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ABSTRACT

The performance of Maximum Likelihood Sequence
Estimation (MLSE) is bounded (and often approximated
well) by the Matched Filter Bound (MFB). In this paper,
we first show how the GMSK modulation of GSM can be
linearized and reformulated to have a real symbol constel-
lation, leading to a two-channel aspect due to the in-phase
and in-quadrature components of the received signal. More
channels can be added by oversampling and/or the use of
multiple antennas. We present the MFB for this model in
the presence of colored noise (interferers) for MLSE that
employs noise correlation information (that in general may
differ from the true one). We show that properly taking
into acount the noise correlation leads to a much improved
MFB.
Keywords: Mobile Communications, GSM, Matched Fil-
ter Bound, Interference Cancellation, Spatial filtering.

1. LINEARIZATION OF A GMSK SIGNAL

We analyse first GMSK signals. Let x(t) = ej'(t) be a
baseband GMSK signal, where
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is the continuous modulated phase, �(t) is the ”phase im-
pulse response”, fakg are the differentially encoded sym-
bols from the original data dk 2 f�1; 1g and T is the sym-
bol period. The phase impulse response is obtained by inte-

grating a Gaussian filter h(t) = 1p
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2�BT , B is the 3dB bandwith, BT = 0:3, and
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h(t)dt. It can be seen in fig-

ure 1a that �(t) can be approximated by zero for t < �3T
2

and �
2 for t > 3T

2 . Interpreting this figure, we can conclude
that one symbol ak will have an influence on three symbol
periods (k � 1; k; k+ 1).

Considering the data fdkg, the differential encoder (see
figure 2) yields ak = dkdk�1 = dk

dk�1
. The relation be-

tween fdkg and fakg is such that ak = 1 if dk = dk�1
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Figure 1: a) Phase impulse response of the GMSK modu-
lation, b) GMSK pulse shape filter.
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Figure 2: Signal flow diagram for the GMSK modulation.

and ak = �1 if dk = �dk�1. This implies that the
phase increases by �

2 over three symbol periods if the sym-
bols dk at instant k and k�1 are equal and decreases by
the same quantity in the other case. We have a modula-
tion with memory in which some Inter-Symbol Interference
(ISI) gets introduced by the modulation itself.

A sampled GMSK signal can be approximated by a lin-
ear filter with impulse response duration of about LfT =
4T (see figure 1b), fed by bk = jkdk (j =

p�1), a
modulated version of the transmitted symbols. Such a
scheme (but with a shorter filter) holds exactly when sam-
pled MSK signals are considered [1]. Exploiting the quasi-
bandlimited character of the GMSK signal, we can even
approximate the continuous-time GMSK signal by inter-
polating the output of a discrete-time linear system. To this
end, we shall assume that sampling the GMSK signal at
rate q

T
satisfies the Nyquist theorem. The linear system

F that models the oversampled GMSK signal will be de-
termined by least-squares estimation over a long stretch of
signal, see figure 3.

Let ffqi+ug0�i�Lf�1 ; 0�u�q�1 be the impulse re-
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Figure 3: Identification of the GMSK modulation by least-
squares.

sponse of the system F thus identified then

x(t0+kT+u
T

q
) = xkq+u � x̂kq+u =
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and after interpolation x(t) � x̂(t) =
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2. MULTICHANNEL DATA MODEL

Consider the linearized version of the GMSK modulation
transmitted over a linear channel with additive noise. The
cyclostationary received signal can be written as

y(t) =
X
k

h(t�kT )bk+v(t) =
X
k

h(t�kT )jkdk+v(t)

(3)
where h(t) is the combined impulse response of the mod-
ulation f(t) and the channel c(t): h(t) = f(t) � c(t):
The channel impulse response h(t) is assumed to be FIR
with duration NT . If K sensors are used and each sensor
waveform is oversampled at the rate p

T
, the discrete-time

input-output relationship at the symbol rate can be written
as:
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where the first subscript i denotes the ith channel, m =
pK, and superscript H denotes Hermitian transpose. We
have introduced the p phases of the K oversampled an-
tenna signals: y(n�1)p+l;k = yn(t0 + (k + l

p
)T ); n =

1; : : : ;K ; l = 1; : : : ; p where yn(t) is the signal received
by antenna n.

