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Abstract— The large system performance analysis of linear
multiuser detectors (e.g. MMSE, MSWF, multistage detectors) for
asynchronous CDMA systems is provided. While the performance
of synchronous systems with square-root waveforms is indepen-
dent of the chip bandwidth, the performance of asynchronous
systems depends on the pulse shape and the bandwidth. It
increases as the bandwidth increases beyond half on the chip
rate and, in such a case, asynchronous systems outperform the
synchronous ones.

I. I NTRODUCTION

The large system analysis of linear multiuser detectors with
random spreading sequences is mainly focused on synchro-
nous code division multiple access (CDMA) systems. Only
few works analyze linear multiuser detectors in asynchronous
scenarios [1]–[7]

In [3], [4], the analysis of asynchronous CDMA systems
with linear detectors is decomposed in (i) the analysis of asyn-
chronous CDMA systems with symbol asynchronous but chip
synchronous signal, i.e. the time delay of the users is a multiple
of the chip interval, and (ii) in the analysis of the effects of
chip asynchronism. While the effects of symbol asynchronism
(case (i)) are well-understood and analytic results are available
[4]–[6] the effects of chip asynchronism are still unknown in
their whole generality.

In [3], [7] the effects of chip asynchronism are analyzed
assuming band limited chip pulses. In [7] the chip waveform
is assumed to be an ideal Nyquist sinc function. The baseband
received signal is filtered by a low pass filter (or, equivalently
a filter matched to the chip waveform) and subsequently
sampled at the arrival time of the signal of the user of interest
with a frequency equal to the chip rate. [7] proves that the
signal to interference and noise ratio (SINR) at the output
of the linear minimum mean square error (MMSE) detector
converges in mean square sense to the SINR in an equivalent
chip-synchronous system. In [3] the wider class of square root
Nyquist waveform is considered. For a sufficiently long scalar
linear interference equalizer, adjusted according to the MMSE
criterion, chip asynchronism does not lead to a significant
degradation compared to the chip synchronous transmission.

This work is focused on the analysis of symbol quasi
synchronous but chip asynchronous systems, i.e. systems with
time delays non greater than the chip interval. The results
hold also for general asynchronous systems making use of
the analysis of symbol asynchronous and chip synchronous
systems in [5], [6].

A general result for the performance analysis of linear
detectors for chip asynchronous systems is provided. The chip
pulse waveforms are assumed to be identical for all users.

Asynchronous CDMA systems using chip pulse waveforms
with bandwidthB not greater than half of the chip rate1Tc

,
i.e. B ≤ 1

2Tc
, have the same asymptotic performance, in

terms of SINR, as the correspondent synchronous systems.
This generalizes the equivalence result for the ideal Nyquist
sinc waveform shown in [7]. Additionally, the performance is
independent of the initial sampling instant and of the delay
distribution. It depends on the chip pulse waveform with
Fourier transformΞ(j2πf) through the coefficientsEs(y) =

1
T 2s

c

∫ y

−y
|Ξ(j2π x

Tc
)|2sdx, with y = 1/2 ands positive integer.

Increasing the bandwidth of the chip waveform above12Tc

the behaviour of CDMA systems changes substantially. It
depends on the time delay distribution and the equivalence be-
tween synchronous and asynchronous systems does not hold.
Focusing on chip pulse waveforms with bandwidth12Tc

≤
B ≤ 1

Tc
, under general constraints on the chip pulse waveform

and on the time delay distribution, the performance of a
linear multiuser detector is independent of the time delay and
depends on the chip pulse waveform through the coefficients
Es(1). The asymptotic performance analysis applied to square
root raised cosine chip pulse waveforms points out interesting
effects of the time delay distribution. As it is well known,
the performance of synchronous CDMA systems with square
root Nyquist waveforms is independent of the bandwidth. In
contrast, the output SINR of linear detectors optimum in a
MMSE sense increases if the system is asynchronous and the
time delay is uniformly distributed. The gap in performance
between synchronous and asynchronous systems is relevant
and increases as the SNR at the detector input increases.



