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Abstract— This contribution analyzes the behaviour of
CDMA (code division multiple access) systems with correlated
spatial diversity. The users transmit to one or more antenna
arrays. The centralized receiver employs a linear multistage
detector. We provide a unified framework for the performance
analysis of any linear multiuser detector representable as a
multistage Wiener filter in a large system with random spread-
ing sequences and weak assumptions on the flat fading channel
gains—the fading may be correlated and contain line-of-sight
components. We show that, as the number of users and the
spreading factor grow large with fixed ratio, the performance
is independent of the correlation at the transmitting side but
depends on the correlation at the receiver.

The mathematical tools provided in this work enable also the
design of low complexity multistage detectors with universal
weights following the same lines as in [7].

I. INTRODUCTION

The pioneering works in [1] and [2] on multiple antenna
elements at the transmitter and the receiver with independent
and identically distributed (i.i.d.) channel gains promise huge
increase in the throughput of wireless communication sys-
tems. In one hand this motivated the introduction of spatial
diversity in the standardization of third generation wireless
systems based on code division multiple access (CDMA),
e.g. UMTS. In the other hand, it promoted the blossoming of
studies on the capacity of such systems using more realistic
models. In this stream are works that analyze the effect
of channel correlation, line of sight components, multiple
scattering, and key holes. Fading correlation and line of sight
components where found to affect severely channel capacity.
Therefore, it is important and of practical interest to consider
their effects also in a CDMA system with spatial diversity.

Modelling the spreading matrices as random matrices,
Hanly and Tse in [3] analyzed a synchronous CDMA system
with independent spatial diversity both at the transmitters and
the receivers as the number of active users in the system and
the spreading factor tend to infinity with ratio converging
to a constant. The assumption of independent channel gains
and the use of linear minimum mean square error detectors
at the receiver underlies this analysis.
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The large system performance1 of other linear multiuser
detectors has been investigated.

The reduced rank multistage Wiener filters (MSWF) for
CDMA systems with spatial diversity and channel gains
independent and identically distributed for each user and
independent across all users was presented in [4]. For the
same scenario, a unified framework for the analysis of any
multiuser detector that admit a representation as multistage
detector is proposed in [5]. In the same context, an effi-
cient implementation of multistage detectors with asymp-
totic weighting coefficients has been proposed in [5]. The
proposed multistage detectors achieve near-linear MMSE
performance with the same complexity order per bit as the
single user matched filter.

The large system performance of a linear MMSE detector
for a general synchronous CDMA system eventually with
correlated spatial diversity and line of sight components has
been investigated in [6]. The results in [6] generalize and
include the results in [3].

In this work we generalize the results in [5] to a synchro-
nous CDMA system with correlated spatial diversity and/or
line of sight components. We provide a unified framework
for the large system performance analysis of any multiuser
detector that can be represented as a multistage detector,
e.g. the polynomial expansion detector, the linear MMSE
detector, the MSWF, the parallel interference cancelling
(PIC) detector. Those results rely on the convergence of the
diagonal elements and of the trace of the system correlation
matrix R and its positive powers as the system dimensions
go to infinity with constant ratio. This convergence is also
useful for the design of low complexity multistage detectors
with universal weights (see [7]).

To compute the diagonal elements ofRm, m ∈ Z+, we
propose a recursive algorithm. Simplifications are possible in
case of correlated fading channel. In fact, as already shown
for the linear MMSE [6], for given correlated Rayleigh chan-
nels there exists a macro-diversity scenario with independent
Rayleigh fading channels equivalent in terms of performance.

Surprisingly, the performance of linear multiuser detectors
is independent of the correlation of the channel gains at
the transmitters. Considering the sequence of the empirical
joint distribution of the received amplitudes at each receiving
antenna and assuming the convergence of this sequence to
a deterministic joint distribution function, the performance

1Throughout this work we refer to systems with number of active users
and spreading factor that grow to infinity with ratio converging to a constant
value aslarge systemand the corresponding performance analysis aslarge
system analysis.



is affected by the correlation at the receiver only through
the correlation of the random variables defined by the limit
joint distribution. The same considerations hold for the line
of sight components.

Let us notice that, in contrast to the case of a system with
a single receive antenna, the multiuser efficiency does not
characterize univocally the system performance and varies
according to the direction of the vector of the channel gains
for each user.