The propagation environment is described by a chan-
nel c(t) =

�
cH1 (t) � � �cHK(t)

�H
. We consider GSM chan-

nel models which are taken as specular multipath channels

with Lc paths of the form cn(t) =
LcX
r=1

ar;n�(t � �r;n) for

the nth antenna. ar;n and �r;n are the amplitude and the
delay of path r. The distribution of the amplitudes and the
values of the delays depend on the propagation environ-
ment (urban, rural, hilly terrain). We consider independent
channel realizations for the K antennas. The received sig-
nal for antenna n can be written as

yn(t) =
+1X

k=�1
hn(t�kT )bk ; hn(t) =

LcX
r=1

ar;nf(t��r;n):

(5)
The continuous-time channel hn(t) for the nth antenna
when sampled at the instant t0 + (k + l

p
)T yields the

((n � 1)p + l)th component of the vector h0k. In order
to obtain a causal discrete-time channel model, we choose
q as a multiple of p.

The constellation for the symbols bk, the inputs to the
discrete-time multichannel, is complex whereas the con-
stellation for the symbols dk is real. It will be advantageous
to express everything in terms of real quantities and in this
way double the number of (fictitious) channels. To that end
we demodulate the received signal by j�k [2]:

j�ky0k=
N�1X
i=0

j�kh0ibk�i + j�kv0k=
N�1X
i=0

(j�ih0i)dk�i + j�kv0k

(6)
and then we decompose the complex quantities into their
real and imaginary parts like

�
yRk = Re(j�ky0k) = HR(q)dk + vRk
yIk = Im(j�ky0k) = HI(q)dk + vIk

(7)

where q�1 is the delay operator: q�1 yk = yk�1 and

HR(q) =
N�1X
i=0

hRi q
�i =
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Re(j�ih0i)q
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for HI(q). We can represent this system more conveniently
in the following obvious notation
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�
=H(q)dk+vk : (8)

3. MATCHED FILTER BOUND

The MFB bounds the probability of error (Pe) in the sense
that the Pe (of e.g. MLSE) is bounded below by the Pe of
an AWGN channel with the MFB as SNR. MFBs in the
presence of interferers are analyzed in [3]. The MFB ex-
pressions below will be derived in the case of burst (packet)
transmission. Since in that case the MFB is symbol-
dependent [4], we will consider the average MFB over the
burst. Assume we receive M samples:

YM (M )=TM(H)DM+N�1(M )+VM (M ) or Y=T (H)D+V
(9)



where Y = [yHM � � �yH1 ]H and similarly for V, and
T (H) is a block Toeplitz matrix with M block rows and
[h0 � � �hN�1 02m�(M�1)] as first block row. Let Rvv =

E VVH . We shall consider the MFB for MLSE in which
the noise covariance matrix is assumed to be R̂vv whereas
its actual value is Rvv. It can be shown that this MFB can
be written as

MFB =
1

M + N � 1

M+N�1X
j=1

MFBj (10)

=
1
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�2d(T
H
j R̂�1vvTj)

2

TH
j R̂�1vvRvvR̂�1vvTj

where Tj is the jth column of TM (H). Using Parseval’s
equality, one can show that the equivalent continuous pro-
cessing MFB can be written as (taking limM!1 of the pre-
vious expression)
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h
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where Svv(z) is the power spectral density matrix corre-
sponding to (z-transform of) the correlation sequence of
vk and Hy(z) = HH (1=z�).

4. INTERFERENCE CANCELLATION
PERFORMANCE BOUNDS

In this section we consider Ŝvv(z) = Svv(z). We define a
SNR w.r.t. the additive white noise in the data model (8) as
the average SNR per channel:

SNR =
1

m

�2d
�2v
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2�j
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dz

z
Hy(z)H(z): (12)

We shall consider the additive noise to consist of d interfer-
ers plus spatially and temporally white circular noise:

Svv(z) = �2dG(z)Gy(z) + �2vI2m (13)

where G(z) = [G1 � � �Gd] has dimensions 2m� d and Gk

has the same structure as H. We can define the SIRk =H
dz
z

Hy(z)H(z)=
H

dz
z

Gyk(z)Gk(z). With Ŝvv(z) =
Svv(z) and if all SIRk are equal (SIR), we then get from

(11) MFB(SNR,SIR) =
�2d
2�j

H
dz
z

Hy(z)S�1vv H(z). If the
multiple users would be detected jointly, a bound on the
detection performance for the user of interest is obtained
by assuming that the interferers are detected perfectly (in
which case their signal contribution can be cancelled per-
fectly). This leads to MFBJD = MFB(SNR;1) =
mSNR. Here we consider single-user detection, treating
the interferers as colored Gaussian noise. MFB(SNR,SIR)
is then the MFB for MLSE in which we take the correlation
of the interferers and noise into account properly. By doing
so, the multichannel aspect allows for some interference
suppression. In order to get a feeling for how much in-
terference suppression is possible, we compare to MFBJD

and introduce

MFBrel=
MFB(SNR; SIR)
MFB(SNR;1)

