.

4PostgreSQL provides a CLUSTER operator that is very slow. A faster
way to cluster a table with PostgreSQL is to create a new one from
query results, i.e. by executing CREATE TABLE newtable AS SELECT
* FROM oldtable ORDER BY cnxid and then recreate the indexes for
the newtable table (see the manual [2]).



What comes to caching, it is only useful if the same data is
repeatedly queried. Therefore, in the case of InTraBase, it is
particularly important when populating the RCA tables where
each connection is analyzed several times with independent
analysis tasks. Naturally, the order of execution needs to be
such that all analysis tasks are executed for a single connection
sequentially. As for where to cache, we have several ways to
go with the InTraBase that is running on PostgreSQL on top
of Linux. PostgreSQL has two separate caching methods: it
uses its own buffer cache, implemented as ARC (Adaptive
Replacement Cache [11]) starting from version 8.0, but also
relies on the file system cache of the underlying OS. ARC
tries to avoid cache flushing (caused by a one-time very
large sequential scan, for instance) by keeping track of how
frequently and how recently pages have been used and keeps in
the cache pages that have the “best” balance of the two. Since
we would like to cache every time the query results of the
c-query, cache flushing would be in fact desireable each time
we execute a new c-query. Thus, we minimized the utilization
of PostgreSQL’s own cache and attempt to force the DBMS
to use Linux file system caching as much as possible.

IV. PERFORMANCE MEASUREMENTS

In order to demonstrate the importance of the I/O optimiza-
tions described in Section III, we measured several metrics in
the case of the InTraBase. To quantify the impact of individual
optimizations on the performance, we did measurements while
executing the c-query with and without indexing, clustering,
and RAID striping. The query was executed on thousands of
connections with different sizes in number of packets. The
query results were directed into /dev/null in order to measure
the retrieval process of the packets only. We measured also
the effect of caching when executing several times the same
most common query.

We used two different packet traces: one recorded on a Gi-
gabit link on a university edge containing a mixture of Internet
traffic, and another one recorded on a much slower link with a
total throughput all the time below 10 Mbit/s containing only
BitTorrent traffic. In this way we could observe the difference
in clustering visualized in Figure 4. We selected from the
Gigabit trace the 3060 connections having more than 100
packets and a different number of packets. From the BitTorrent
trace we selected all the 583 connections having at least 100
packets. In the Gigabit trace, we had only few connections
with very large numbers (> 10

6) of packets.

A. Impact of Indexing and Clustering

Table II contains the means of the measured values: exec
time is the total execution time measured in wall clock time,
CPU iowait is the time that the CPU was idle during which
the system had an outstanding disk I/O request, CPU system
is the CPU utilization time spent executing tasks at the kernel
level, and number of sectors are those read from the hard
disk (the size of a sector is 512 bytes). If the packet table
is not indexed by the connections, the DBMS is forced to
read through all the packets of the table when executing the

most common query. Thus, the execution time should be more
or less constant regardless of the number of packets queried5.
When we indexed the data by connections, the means dropped
dramatically. Clustering the indexed data had again a similar
effect.

TABLE II
AVERAGE VALUES OF THE MEASUREMENTS.

Gigabit Trace
test case exec time (s) CPU iowait (s) CPU system (s) sectors read

1 222 160 20.4 -
2 6.07 5.22 0.338 30600
3 0.524 0.050 0.031 2160

BitTorrent Trace
test case exec time (s) CPU iowait (s) CPU system (s) sectors read

1 223 168 19.1 7280000
2 7.81 3.96 0.529 42200
3 3.71 0.486 0.255 20400

test cases: 1) unindexed, unclustered, 2) indexed, unclustered, 3) indexed, clustered

