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ABSTRACT

The performance of Maximum Likelihood Sequence Esti-
mation (MLSE) is bounded (and often approximated well)
by the Matched Filter Bound (MFB). In this paper, we
first show how the GMSK modulation of GSM can be lin-
earized and reformulated to have a real symbol constella-
tion, leading to a two-channel aspect due to the in-phase
and in-quadrature components of the received signal. More
channels can be added by oversampling and/or the use of
multiple antennas. We present the MFB for this model in
the presence of colored noise (interferers) for MLSE that
employs noise correlation information that in general may
differ from the true one. Simulation results show that sig-
nificant interference cancellation is possible, even with one
antenna, if the correlation structure of the interference is
taken into account properly in the MLSE.

1. LINEARIZATION OF A GMSK SIGNAL
We analyse first GMSK signals. Let z(t) = ¢?*(") be a

baseband GMSK signal, where
T
)*h(u)du = ard(t—kT)
k

t) = gzk:ak/_to:ect (u
(1)

is the continuous modulated phase, ¢(t) is the "phase im-
pulse response”, {ax} are the differentially encoded sym-
bols from the original data dx € {—1,1} and T is the

symbol period. The phase impulse response is obtained
2

by integrating a Gaussian filter h(t) = me_%gﬂ, SO
=z f rect ) * h(u)du = z [G(u—l—l)—G(u—%)]
where o = —5:1;71, B is the 3dB bandwith, BT = 0.3, and

uT
h(t)dt. It can be seen in fig-

G(u) = o’T h(uT) + u/
ure la that ¢(t) can be approximated by zero for ¢ < —%
and % for ¢t > % Interpreting this figure, we can conclude
that one symbol aj will have an influence on three symbol
periods (k—1,k,k +1).

Considering the data {dk}7 the differential encoder (see

figure 2) vields ar = drdr—1 = . The relation between

dp,
dp—
{dk} and {ag} is such that ax =1 1f dp =dp_1 and ar = —1

f diy = —di—1. This implies that the phase increases by
over three symbol periods if the symbols at instant k and
k—1 are equal and decreases by the same quantity in the
other case. We have a propagation with memory where
some Inter-Symbol Interference (ISI) gets introduced (by
the modulation itself).

A sampled GMSK signal can be approximated by a linear

Figure 1. a) Phase impulse response of the GMSK
modulation, b) GMSK pulse shape filter.
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Figure 2. Signal flow diagram for the GMSK mod-
ulation.

filter with impulse response duration of about L;T" = 47
(see figure 1b), fed by by = j*dx (j = +/—=1), a modu-
lated version of the transmitted symbols. Such a scheme
(but with a shorter filter) holds exactly when sampled MSK
signals are considered (see the Appendix). Exploiting the
quasi-bandlimited character of the GMSK signal, we can
even approximate the continuous-time GMSK signal by in-
terpolating the output of a discrete-time linear system. To
this end, we shall assume that sampling the GMSK signal
at rate £ satisfies the Nyquist theorem. The linear system
F that models the oversampled GMSK signal will be de-
termined by least-squares estimation over a long stretch of
signal, see figure 3.
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Figure 3. Identification of the GMSK modulation
by least-squares.




Let {fqi‘l'u}ogigLf—l . 0<u<g—1 be the impulse response
of the system F thus identified then
T Ly—1
pltotkTHu ") = Trotu & Tratu = 7 faitubremi (2)
1=0

and after interpolation
o(t) & B(t Z F(t = kT)b (3)
k=—o0

where (f(¢) is shown in figure 1b)

Ly—1g—1

t) = Z Zsinc(q%—qi—u)fq,‘_m. (4

1=0 u=0

To have an idea of the quality of this estimation, we
plot in figure 4 simultanously the real part of the baseband
GMSK signal z(t) and its estimate #(¢) for ¢ = 6.
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Figure 4. Linearization of a baseband GMSK signal.

It appears that the linearized model is accurate and does
not affect the processing to be discussed next in which we
assume (as usual) that the modulation is linear.