=
�2v
H
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dz
z
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It can be shown that in general

sin2 � = 1�
H
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where PG(z) = G(z)
�

Gy(z)G(z)
��1

Gy(z), and � is the

angle between the (subspace spanned by the) interferers
and the user of interest. The upper bound is attained as
SIR
SNR ! 1 (even if Ŝvv 6= Svv, as long as Ŝvv also
converges to a multiple of the identity matrix) whereas the
lower bound is attained as SIR

SNR ! 0. In this latter case,
we can only cancel the part of the interferers which is or-
thogonal to the user of interest. Nevertheless, this shows
that when the user of interest is roughly orthogonal to the
strong interferers, something that is more likely to hap-
pen when more channels are available, then multichannel
MLSE which takes the correlation of the noise and inter-
ferers into account leads to limited performance loss com-
pared to joint detection, regardless of the strength of the
interferers.

5. OPTIMAL SPATIAL FILTERING

Consider now the problem of optimally combining the
phases of the received signal by a purely spatial filter. For a
real constellation, the classical 1�K filter W should be re-
placed by a 1�2K widely linear spatial filter W = [wRwI ]
[5, 6]. One can design W by maximizing the signal to in-
terference plus noise ratio (SINR) of the resulting scalar
output wRyR + wIyI where p = 1. Then the spatial filter
is proportional to, the solution of the problem

max
W

SINR = �2d
W( 1

2�j

H
dz
z

H(z)Hy(z))WH

Wrvv(0)WH

=
Wryy(0)WH

Wrvv(0)WH
� 1;

(16)
yielding the generalized eigenvector that is associated
to the maximal generalized eigenvalue of the matri-
ces ryy(0) and rvv(0). It follows that SINR =

�max(r
�1
vv(0)ryy(0)) � 1 = �2a�max(r

�1
vv(0)HNHy

N ). In
the case SIR !1, or if the channel of the user of interest
is orthogonal to that of the interferers, we have the equality
below and the bounds [4]:

1 � MFBJD

SINR
=

tr(HNHH
N )

�max(HNHH
N )

� min(2K;N ) (17)

where the MFBJD is the MFB for the case of joint de-
tection (or absence of interferers). The lower bound can
be reached when the spatio-temporal channel factors into
a spatial filter h0 and a scalar temporal filter c(z) =
N�1X
i=0

ciz
�i; that is H(z) = h0

c(z)
c0

. The upper bound is



attained when either HNHH
N � I2K or HNHH

N � IN ,
whichever is of full rank. In that case, the individual chan-
nel impulse responses are orthonormal. In a statistical set-
up, if the 2K channel impulse responses are i.i.d., then the
upper bound is approached as the number of sensors grows.

6. SIMULATIONS

We consider three typical GSM propagation environments:
Rural Area (RU), Hilly Terrain (HI) and Typical Urban
(TU). For each environment, we consider the 6-tap (Lc =
6) statistical channel impulse responses as specified in the
ETSI standard [7] and this for both the user of interest
and the interferers. The channels for multiple antennas are
taken independently. We show MFB curves as a function
of SIR for a fixed SNR = 40dB. The MFB curves are aver-
aged over 50 realizations of the channel impulse responses
of the interferer(s), according to one of the three statistical
channel models, with the channel response of the interfer-
ers being delayed independently w.r.t. to that of the user
of interest by a delay that was taken uniform over [0; T ].
Apart from the optimal way of taking the multichannel cor-
relation into account, we also consider the performance of
suboptimal MLSE receivers that only take ”spatial” corre-
lation into account and neglect the temporal correlation of
the interferer or that go as far as treating the interference
plus noise as temporally and spatially white circular noise
(R̂vv is a multiple of identity, the multiple being the av-
erage value of the diagonal elements of Rvv). We also
consider the MFB corresponding to the optimal Interfer-
ence Canceling Matched Filter (ICMF [3]) followed by the
Viterbi algorithm (equalization) assuming that the noise at
the ICMF output is white (which corresponds to an approx-
imation). We also show the SINR curve that corresponds
to the performance of a purely spatial receiver. We show
in solid line the MFB when R̂vv = Rvv and respectively
in dashline and dashdot the case where R̂vv is diagonal
or block-diagonal. The MFB after an optimal interference
cancellation is shown by a triangle, and by a circle when
we ignore the color of the residual noise. We consider one
interferer and two combinations of multiple antennas and
oversampling. We also consider the scenario of multiple
interferers for a Typical Urbain channel and two antennas.