Figures 5 and 6 reveal that while it is always good to use
an index when querying a small number of packets, it is not
necessarily the case when querying a large number of packets
unless the data is clustered. In the case of the Gigabit trace,
an index with unclustered data becomes virtually useless after
the number of queried packets reaches a few hundreds of
thousands. In the case of the BitTorrent trace, using an index
proves to be always beneficial. The difference with respect to
the monitored link speed between the two types of the traces
used, explained in Section III (Figure 4), is clearly visible in
Figures 5 and 6: clustering has a much bigger impact on the
Gigabit trace than on the BitTorrent trace captured on a low-
speed link. In the plots for the Gigabit trace, we expect similar
variation in the measured values with the larger connections as
well, there simply were not many samples of those connections
for it to be visible in these plots. In the case that data is
clustered according to the index, the total execution time of
the query scales more or less linearly, as expected. These
observations are even more clearly visible in Figures 7 and
8 that show the CPU’s iowait part of the total execution time.
The Figures 9 and 10 demonstrate that, in addition to the fact
that the read head needs to move a lot more when seeking for
unclustered data, many more sectors are generally required to
be read from the disk.

Without indexing and clustering the time to execute the c-
query of a single analysis task for each analyzed connection of
the Gigabit trace would take approximately eight days. As for
the BitTorrent trace, it would take one and a half days. Without
I/O optimizations the total execution time is linearly dependent
on the number of connections. When introducing an index
the total execution times drop to 5 h and 1.3 h, respectively.
Finally, when the data is additionally clustered we obtain
total execution times of 27 min and 36 min, respectively. We
observe that after indexing and clustering the execution time is

5In the case of the Gigabit trace, we executed on a few randomly chosen
connections since it would have taken too long with all the 3060 connections
without indexing.
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query for the Gigabit trace.

0 0.5 1 1.5 2
x 106

0

50

100

150

200

250

300

packets

C
P

U
 io

w
ai

t t
im

e 
(s

)

indexed, unclustered
indexed, clustered
unindexed, unclustered

Fig. 8. CPU iowait time of the c-
query for the BitTorrent trace.

0 0.5 1 1.5 2
x 106

0

2

4

6

8

10 x 106

packets

se
ct

or
s 

re
ad

indexed, unclustered
indexed, clustered

Fig. 9. Number of sectors read when
executing the c-query for the Gigabit
trace.

0 0.5 1 1.5 2
x 106

0

5

10

15 x 105

packets

se
ct

or
s 

re
ad

indexed, unclustered
indexed, clustered

Fig. 10. Number of sectors read
when executing the c-query for the
BitTorrent trace.

no longer dependent on the number of connections but rather
depends on the number of packets.

B. Measuring the Effectiveness of Caching

In order to measure the effect of caching, we executed
several times the same c-query. First, the query was repeated
5 times in sequence for each connection in order to take
advantage of available caching. During the second measure-
ments, the query was executed once for all the connections
and then the second time and so on until each query had been
executed 5 times. In this way the caches got flushed between
the subsequent executions of the same query. In order to focus
on the effect of caching we excluded the first execution of
each query from the measurements since only the subsequent
ones benefit from the potential caching. As the results for both
traces were similar, we only show those for the Gigabit trace.
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the c-query for the Gigabit trace.
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Figure 11 shows the evolution of the average execution
time of the c-query in both cases. The difference between

the cases with and without caching is minor: when caching,
we gain at most 13% in the execution time. However, Figure
12 shows that the difference between the CPU iowait time is
much more pronounced, which, together with the observations
from Figure 11, means that the processes executing the c-query
were most of the time CPU bound and not I/O bound. Indeed,
a closer look revealed that, instead of waiting for pending
I/O operations, the CPU spent most of the time doing user
level computations (as opposed to kernel level computations),
which suggests that the DBMS itself kept the CPU busy. We
will continue this discussion at the end of this section.