2. MULTICHANNEL DATA MODEL

Consider the linearized version of the GMSK modulation
transmitted over a linear channel with additive noise. The
cyclostationary received signal can be written as

)= > h(t=kT)by+o(t) = > h(t—=kT)5* dx+o(t) (5)

k k

where h(t) is the combined impulse response of the modu-
lation f(t) and the channel c(t): h(t) = f(t) * c(t). The
channel impulse response h(t) is assumed to be FIR with du-
ration NT'. If K sensors are used and each sensor waveform
is oversampled at the rate %, the discrete-time input-output
relationship at the symbol rate can be written as:

Zhbk i + Vi

y1 % U1,k hak

yk: : 7Vk:

HNBN(k) + v,

where the first subscript i denotes the :*® channel, m =

pK, and superscript © denotes Hermitian transpose. We
have introduced the p phases of the K oversampled antenna

signals: Yn—1)pt1,6 = yYn(to + (k+ Z%)T)7 n=1,....K,1l=
1,...,p where y,(¢) is the signal received by antenna n.
The propagation environment is described by a channel
H
e(t) = [ef' (1) - cR(0)]
sider GSM channels models [1] which are taken as specu-

lar multipath channels with L. paths of the form c,(¢) =
L.

E arnd(t — 7rn) for the n'" antenna. a,, and 7., are

. In the simulations, we shall con-

r=1

the amplitude and the delay of path r. The distribution of
the amplitudes and the values of the delays depend on the
propagation environment. We consider independent chan-
nel realizations for the /K antennas. The received signal for
antenna n can be written as

+00 Le
un(t) = D halt=KT)be, ha(t) = Y arnf(t=7r0)
k=—co r=1

7
where f(t) is specified in (4). The continuous-time Change%
hy(t) for the n'™ antenna when sampled at the instant to +
(k4 $)T yields the ((n—1)p+1)*"
hy. In order to obtain a causal discrete-time channel model,
we choose ¢ as a multiple of p.

component of the vector

The constellation for the symbols by, the inputs to the
discrete-time multichannel, is complex whereas the constel-
lation for the symbols di is real. It will be advantageous
to express everything in terms of real quantities and in this
way double the number of (fictitious) channels. To that
end we downsample with a factor two and introduce an-
other polyphase decomposition with two phases (even and

odd):

Zh2k 2n] d2n+2h2k 2n+1] 1d2n+1
ka_H —Zh2k+1 2n— 1] ntl d2 +1 +Zh2k+1 2n] d2n

(®)
To differentiate the two fictitious channels, we introduce the
following notation:

Yig = Yo hig =hog by =37 dog = (—1)*dak
Yor = Yorpr how =hokgs box = 57 dorgr = (—1)*darsa

(9)
Thus, we obtain the following two inputs 2m outputs system
with real inputs and complex outputs:

Yik Zhl,k—nbl,n +th2,k—n—1b2,n
Yok Zn:h2,k—nbl,n +jzn:h1,k—nbz,n

(10)

Decomposing the complex quantities into their real and
imaginary parts like
yi,k yz k + ]yz
h; i

h, _|_]hf i=12 (11



we obtain the data model

ylk Hi'(q) —q "H3(q) Vi
Y}__ék _ | Hi(a) _1H2 (9) { b1,k }-l— V;k
y2 k H2R(Q) _Hl (q) ba i Vok
Yok H3(q) Hi'(q) Vi
(12

where g is the advance operator: qy; , = y; 41, and e.g.

H{(2) is the z-transform of hﬁk. This is a two inputs 4m
outputs system with only real quantities, and a structurally
constrained transfer matrix with impulse response of length
N' = [ 1. We can represent this system more conveniently
in the followmg obvious notation

vi=MHi() B | g% [+vh.  (13)

N'—1

Zh,kz

3. MATCHED FILTER BOUND

The MFB bounds the probability of error (P.) in the sense
that the P. (of e.g. MLSE) is bounded below by the P. of an
AWGN channel with the MFB as SNR. MFBs in the pres-
ence of interferers are analyzed in [2]. The MFB expressions
below will be derived in the case of burst (packet) transmis-
sion. Since in that case the MFB is symbol-dependent [3],
we will consider the average MFB over the burst. Moreover,
considering the data model (13) we have a MFB for each
subsequence of the symbols. We will see, however, that the
two MFBs are asymptotically equal. Assume we receive M
samples:

where H;(

Yy = Tar(Hy) By v —1 + Tar(Hz) Bo sy -1 +Viy

(14)
where YM = [yIH yIH]H and similarly for V’;, and
T (H;) 1s a block Toeplitz matrix with M block rows
and [h{, - 17N1_1 O4mx (a—1)] as first block row. Let

R,, = E VMVIJJI{. We shall consider the MFB for MLSE

in which the noise covariance matrix is assumed to be R,
whereas its actual value is R,,. It can be shown that this
MEFB for the subsequence ¢ can be written as

(0 R o S
=1
o M (TR,
vo Lo,
T MYN -1 )

