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Abstract—The large system performance analysis of linear  This work is focused on the analysis of symbol quasi
multiuser detectors (e.g. MMSE, MSWF, multistage detectors) for synchronous but chip asynchronous systems, i.e. systems with
asynchronous CDMA systems is provided. While the performance time delays non greater than the chip interval. The results

of synchronous systems with square-root waveforms is indepen- hold also f | h t Ki f
dent of the chip bandwidth, the performance of asynchronous old also for general asynchronous systems making use o

systems depends on the pulse shape and the bandwidth. Itthe analysis of symbol asynchronous and chip synchronous
increases as the bandwidth increases beyond half on the chip systems in [5], [6].
rate and, in such a case, asynchronous systems outperform the A general result for the performance analysis of linear
synchronous ones. . . ; :
detectors for chip asynchronous systems is provided. The chip
|. INTRODUCTION pulse waveforms are assumed to be identical for all users.

The large system analysis of linear multiuser detectors WithAsynchronous CDMA systems using chip pulse waveforms

. : . with bandwidth B not greater than half of the chip ratg,
random spreading sequences is mainly focused on synchro- 1 _ el
B < have the same asymptotic performance, in

nous code division multiple access (CDMA) systems. onhf: ; SﬁR h 3 h

few works analyze linear multiuser detectors in asynchrono ms o T, as the correspon ent sync ronous syster_ns.

scenarios [1]-[7] T. is generalizes the ejquwalencg'result for the ideal Nyqqlst
In [3], [4], the analysis of asynchronous CDMA systemgmc waveform shown in [7]. Additionally, the performance is

with linear detectors is decomposed in (i) the analysis of as))ﬂgepen_dent of the initial sampling _mstant and of the de!ay
FEﬁstrlbutlon. It depends on the chip pulse waveform with
I

chronous CDMA systems with symbol asynchronous but ch X ) -
synchronous signal, i.e. the time delay of the users is a multi urier transformi=(;2xf) through the coefficients, (y) =
of the chip interval, and (ii) in the analysis of the effects of2®
chip asynchronism. While the effects of symbol asynchronismIncreasing the bandwidth of the chip waveform abgﬂ;‘g
(case (i)) are well-understood and analytic results are availabile behaviour of CDMA systems changes substantially. It
[4]-[6] the effects of chip asynchronism are still unknown ilepends on the time delay distribution and the equivalence be-
their whole generality. tween synchronous and asynchronous systems does not hold.
In [3], [7] the effects of chip asynchronism are analyzeBfocusing on chip pulse waveforms with bandwidgh- <
assuming band limited chip pulses. In [7] the chip wavefor® < % under general constraints on the chip pulse waveform
is assumed to be an ideal Nyquist sinc function. The basebamdl on the time delay distribution, the performance of a
received signal is filtered by a low pass filter (or, equivalentljnear multiuser detector is independent of the time delay and
a filter matched to the chip waveform) and subsequenttiepends on the chip pulse waveform through the coefficients
sampled at the arrival time of the signal of the user of intereSt(1). The asymptotic performance analysis applied to square
with a frequency equal to the chip rate. [7] proves that theot raised cosine chip pulse waveforms points out interesting
signal to interference and noise ratio (SINR) at the outpeffects of the time delay distribution. As it is well known,
of the linear minimum mean square error (MMSE) detectdhe performance of synchronous CDMA systems with square
converges in mean square sense to the SINR in an equivalemt Nyquist waveforms is independent of the bandwidth. In
chip-synchronous system. In [3] the wider class of square ramintrast, the output SINR of linear detectors optimum in a
Nyquist waveform is considered. For a sufficiently long scalMMSE sense increases if the system is asynchronous and the
linear interference equalizer, adjusted according to the MMSine delay is uniformly distributed. The gap in performance
criterion, chip asynchronism does not lead to a significahetween synchronous and asynchronous systems is relevant
degradation compared to the chip synchronous transmissicand increases as the SNR at the detector input increases.

J2, |E(2m ) [**dz, with y = 1/2 andss positive integer.