C. The Impact of Parallel I/O: RAID Striping

We had the option to further minimize the I/O time through
parallelizing those operations using a RAID system in striping
mode. However, a glance at Figures 7 and 8 already shows
that we could not expect a very significant speedup since
the iowait times are already very low after indexing and
clustering. Rough measurements confirmed that indeed the
gain is marginal and, therefore, we decided not to use striping.
Nevertheless, the fact that the performance of the c-query
with the InTraBase is mostly CPU bound after indexing and
clustering can not be generalized. With a faster CPU, multiple
CPUs with parallel processing support from the DBMS, or
slower disks the situation might not be similar and parallel
I/O could improve significantly the performance.

D. DBMS as the Final Bottleneck

We have shown that after the proposed I/O optimizations,
the performance of the c-query with the InTraBase is mostly
CPU bound. On the average, the CPU spent approximately
84% of the time computing user level tasks with both of the
traffic traces. We further investigated the origins of the main
CPU activity by trying to exclude potential options.

First, we evaluated the effect of sorting (the c-query spec-
ified a chronological ordering of packets). We executed the
c-query with and without the ORDER BY clause. The total
execution times for the BitTorrent trace are plotted in Figure
13. We can see that the execution times without sorting are
at most 15% shorter. Indeed, ordering the packets in main
memory, especially as it is done while reading them from the
disk, should not be the main bottleneck.

Second, we investigated the role of the size of the result
set of the query on the execution time. We compared the
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execution times of the c-query and two modified c-queries: one
which computed only the number of packets and another one
which selected only the ipid attribute6 as the query result, i.e.
SELECT count(*) or SELECT ipid instead of SELECT
*, respectively. As Figure 14 shows, the total execution times
for both of the modified c-queries dropped up to 90% from the
execution times of the original c-query. This result shows that
the amount of CPU time spent on the user level computations
is highly dependent on the result set size of the query. Thus,
we have reason to assume that this CPU time goes to internal
DBMS operations related to handling the result set tuples, e.g.
transforming the physical storage format of the data into the
logical format of the tuples, which we can not further optimize.
This computational overhead is the price to pay for having the
structured data and advanced querying facilities provided by
the DBMS.

V. CONCLUSIONS

In this paper we have addressed the problem of how to
efficiently perform packet-level traffic analysis using an off-
the-shelf object-relational DBMS. As we have already detailed
in [14], an approach based on a DBMS can address the
major limitations in management, analysis process cycle, and
scalability that we encounter with ad-hoc approaches using
scripts and numerous specialized software tools. The challenge
that remains is to perform this analysis efficiently. Such a
system is useless if, in practice, the poor performance prohibits
to take full advantage of the features to support complex
analysis provided by the DBMS. We identified in this paper
the steps of a typical network traffic analysis task which
include a single common query: the c-query. We measured
the performance of the c-query in the case of the InTraBase,
which is a DBS for traffic analysis running on PostgreSQL
under Linux. We showed that correct design choices reducing
the cost of the I/O operations of the c-query bring great
performance improvements. Moreover, we showed that the
remaining performance bottleneck is due to the DBMS, and
thus, is the price to pay for having structured data and
advanced querying facilities.

We have shown with the performance measurements that the
part involving querying with the DBMS of the typical analysis

6We tried also other types of attributes and obtained similar results.

tasks execution scales approximately linearly with the number
of packets queried. Furthermore, its total execution times for
a packet trace of a few Gigabytes is from tens of minutes to
a maximum of a few hours. However, the time needed for the
initial processing of the packet trace to reach a stage where
these analysis tasks can be executed (e.g. populating the base
tables with the InTraBase, see [14]) may limit in practice the
maximum size of a packet trace to be analyzed at a time. We
have successfully used the InTraBase with packet traces of
several tens of Gigabytes. For the type of analysis that we
perform with the InTraBase, larger traces are generally not
necessary. Nevertheless, based on these results, we would not
recommend to use an off-the-shelf DBMS for very large scale
packet-level measurement studies involving Terabytes of data
at a time.
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