7. CONCLUSIONS

The simulations show that whenever the number of chan-
nels is larger than the number of users, then the suboptimal
single-user detector which takes the (spatio-temporal) cor-
relation structure of the interferers correctly into account
suffers a bounded MFB loss (as the interferers get arbi-
trarily strong) w.r.t. to the more complex joint detection
scheme. The simulations show that the exploitation of the
in-phase and in-quadrature components allows to double
the number of channels, with full diversity. Multiple chan-
nels obtained by oversampling also lead to bounded loss,
be it much larger though. Due to the bandlimited nature
of GMSK signals, the diversity obtained by oversampling
is limited. The simulations show that, in the case of one

interferer, one antenna and twofold oversampling, on the
average the loss is bounded by 5dB. This interference re-
duction capacity is due exclusively to the two-channel as-
pect created by exploiting the real aspect of the symbol
constellation after an appropriate reformulation of GMSK.
This loss can be reduced to 2dB by using two antennas
(with complete spatial diversity). The results also show that
not taking the noise correlation into account properly (esp.
R̂vv � I, as is done in current GSM receivers) leads to
the absence of robustness to interference, while taking only
spatial correlation into account (2K � 2K blocks) leads to
very limited robustness. The purely spatial approach per-
forms as well as the optimal approach when the number of
sensors is high. This result is expected since the channels
of the user of interest and the interferers become almost or-
thogonal and then the loss in performance is shown to be
bounded. It should be noted that the losses shown here are
averaged over all possible interferer configurations. The
actual loss can be quite a bit less most of the time.

8. REFERENCES

[1] P. A. Laurent. Exact and Approximate Construction of
Digital Phase Modulations by Superposition of Ampli-
tude Modulated Pulses (AMP). IEEE Trans. Commu-
nications, 34, February 1986.

[2] M. Kristensson, B. E. Ottersten, and D. T. M. Slock.
Blind Subspace Identification of a BPSK Communica-
tion Channel. In Proc. 30th Asilomar Conf. on Signals,
Systems and Computers, 1996. Pacific Grove, CA.

[3] D. T. M. Slock and H. Trigui. An Interference Can-
celling Multichannel Matched Filter. In Proc. Commu-
nication Theory Mini-Conference (Globecom), Nov.
1996. London, England.

[4] D. T. M. Slock and E. De Carvalho. Matched Fil-
ter Bounds for Reduced-Order Multichannel Mod-
els. In Proc. Communication Theory Mini-Conference
(Globecom), Nov. 1996. London, England.

[5] B. Picinbono and P. Chevalier. Widely Linear Estima-
tion with Complex Data. IEEE Trans. Signal Process-
ing, 43, August 1995.

[6] P. Chevalier. Filtrage d’Antenne Optimal pour Signaux
non Stationnaires. Concepts, Performances. In Proc.
Quinzième Colloque sur le traitement du signal et des
images, Du 18 au 21 Septembre 1995. Juan-les-pins,
France.

[7] European Telecommunications Standards Institute.
European digital cellular telecommunications system
(phase 2): Radio transmission and reception (GSM
05.05). Technical report, ETSI, Dec. 1995. Sophia
Antipolis, France.



−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

SIR (dB)

M
F

B
’s

 (
dB

)

TU, 1sensor, p=2, 1 co−channel interferer, cluster size=3, path loss=2, SNR=40dB, 50 trials

MFB  
MFBD 
MFBW 
SINR 
MFBn 
MFBWn

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

SIR (dB)

M
F

B
’s

 (
dB

)

RU, 1sensor, p=2, 1 co−channel interferer, cluster size=3, path loss=2, SNR=40dB, 50 trials

MFB  
MFBD 
MFBW 
SINR 
MFBn 
MFBWn

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

SIR (dB)

M
F

B
’s

 (
dB

)

HI, 1sensor, p=2, 1 co−channel interferer, cluster size=3, path loss=2, SNR=40dB, 50 trials

MFB  
MFBD 
MFBW 
SINR 
MFBn 
MFBWn

Figure 4: MFB vs SIR for SNR=40dB, one antenna, one interferer and twofold oversampling.
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Figure 5: MFB vs SIR for SNR=40dB, two antennas, one interferer and no oversampling.
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Figure 6: MFB vs SIR for SNR=40dB, two antennas, multiple interferers and no oversampling.
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Figure 7: MFB vs SIR for SNR=40dB, multiple antennas, one interferer and no oversampling.