II. SYSTEM MODEL

We consider a CDMA system with spreading factorN
and K ′ users. Each user employs a transmit antenna array
with NT elements sending independent data streams through
each of the elements. Thus, we may speak of a system with
K = K ′NT virtual users. The signal is received byL receive
antennas. These antennas can be part of an array or can be
placed at different locations, but processed jointly.

The baseband discrete-time system model, as the channel
is flat fading and the system is synchronous, is given by

y = Hb + n (1)

wherey is theNL-dimensional vector of received signals,b
is theK-dimensional vector of transmitted symbols, andn is
discrete-time, circularly symmetric complex-valued additive
white Gaussian noise with zero mean and varianceσ2. The
influence of spreading and fading is described by theNL×K
matrix

H =
L∑

l=1

(SDΛl)⊗ el (2)

whereS is theN×K spreading matrix whosekth column is
the spreading sequence of thekth virtual user. The diagonal
square matrixD ∈ CK×K contains the transmitted ampli-
tudes of all virtual users such that itskth diagonal element
dk is the amplitude of the signal transmitted by the virtual
user indexed byk. The diagonal matricesΛ1,Λ2, . . . ,ΛL ∈
CK×K take into account the effect of the flat fading channel.
Thek-th diagonal element ofΛl is the channel gain between
the transmitting antenna element of thekth virtual user and
the lth receive antenna and will be denoted byλlk in the
following. The channel gains can be, in general, correlated
and contain line of sight components as in Rice channels.el

is theL-dimensional unit column vector whose elements are
zero except thelth that equals1, i.e.el = (δlj)L

j=1. In order to
simplify notation, it will be helpful in the following to define
theL-dimensional vectorslk = dk[λ1k, λ2k, . . . , λLk]T , k =
1, . . . ,K and the diagonal square matricesL` = DΛ`,
` = 1, . . . , L.

Let us consider the empirical joint distribution function of
the random variables(l1,k, l2,k, . . . lL,k), k = 1, . . . , K

F
(K)
L1,L2,...LL

(l) =
1
K

K∑

k=1

1(l− lk) (3)

where 1(·) is the L-dimensional indicator function. In the
asymptotic design and analysis carried out in this work, we

assume that the sequence of the empirical joint distribution
functions {FL1,L2,...LL(l)} converges weakly with proba-
bility 1 to a limit distribution functionF

(K)
L1,L2,...LL

(l) with
bounded support.

In the following, the spreading matrix is modelled as a ran-
dom matrix whose elements are independent and identically
distributed (i.i.d.) with zero mean and variance1

N . Moreover,
we assume the transmitted symbols to be uncorrelated and
identically distributed random variables with zero mean and
unit variance, i.e.E{bbH} = IK .

For clarity sake, we adopt the following notation:

• β = K
N is the system load;

• hk denotes thekth column ofH;
• T = HHH ;
• R = HHH.

III. MULTISTAGE DETECTION

We consider the large class of linear multiuser detectors
that can be expressed as a multistage detector of rankM ∈
Z+ in the Krylov subspace

χM,k(H) = span(T mhk)|M−1
m=0 ,

i.e.

b̂k =
M−1∑
m=0

(wk)mhHT my

where wk is the M -dimensional vector of weight coeffi-
cients.

The multistage detector processing jointly all users is
given by

b̂k =
M−1∑
m=0

W mRmHHy

where W m, m = 0, . . . , M − 1 are theK × K diagonal
matrices of weight coefficients such that(W m)kk = (wk)m.

This class of detectors includes the most popular linear
multiuser detectors:

• If the weight matrices are proportional to the identity
matrix, i.e. W m = wmI, with wm fixed coefficients
the multistage detector coincides with the the Parallel
Interference Cancelling detector, eventually weighted.

• When the weight matrices are designed according to a
Minimum Mean Square Error criterion, so thatE{‖b−
b̂‖2} is minimized, the multistage detector is equivalent
to a multistage Wiener filter of rankM in terms of
performance.

• Assuming the matrix of weights proportional to the
identity matrix and enforcing the again the MMSE
criterion we obtain the polynomial expansion detector
of rank M .

• A polynomial expansion detector or a multistage Wiener
filter of rank M = K coincide with a linear MMSE
detector.