H 1 1
Ti,] R'Uv R'U'UR’UU Tl,]

j=1

where T; ; is the 7" column of Tar(H;). Using Parseval’s
equality, one can show that the equivalent continuous pro-
cessing MF'B for the subsequence i can be written as (taking
lim a7 co of the previous expression)

2
|:27'rj jg dZHT )SU_UlH’(Z)

MFBY = =
§ LH!(2)55) 500 S5 Hi(2)

(16)
27'r]
where Sy, (z) is the power spectral density matrix corre-

sponding to (z-transform of ) the correlation sequence of v,

and H!(z) = HE(1/2*). To show MFBY = MFB® | we

shall consider the additive noise to consist of d interferers
plus spatially and temporally white noise:

Svu(z) = agG(Z)GT(Z) + 21 (17)
Where G(Z) = [Gl G2] = [G171 . ~G17d G271 . ~G27d] has

dimensions 4m x 2d and G; x has the same structure as
H;. For MFB considerations, we shall treat the interferers
as Gaussian colored noise. It is easy to see that Ha (z) =

0 0 0 —zIL,

JH,(z) where J = 8 _gm Z{)m 8 Since
I 0 0 0

the G;(z) have the same structure as the H;(z) and JIt =

l4m, we have

Spy = ISy dt | 5, =38, (18)

It follows that MFBY = MFB® = MFB(SNR, SIR).

4. INTERFERENCE CANCELLATION
PERFORMANCE BOUNDS

In this section we consider §M(z) = Suu(z). We de-
fine a SNR w.r.t. the additive white noise 1n the data
model ( 2) as the average SNR per channel: SNR =

1% jg dZHT (z)H1(z) where we exploited the fact that

m 0-2 27'r]
¢ d;HT (2)Hi(2) = ¢ £HJ(2)Hz(2). We shall take the

interferers to be of equal strength: jg%Gka(z)Gi,k(z)
= jg%GLl(z)Gl,l(z), 1 =12, k=1,...,d and we can
define the STR = $§ LHI(2)Hi(2)/ § LG, (2)Gix(2).
With Sy (2) = Sw(z) we then get from (16)

MFB(SNR, SIR) = 72 § £ H!(2)S5, Hi(5). If the mul-
tiple users would be detected Jomtly7 a bound on the detec-
tion performance for the user of interest is obtained by as-
suming that the interferers are detected perfectly (in which
case their signal contribution can be cancelled perfectly).
This leads to MFBjp = MFB(SNR, ) = ZLSNR. Here
we consider single-user detection, treating the interferers
as colored Gaussian noise. M FB(SNR, SIR) is then the
MFB for MLSE in which we take the correlation of the in-
terferers and noise into account properly. By doing so, the
multichannel aspect allows for some interference suppres-
sion. In order to get a feeling for how much interference
suppression is possible, we compare to M F' B p and intro-
duce

o2 jg %HI(Z)S;}Hi(Z)
§ LH(2)Hi(2)
(19)

MFB(SNR,SIR) _

MEBret = 3 EB(SNR, 00)

It can be shown that in general

LHI(2)Pn, Hi(z
ﬂg z z() Go(z) () < MFBy < 1
§ LH!(2)Hi(2)

sin=1-—

(20)
where PG(Z) = G(z) (GT(Z)G(Z))_l G'(z), and 8 is the
angle between the (subspace spanned by the) interferers

and the user of interest. The upper bound is attained as

% — 00 (even if Sy # Syu, as long as S,, also con-

verges to a multiple of the identity matrix) whereas the

lower bound is attained as 5]{711%% — 0. In this latter case,

we can only cancel the part of the interferer which is or-
thogonal to the user of interest. Nevertheless, this shows
that when the user of interest is roughly orthogonal to the




strong interferers, something that is more likely to happen
when more channels are available, then multichannel MLSE
which takes the correlation of the noise and interferers into
account leads to limited performance loss compared to joint
detection, regardless of the strength of the interferers.

5. SIMULATIONS

We consider three typical GSM propagation environments:
Rural Area (RU), Hilly Terrain (HI) and Typical Urban
(TU). For each environment, we consider the 6-tap (L. = 6)
statistical channel impulse responses as specified in the
ETSI standard [1] and this for both the user of interest
and the interferers. Rural area (RU), Hilly Terrain (HI)
and Typical Urban (TU). The channels for multiple anten-
nas are taken independently. We show MFB curves as a
function of SR for a fixed SN R = 40dB. The MFB curves
are averaged over 50 realizations of the channel impulse
responses of the user of interest and the interferer(s), ac-
cording to one of the three statistical channel models, with
the channel response of the interferers being delayed inde-
pendently w.r.t. to that of the user of interest by a delay
that was taken uniform over [0, T]. Apart from the optimal
way of taking the multichannel correlation into account,
we also consider the performance of suboptimal MLSE re-
ceivers that only take ”spatial” correlation into account
and neglect the temporal correlation of the interferer after
downsampling, or before downsampling, or even between