Il. SYSTEM MODEL i.e. ¢ (t) becomes negligible folt| > ¢, andty <« 7. This is
Let us consider an asynchronous CDMA system with usually verified in systems with large spreading factor. Thus,
users in the uplink channel and spreading fachr The We can neglect the useful signal outside the symbol interval
channel is flat fading and impaired by additive white Gaussiafy 7] @nd we can focus on the transmission of a single symbol
noise. Then, the signal received at the base station, in compR${ User as in [7]. The discrete signal at the front-end output

base-band notation, is given by is given by
K K N—-1 N »
y(t) = apksi(t —7%) +n(t)  t € [—o0, 00 ylpl =D ambe Y sululd ((; - U) T, - Tk-) +nlp] (1)
k=1 k=1 u=0
whereayy, is the received signal amplitude of useand takes where p=...,—1,0,1,... and {E(t) is the pulse shape

into account the transmitted symbol amplitude, the effects @{t) normalized to have unitary energy, iw(t) = 2 The

flat fading channel, and the carrier phase offsgtis the time system model (1) withh = 0,1,...,Nr — 1 reduceVsEg)()

delay of usel. n(t) is a zero mean complex Gaussian process

with two-sided power spectral densityy. sx(t) is the spread R _
signal of userk, g=) arboi + .
oo N N -kzl - - -
sp(t) = Z b [m]cl(cm) t). y andn are theNr dimensional vectors of received signal
o and zero mean, complex-valued, circular symmetric, white
Gaussian noise with varianeg = ”Eﬂ respectively.vy, is

bi[m] is them-th transmitted symbol of user and the N dimensional virtual spreading sequence of usgiven

(m) N-1 by N
ckm (t) = Z Skm[u]w(t - st - UTc) VU = \Ilk.sk.
u=0

sk = (sx[0]...sx[N — 1))T and ¥}, is an N x N matrix
taking into account the effects of the pulse shape and the

symbol interval.T, and T, are the symbol and chip periods,th?fle)I?y of .usenk. Its (i.)-element is given by(¥);; =
respectively. ¥ (T - - - Tk) :

The users’ symbols,[m] are uncorrelated and identically Let §~be ther N x N matrix of virtual spreading, i.eS =
distributed random variables witht{|b,[m]|*} = 1 and (¥;s;,¥sss,..., ¥sk), A the K x K diagonal matrix of
E{bx[m]} = 0. The spreading sequences, [u| are assumed received amplitudes, anthe vector of transmitted symbols.
to be ii.d. random variables witl{|s;.[u]|?} = & and Then, the system model in matrix notation is given by
E{sgm[u]} = 0.

¥(t) is the band limited chip waveform with bandwidth
and energyZ, = [ [(1)|?d t. Thanks to the normalization , i 77 — & . Additionally, k;, denotes the:'™ column of
of the chip signature the energy of the signature waveforf, matrixﬁHT and R arthhé correlation matrices defined

fiaa 1001 (M) (V129 — e e e

satisfies[” " |c;" (t)[?dt = .E”" asT =HH andR=H H, respectivelyg = £ is the
The front-end of the multiuser detector performs: system load.
o Alow pass filteringG (f) with low pass bandf| < 5=

wherer € Z* satisfies the constrainfg < ;- so that [1l. LINEAR MULTIUSER DETECTION

the sampling theorem is satisfied. The impulse responseye consider the large class of linear multiuser detectors that
of the filter is normalized to obtain an amplification factotan be expressed as multistage detectors of fdnk Z* in
for the information bearing signal equal to one, i.e.  the Krylov subspace s (H) = span(T" hy)|M=1, ie.

is its spreading waveformsy,,[u], u € [0,...,N —1], are
elements of the signature sequence of ukein the m'™

y=SAb+n=Hb+n 2)

m=0"
= <o M
, = 2T, ~ ~H ~m __
G(f)= { By . by = Z (wi)mh T Y (3)
0 1> 57 =0
« A subsequent continuous-discrete time conversion Ihis class includes the linear MMSE detectors, the linear
conventional sampling at ratg-. Parallel Interference Cancelling (PIC) detectors, multistage