The weights of a polynomial expansion detector of rank
M are given by

w = Φ−1ϕ



whereΦ is an M × M matrix with (i, j) elementΦij =
traceRi+j + σ2traceRi+j−1, i, j = 1, . . . ,M. ϕ is anM -
dimensional column vector withith elementϕi = traceRi.
The weights of a multistage detector equivalent to the MSWF
can be obtained by

wk = Φ−1
k ϕk k = 1, 2 . . . K

whereΦk is anM×M matrix with (i, j) element(Φk)ij =
(Ri+j)k + σ2(Ri+j−1)k, i, j = 1, . . . ,M andϕk is anM -
dimensional column vector with elements(ϕk)i = (Ri)k,
i = 1, . . . M , and(R`)k denotes thekth diagonal element of
the matrixR`.

The SINR of userk at the output of a multistage detector
with weighting vectorwk is given by

SINRk =
wH

k ϕkϕT
k wk

wH
k

(
Φk −ϕkϕT

k

)
wk

.

It specializes for the polynomial expansion detector to

SINRpe,k =
1

(ϕ)T (Φ)−1Φk(Φ)−1ϕ(
ϕ(Φ)−1ϕ

)2 − 1

and for the MSWF to

SINRMSWF,k =
ϕT

k Φ−1
k ϕk

1−ϕT
k Φ−1

k ϕk

The asymptotic analysis of linear multistage detectors that
admit a representation as multistage detectors reduces to
determine the asymptotic values of(R`)k (andtraceR` for
the polynomial expansion detectors). Additionally, following
the same line as in [7], these asymptotic values can be
utilized for the design of multiuser detectors with the same
complexity order per bit as the matched filter.

The following theorem shows that(Rm)k converges al-
most surely to a deterministic value conditionally onlk.
A recursive algorithm to compute such a limiting value is
provided.

Theorem 1:Let S be anN × K complex matrix with
random i.i.d. zero mean entries with varianceE{|sij |2} =
1
N , and limN→∞E{N3|sij |6} < +∞. Let lk be the vector
of the received amplitudes of the virtual userk. Let us
assume that, almost surely, the empirical joint distribution
of l1, l2, . . . lK converges to some limiting joint distribution
Fl(`1, `2, . . . , `L) with bounded support asK → ∞. L`,
` = 1, . . . , L, is aK×K diagonal matrix whosekth element
coincides with thè th component oflk, i.e. (L)kk = (l`)k.
Define H =

∑L
`=1 SL` ⊗ e` and assume that the spectral

radius of the matrixR = HHH is upper bounded. Then, as
N, K →∞ with K

N → β andL fixed, the diagonal elements
of the matrixRm corresponding to the virtual userk, with
given fading amplitudelk, converges with probability 1 to
the deterministic value

Rm(lk) a.s.= lim
K=βN→∞

(Rm)k

with Rm(l) determined by the following recursion

Rm(lk) =
m−1∑
s=0

g(T m−s−1, l)Rs(l)

T m =
m−1∑
s=0

βE{Rm−s−1(l)llH}T s

g(T m−1, l) = lHT sl.

The recursion is initialized byR0(l) = 1 andT 0 = IL.
The proof is in [8]. This theorem yields the following
corollary to computemm

R = limK=βN→∞ 1
N traceRm, m ∈

Z+, the asymptotic eigenvalue moments of the matrixRm.
Corollary 1: Let S, H, R, and lk be defined as in

Theorem 1. Let the assumptions of Theorem 1 be satisfied.
Then, the asymptotic eigenvalue moments of the matrixR
are given by

mm
R = E{Rm(l)}

whereRm(l) is obtained by the recursion in Theorem 1 and
the expectation is taken over the limiting joint distribution
Fl(l1, l2, . . . , lL) defined in Theorem 1.
Making use of the following correspondences

Rm(l) → ρm(l)
T m → µm

g(T m, l) → um

RmllH → vm

Theorem 1 and Corollary 1 yield a simple algorithm for the
computation ofRm(l) andmm

R, m ∈ Z+.
Algorithm 1:
1st step Let ρ0(l) = 1 andµ0 = I.
`th step • Defineu`−1(l) = lHµ`−1l .

• Define v`−1(l) = ρ`−1(l)llH and write
it as a polynomial in the monomials
lr1
1 . . . lrL

L , l
s1

1 . . . l
sL

L .
• Define m

(r1,...,rL,s1,...,sL)
l = E{∏L

`=1 lr`

` l
s`

` }
and replace all monomials

∏L
`=1 lr`

` l
s`

`

in v`−1(l) by the corresponding
m

(r1,...,rL,s1,...,sL)
l . Assign the result to

V`−1.
• Set

ρ`(l) =
`−1∑
s=0

u`−s−1(l)ρs(l)

µ` =
`−1∑
s=0

βV`−s−1µs.