in-phase and in-quadrature components (R, only contains
the 4m x 4m, 2m x 2m or m x m diagonal blocks of RM)7
or that go as far as treating the interference plus noise as

temporally and spatially white circular noise (R, is a mul-
tiple of identity, the multiple being the average value of the
diagonal elements of RM). We show in solid line the MFB

when R,, = R,, and respectively in dashline, dashdot, plus

and star the case where R,, is diagonal or block-diagonal
(with the 4m x 4m, 2m x 2m or m X m diagonal blocks of
RM). We consider one interferer and three combinations of
multiple antennas and oversampling. We also consider the
scenario of multiple interferers for a Typical Urbain channel
and two antennas.

6. CONCLUSIONS

The simulations show that whenever the number of chan-
nels 1s larger than the number of users, then the suboptimal
single-user detector which takes the (spatio-temporal) cor-
relation structure of the interferers correctly into account
suffers a bounded MFB loss (as the interferers get arbi-
trarily strong) w.r.t. to the more complex joint detection
scheme. The simulations show that the exploitation of the
in-phase and in-quadrature components allows to double
the number of channels, with full diversity. Multiple chan-
nels obtained by oversampling also lead to bounded loss,
be it much larger though. Due to the bandlimited nature
of GMSK signals, the diversity obtained by oversampling is
limited. The simulations show that, in the case of one in-
terferer, one antenna and no oversampling, on the average
the loss is bounded by 5dB. This interference reduction ca-
pacity is due exclusively to the two-channel aspect created
by exploiting the real aspect of the symbol constellation af-
ter an appropriate reformulation of GMSK. This loss can
be reduced to 2dB by using two antennas (with complete
spatial diversity). The results also show that not taking

the noise correlation into account properly (esp. Ryy ~ I,
as is done in current GSM receivers) leads to the absence of
robustness to interference, while taking only spatial corre-
lation into account (2m x 2m blocks) leads to very limited
robustness. It should be noted that the losses shown here
are averaged over all possible user and interferer configura-

tions. The actual loss can be quite a bit less most of the
time.
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APPENDIX: LINEARIZATION OF MSK
SIGNALING

A CPFSK signal is s(t) = \/% exp (j27 fet + jp(t)) where
£ is the transmitted symbol energy, and T' the symbol du-
ration. The phase of ¢(t) of a CPFSK signal increases or
decreases with time during each symbol duration of T' sec-
onds according to ¢(t) =

¢
ZhZakg%/ rect (u _TkT) du = ZhZak¢(t— kT)
k o k

(21)

1,0<z<1
where rect(z) = { 0 | elsewhere and
I y 0 ,t<0
¢(t):—/ rect(—)du: L oo0<t<T
2T e T 24 L tST

We analyze now the MSK modulation which is defined
as CPFSK modulation with h = 0.5 as modulation in-
dex. Let’s write the expression for the phase when t €

kT, (k + 1)T]. We get,

P = T3 an  asolt - KT) (23

n=0
which can be inserted into the expression for s(¢) to yield
the MSK passband signal
y(t) = Jelt) rdn_y eI ar(t=kT) (24)

Sampling this signal at the instants ¢ = to + kT + l% where
to € (0,7),1=0---m—1 and m is the oversampling factor,

we get
— jk Jars(to+l L) _ ik Jdpdg_1(to+ L)
Ymkl = J dr_1€ m) = g dg_qe ™
. . d .
= ]kdk_l(cos o(to + l%) + ]dkfl sin ¢(to + l%))

= g7 dr—1 cos p(toH L )+5* di sin d(to+H L) = fi(q)s"dx
(25)

where, we used the fact that dipdg—1 € {£1}, and
. T . T, _
fi(2) :]smqﬁ(to+lg)+]cos¢(to+lg) 271 (26)

is a two-tap linear time invariant filter, and ¢ 'j*d. =
F—1
J dk—1~
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Figure 5. MFB vs SIR for SNR=40dB, one antenna, one interferer and no oversampling.
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Figure 6. MFB vs SIR for SNR=40dB, two antennas, one interferer and no oversampling.
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Figure 7. MFB vs SIR for SNR=40dB,
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one antenna, one interferer and twofold oversampling.
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two antennas, multiple interferers and no oversampling.