With this choice of the front end we obtain sufficient statistic§Viener filters (MSWF), polynomial expansion detectors [8].
Additionally, the discrete noise is still white with zero meaThe weighting vectorav;, and M in (3) define completely

and variancer? = % the detector and, eventually, can be determined by enforcing
In this work we consider symbol quasi-synchronous but chgn optimality criterion. The framework for the performance
asynchronous systems, i.e. the time delaysk = 1,..., K, analysis provided in this work can be applied to any mul-

satisfy the constraints, < T,. Additionally, we assume that tistage detector inx; ,(H). However, we devote special
the chip pulse)(t) is much shorter than the symbol waveformattention to multistage detectors with weighis, for the



k-th user such that the mean square error (MEE)b, — (i) The spectral radius of the matrit = (ﬁ(N))Hﬁ

~H~m . .
M- @y)mh T g||?} is minimized. We refer to them  is almost surely upper bounded & N — oo with

as Type J-1 detectors. They coincide with the linear MMSE % — g4

detector forM = min(rN, K) (e.g. [8]). Additionally, for () K = K(N) with limy_., XM = 3.

M < K, their output SINR converge exponentially in therhen, given(|ay;|?, 71,), thek™ diagonal element of the matrix
rank M to the output SINR of the linear MMSE detectors, a ~(N))e _ ((ﬁ(N))Hﬁ(N))Z converges with probability one
assessed by simulations in [9] and analytically proven in [1 R o 5

An 8-stages detector achieves near linear MMSE performancea deterministic value, conditionally dfiuix[*, 7).
independently of the system size [9]. Therefore, the analysis lim (ﬁ(N))Z B (a2, )
of Type J-I detectors yields also the analysis of linear MMSE K=BN—o0 kk ’

detectors. The weighta;, are given by

(N)

with R(|ax|?, 7) determined by the following recursion
~—1_

wy, =P @y B -, B
- it it R\ 1) = T "\ T)RY(A
where &, = ((R2 +J);CIMLUQ(RJ” l)kk> and (A7) Zg( AR T)
) i,j=1..M s=0
P, = ((Rj)kk , and, for0 <z <1,
j=1...M
The SINR of multistage detectors with arbitrary weights » S
wi, = ((wr)o . .. (wi)a—1) is given by T (z)=) f(R )T ()
H~ ~H s=0
Wy, PrPr Wk

SINR;, = Wl (Br — 5,37 f(R ,z)= ﬁ/)\AT(m)Af(x)ﬁs()\ﬁ)d Flapr(A\7)

3 1 ~ 8
For a Type J-1 detector g(T" A7) = )\/ A ()T (2)Ar(x)d
~Tx—1 0
Pr P P
~T=—1_ -
L - @) @y T
The large system analysis, i.e. the performance analysis as Ar(z) = (57(@7577%(%) - -fr_w(wg :
K, N — oo with % — (3, reduces to the computation of the A . ot (ers) ,
. ~ -~ ; 1 o —j2m A= (z+s)=x [ j2m
asymptotic valuesR;, = limgx—sn oo (R )ik with &-(z) = 7- >0 e 77T =) (jT(x + 8)) .
’ . ~ ¢ L gy
The convergence of the diagonal elementsfdfto deter- _ The recursion is initialized by setting” (z) = I, and
ministic values is established in the following theorem whos@ (A, 7) = 1.

assumptions summarize the properties of system model (2\-heorem 1 is proven in [11].
Theorem 1:Assume

(@) s,(gN), fork =1,... K, areK independenfV-dimensional

SINR 11 = where

IV. EFFECTS OFASYNCHRONISM AND OFCHIP PULSE

N WAVEFORMS
column vectors with i.i.d. random elements,, €
C such thatE{s\)} = 0, E{|s!}’|2} = L, and  In the following we focus on two cases:
limy oo E{N3|sff,\£)|6} < o0t « Chip pulse waveforms with bandwidth < 51-.
(b) (m1,72,...,7K) IS @ sequence o elements withr, € o Chip pulse waveforms with bandwid% <B< %

[0,T.) and T, positive rea. . _

(©) A" ¢ KK is a diagonal matrix with" elementa;,. A Chip pulses waveforms with < -