• Assignρ`(l) to R`(l).
• Write ρ`(l) as a polynomial in

l1, . . . lL, l1, . . . lL and replace all monomials∏L
`=1 lr`

` l
s`

` in ρ`(l) by the correspondent
moments m

(r1,...,rL,s1,...,sL)
l and assign the

result tom`
R.

If the channels at the receiving site are independent, the
previous algorithm simplifies since the matrixT s, s ∈ Z+,



is diagonal. If the coefficients are asymptotically independent
and identically distributed as in the micro-diversity scenario
analyzed in [3] the limiting diagonal elements of the matrix
R` and the eigenvalue momentsm`

R can be derived from
Algorithm 1 in [7] for synchronous single receiving antenna
systems by replacing

(i) β with β′ = K
LN ;

(ii) The received energy of userk at a single antenna, by
the total received energy of userk at all antennas,lHl;

(iii) The moments of the received energy at a single antenna
by the moments of the total received energy at all
antennasE{|lHl|s} .

This result can be obtained directly from Theorem 1 in [3]
as proposed in [5] or, alternatively, from Algorithm 1 noting
thatVs is proportional to the identity matrix andR`(l) is a
function of lHl.

In practice, fading amplitudes are often complex Gaussian
distributed and correlated. Rayleigh fading also violates the
demand for a distribution with bounded support in Theorem
1. However, it can be approximated arbitrary closely by a
distribution with bounded support. Thus, from an engineering
perspective, we need not worry about that fact. Assume that
the limiting joint distribution is given as

fl(l) =
1

πL detCl
exp

(
−lHC−1

l l
)

. (4)

In the absence of power control, i.e.D = IK , this implies
thatCl is the correlation matrix of the fading at the receiving
side with entries

rij = E
{
λiλ

∗
j

}
. (5)

Consider the eigenvalue decomposition

Cl = MΨMH (6)

with Ψ = diag(ψ1, . . . , ψL) and the change of variables

g = MHl (7)

gk = [g1k, . . . , gLk]T = MHlk (8)

creating statistically independent components in the random
vector g. Then, substitutingl = Mg, lk = Mgk and
taking into account thatg1, g2 . . . gL, the components ofg,
are independent complex Gaussian variables with variances
ψ1, ψ2, . . . ψL, Algorithm 1 can be simplified as follows:

Algorithm 2:
1st step Let ρ0(g) = 1 andµ0,` = 1, for ` = 1, . . . L.
`th step • Defineun−1,`(g) =

∑L
`=1 µn−1,`|g`|2.

• Definevn−1,`(g) = ρn−1(g)|g`|2, ` = 1, . . . L
and write them as polynomials in the monomi-
als

∏L
`=1 |g`|2r` .

• Define m
(r1,...,rL)
g =

∏L
`=1 E{|g`|2r`} and re-

place all monomials
∏L

`=1 |g`|2r` in vn−1,`(g),
` = 1, . . . L by the correspondingm(r1,...,rL)

g .
Assign the result toVn−1,`, ` = 1, . . . L,
respectively.

• Set

ρn(g) =
n−1∑
s=0

un−s−1(g)ρs(g)

µn,` =
n−1∑
s=0

βVn−s−1,`µs,`.

• Assignρn(MHl) to Rn(l).
• Write ρn(g) as a polynomial in the mono-

mials
∏L

`=1 |g`|2r` and replace all monomials∏L
`=1 |g`|2r` in ρn(g) by the correspondent

momentsm
(r1,...,rL)
g and assign the result to

mn
R.

IV. CONCLUSIONS

In this contribution we determined the large system per-
formance of any linear multiuser detector that admits a
multistage representation in CDMA systems with random
spreading and spatial diversity in the general case as the
channel gains are correlated and with line of sight compo-
nents. This result includes as special cases the results in [5]
derived there under the constraints of independence of the
channel gains and uniformly distributed phases.

It is shown that the correlation at the transmitting sides
does not affect the performance of the large class of linear
multiuser detectors under investigation, while the system is
sensitive to the correlation at the receiving site.
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