(d) The ~sequence of the empirical joint distributions | et us consider chip pulse waveformist) with bandwidth
F|(A|;’T()\,T) = % 2pe1 LA=|ark[?*)1(r—75) converges B non greater thanl-. We sample the received signal at a
almost surely, ag{’ — oo, to a non-random distribution rate equal or multiplec than the chip rate.
function F\A|2,T()‘77'~) with bounded suppott Theorem 1, applied to this case, yields the following al-

(e) Given the functiony(t) : R — R with unitary Fourier gorithm to deriveR‘()\) and mg., the asymptotic eigenvalue

transform=(j2x f), the sequencéy(T.n —7)} is square moments of the matrixz.

root summable, for any € [0, T.]. Algorithm 1:
~ ~ . j=1...N
(M Let Ty = (w (—“‘i’Tc —(j—1T. - m))] : 1% step Let po(z) = 1 and pio(y) = ;..
~(N) AN~ (V) — () i=L..TN /™M step « Define uy,_1(y) = yue_1(y) and write it as a
Q@ S =P, s1,Py So,...¥, sk). polynomial iny.
) 72 = 3™ ax, o Define v,_1(z) = zpe_1(z) and write it as a

polynomial inz.
1These random column vectors model the spreading sequences.

27, corresponds to the time delay of ugder 4This condition can be replaced by the less restrictive condition that the
31(-) denotes the indicator function. integer positive eigenvalue moments are upper bounded.



Algorithm 1

For ideal Nyquist sinc functions with bandwidf =

s 1 1/2 =/ T 2s

Define £, = @fil/Q’:(jQﬂ'ﬁ)‘ dz and
replace all monomialg, 2, ..., y" in the poly-
nomial uy_1(y) by &1,&, ..., &, respectively.
Assign the result tdJ,_;.

Define mf,. = E{law[*} and replace
all monomials z, 22, ..., 2" in the polynomial
ve_1(z) by the momentSm‘lAP, m|2A\2""’
g‘léAP’ respectively. Assign the result 1§_;.

et

-1
pe(2) = 3 r22Us o 1p4(2)
s=0

-1
pe(y) =1 ByVies1pis(y).
s=0
Assign ps(\) to RE()N)
Replace all monomials, 22, . . ., 2¢ in the poly-
nomial p¢(2) by the momentsn/, o, m7 2. .,
méA‘Q, respectively, and assign the resultnﬁ%.

is derived in [11].
Tf;cy

& =1,s=1,2,....Then,R (Jaw|?) = 'R’ (Jaxk|?), where

R(|ayi|?) are the asymptotic diagonal elements obtained by
Algorithm 1 in [8] for synchronous systems. It can be verified

statistics are obtained sampling at r%e Additionally, let us
assume that the received powejmkﬁc and the time delays
are statistically independent random variables #ntlr), the
marginal eigenvalue probability density function of the time
delay, is symmetric around = Z¢, i.e. fr(7— %) is an even
function. Then, applying Theorem 1, we obtain the following
algorithm to derive the asymptotic valuéy, .

Algorithm 2: 7

1t step Let po(z) = 1 and po(y) = 1.

/" step « Define u,_1(y) = yue—1(y) and write it as a

polynomial iny.
o Define vy_1(z) = zp—1(z) and write it as a

polynomial inz.
2
(;T’Tx> dz (4

o Define
E 1
g=(2 g / =2
T\ )
and replace all monomials, 32, ..., y¢ in the
polynomial u,—1(y) by &1,&s,...,&, respec-
tively. Assign the result td/,_;.

« Define mi,. = E{|aw[*} and replace
all monomials z, 22, ...,z in the polynomial
v—1(z) by the momentsmj,., miyp.. ..,
mfA|2, respectively, Assign the result ig_;.

that the asymptotic performance is independentroand - Set o
coincides with the performance of synchronous systems.
In the general cases, the eigenvalue momentécofepend pe(2) = ZzUusqps(z)
only on the system load, the sampling ratet-, the eigenvalue ;f(l)
distribution of the matrixA” A, and&;, s € Z*. These last pe(y) = Zﬂyvz—s—ms(y)-
coefficients_take into account the effects of the shape of the o
chip pulsei(t). The diagonal element&’(|a,|?) and the . -,
eigenvalue moments:’., are also independent of the delay o Assignp()) to RE(A).

distribution. In particuﬁ’;\r, Algorithm 1 can be applied also
to synchronous systems with or without oversampling and
any kind of chip-pulse waveform. Therefore, the performance

Replace all monomials, 22, ..., z¢ in the poly-
nomial p¢(z) by the momentsn/, o, m7 2. .,
mIZAIZ’ respectively, and assign the resultnm%.

of asynchronous and synchronous systems coincides. Asffgorithm 2 is derived in [11].
chronism does not cause any performance degradation on thiterestingly the recursive equations do not depend on the
system. In this way we have generalized the results obtairgival timer; of the signal of the usek: the performance of
in [7] for systems using an ideal Nyquist sinc waveform t§uch a CDMA system is independent of the time delay.
any kind of chip pulse waveforms with bandwidth < 1. R'()\) depends orE(j2n f) through the quantities,, s =

The output SINR is also independent of the initial samplink 2, - - ., defined in (4).
time. Therefore, the system does not incur any degradation inThe performance of synchronous CDMA systems with
SINR if, for all signals of interest, we consider a discretéquare root Nyquist chip-pulse waveforms is well-known to
statistic obtained by sampling the received signal starting 28 independent of the roll-off and given in [12].
a random instant and with a proper sampling rate, insteadrigure 1 shows the large system performance, in terms of
of considering K different statistics obtained by samplinggsymptotic output SINR, of detectors Type J-I witlh = 8
the received signal at the exact arrival time of each signaid increasing roll-off versu§:, in case of both synchronous
of interest. Therefore, without performance degradation wélines with markers) and asynchronous CDMA systems (lines
can replace a bank ofC different samplers ands different without markers). The SINR is obtained assuming equal
multiuser detectors by a single sampler followed by a singféceived powers at the receiver, i4.= I, and system load
multiuser detector processing jointly all users. B = %-
While the SINR of synchronous systems with square root
o Nyquist waveforms is independent of the roll-off, the

Let ¢ (t) be anevenchip waveform withreal unitary Fourier output SINR of asynchronous systems increases as the roll-
transform=(;j27 f) and bandwidthﬁ <B< Ti Sufficient off increases. Fory = 0, i.e. for an ideal Nyquist sinc

B. Chip pulse waveform Witlng—c <B< %



Equal received powers, square root raised cosine ppisg/d, M=8 V CO NCLUSIONS

13

asynchy=1 .

| In this work we provided a general framework for the large
system performance analysis of asynchronous CDMA systems
using a wide class of linear multiuser detectors including linear
MMSE, linear PIC detectors, MSWF, polynomial expansion
detectors.

Under general conditions verified for systems of practical
interest, the effects of chip shape is captured by the coefficients
Es, s = 1,2,... simply related to the chip waveform. For
B < ﬁ the performance of synchronous and asynchronous
systems coincides independently of the chip pulse waveform
and the delay distribution. FoB > ﬁ detectors optimum
in a MMSE sense (MMSE, MSWF, Type J-I detectors), and
for square root raised cosine waveforms asynchronous CDMA

stems outperform the corresponding synchronous systems.

gap in SINR increases as the bandwidth of the waveforms,
or the system loads, or £+ increases. Fori: = 20 dB a
system with roll-offy = 0 and load/ outperforms a system
Equal received powers, square root raised cosine pul$tis=E0 dB, M=8 with roll-off v = 1 and |0ad25 (See Figure 2) This gap
T T T T decreases a§: increases.
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Fig. 1: Output SINR of a Type J-I detector withi = 8 versus
ﬁg for synchronous systems (lines with markers) and ch
asynchronous but quasi synchronous symbol systems (li

without markers).

ACKNOWLEDGEMENT

This work has been partly supported by the European
EuroNGI Network of Excellence and partly by the NEWCOM
Network of Excellence.

18]

16|

14]

(SINR),,

REFERENCES

[1] U. Madhow and M. L. Honig, “MMSE interference suppression for
direct-sequence spread—spectrum CDMEEE Transactions on Com-

12

v
|
X Synch. roll-offy=0...1]

10l ,,,j”,i”i””g\j”“ munications vol. 42, no. 12, pp. 3178-3188, Dec. 1994.
s K [2] —, “On the average nearfar resistance for MMSE detection of direct
—— Asynch. roll-offy=1 N sequence CDMA signals with random spreadin§FE Transactions on
8 oI 02z 03 02 05 o6 o7 o8 o5 1 Information Theoryvol. 45, no. 6, pp. 2039—-2045, Sept. 1999.
B [3] P. Schramm and R. R. Mler, “Spectral efficiency of CDMA systems
. . . with linear MMSE interference suppressiodEEE Transactions on
Fig. 2: Output SINR of a Type J-I detector with/ = 8 Communicationsvol. 47, no. 5, pp. 722-731, May 1999.

versus the system loa@ for synchronous systems (lines with [4] . Kiran and D. N. Tse, “Effective interference and effective bandwidth

markers) and Ch|p asynchronous but quas| Synchronous Symbol of linear multiuser receivers in asynchronous CDMA systenBEE
Transactions on Information Theagryol. 46, no. 4, pp. 1426-1447,

systems (lines without markers). Sept. 2000.
[5] L. Cottatellucci, M. Debbah, and R. R. iMer, “Asymptotic analysis
of linear detectors for asynchronous CDMA systems,”Hroc. of
chip pulse waveform, the performance of synchronous and IEEE International Symposium on Information Theory (ISI@hicago,

P : lllinois, June/July 2004.
asynchronous systems coincides as already observed in L. Cottatellucci, R. R. Miller, and M. Debbabh, “Efficient implementation

previous section. Foy > 0 asynchronous systems outperform™ ~ of multiuser detectors for asynchronous CDMA,"Rnoc. 42nd Allerton

the correspondent synchronous systems with equal roll-off. Conf. on Communication, Control and Computimdonticello, lllinois,
Sept./Oct. 2004, pp. 357-366.

In Figure 2 the SINR is plotted as a function of the7; A Mantravadi and V. V. Veeravalli, “MMSE detection in asynchronous
system load, parametric in the roll-off, fdfs/Ny = 20 dB. CDMA systems: An equivalence resullEEE Transactions on Infor-

The improvement achievable by asynchronous systems ov§l mation Theoryvol. 48, no. 12, pp. 3128-3137, Dec. 2002.

. . L. Cottatellucci and R. R. Miler, “A systematic approach to multistage
synchronous systems increases as the system load increases. getectors in multipath fading channelt2EE Transactions on Informa-

The results obtained for symbol quasi synchronous and chig tion Theory vol. 51, no. 9, pp. 3146-3158, Sept. 2005.
h t b lized t h M. Honig and W. Xiao, “Performance of reduced-rank linear interfer-
asynchronous systems can be generalized [0 asynchronousg,.. suppression[/EEE Transactions on Information Theoryol. 47,

systems. A chip synchronous and symbol asynchronous system no. 5, pp. 1928-1946, July 2001.

with linear detection is equivalent in performance to thg0] P. Loubaton and W. Hachem, “Asymptotic analysis of reduced rank
di h t if th b fi ind Wiener filters,” inProc. of IEEE Information Theory Workshop (ITW)
corresponding synchronous system if the observation window payis “France, Apr. 2003, pp. 328-331.

is sufficiently large or infinite [4]-[6]. We conjecture thaff11] L. Cottatellucci, “Low complexity multiuser detectors with random

this property extends to chip asynchronous systems. Then, spreading” Ph.D. dissertation, TU Wien, Vienna, Ausiria, Oct. 2005,
submitted.

an agynchronous system and a Chlp asynChronous but Synﬁ)ﬁl D. N. C. Tse and S. V. Hanly, “Linear multiuser receivers: Effective
guasi synchronous CDMA system have the same performance. interference, effective bandwidth and user capaci§EE Transactions
This is verified in [11] by simulations. on Information Theoryvol. 45, no. 3, pp. 641-657, March 1999.