II. SYSTEM MODEL

Let us consider an asynchronous CDMA system withK
users in the uplink channel and spreading factorN . The
channel is flat fading and impaired by additive white Gaussian
noise. Then, the signal received at the base station, in complex
base-band notation, is given by

y(t) =
K∑

k=1

akksk(t− τk) + n(t) t ∈ [−∞,+∞]

whereakk is the received signal amplitude of userk and takes
into account the transmitted symbol amplitude, the effects of
flat fading channel, and the carrier phase offset.τk is the time
delay of userk. n(t) is a zero mean complex Gaussian process
with two-sided power spectral density,N0. sk(t) is the spread
signal of userk,

sk(t) =
+∞∑

m=−∞
bk[m]c(m)

k (t).

bk[m] is them-th transmitted symbol of userk and

c
(m)
k (t) =

N−1∑
u=0

skm[u]ψ(t−mTs − uTc)

is its spreading waveform.skm[u], u ∈ [0, . . . , N − 1], are
elements of the signature sequence of userk in the mth

symbol interval.Ts and Tc are the symbol and chip periods,
respectively.

The users’ symbolsbk[m] are uncorrelated and identically
distributed random variables withE{|bk[m]|2} = 1 and
E{bk[m]} = 0. The spreading sequencesskm[u] are assumed
to be i.i.d. random variables withE{|skm[u]|2} = 1

N and
E{skm[u]} = 0.

ψ(t) is the band limited chip waveform with bandwidthB
and energyEψ =

∫ +∞
−∞ |ψ(t)|2d t. Thanks to the normalization

of the chip signature the energy of the signature waveform
satisfies

∫ +∞
−∞ |c(m)

k (t)|2d t = Eψ.
The front-end of the multiuser detector performs:

• A low pass filteringG(f) with low pass band|f | ≤ r
2Tc

wherer ∈ Z+ satisfies the constraintB ≤ r
2Tc

so that
the sampling theorem is satisfied. The impulse response
of the filter is normalized to obtain an amplification factor
for the information bearing signal equal to one, i.e.

G(f) =

{
1√
Eψ

|f | ≤ r
2Tc

0 |f | > r
2Tc

.

• A subsequent continuous-discrete time conversion by
conventional sampling at raterTc

.

With this choice of the front end we obtain sufficient statistics.
Additionally, the discrete noise is still white with zero mean
and varianceσ2 = N0r

Es
.

In this work we consider symbol quasi-synchronous but chip
asynchronous systems, i.e. the time delaysτk, k = 1, . . . , K,
satisfy the constraintsτk ≤ Tc. Additionally, we assume that
the chip pulseψ(t) is much shorter than the symbol waveform,

i.e. ψ(t) becomes negligible for|t| > t0 andt0 ¿ Ts. This is
usually verified in systems with large spreading factor. Thus,
we can neglect the useful signal outside the symbol interval
[0, Ts] and we can focus on the transmission of a single symbol
per user as in [7]. The discrete signal at the front-end output
is given by

y[p] =
K∑

k=1

akkbk

N−1∑
u=0

sk[u]ψ̃
((p

r
− u

)
Tc − τk

)
+ n[p] (1)

where p = . . . ,−1, 0, 1, . . . and ψ̃(t) is the pulse shape
ψ(t) normalized to have unitary energy, i.e.ψ̃(t) = ψ(t)√

Eψ

. The

system model (1) withp = 0, 1, . . . , Nr − 1 reduces to

ỹ =
K∑

k=1

akbkvk + ñ.

ỹ and ñ are theNr dimensional vectors of received signal
and zero mean, complex-valued, circular symmetric, white
Gaussian noise with varianceσ2 = rN0

Es
, respectively.vk is

theNr dimensional virtual spreading sequence of userk given
by

vk = Ψ̃ksk.

sk = (sk[0] . . . sk[N − 1])T and Ψ̃k is an Nr × N matrix
taking into account the effects of the pulse shape and the
time delay of userk. Its (i,j)-element is given by(Ψ̃k)ij =
ψ̃

(
(i−1)Tc

r − (j − 1)Tc − τk

)
.

Let S̃ be therN ×N matrix of virtual spreading, i.e.̃S =
(Ψ̃1s1, Ψ̃2s2, . . . , Ψ̃KsK), A the K ×K diagonal matrix of
received amplitudes, andb the vector of transmitted symbols.
Then, the system model in matrix notation is given by

ỹ = S̃Ab + ñ = H̃b + ñ (2)

with H̃ = S̃A. Additionally, h̃k denotes thekth column of
the matrixH̃. T̃ and R̃ are the correlation matrices defined
as T̃ = H̃H̃

H
and R̃ = H̃

H
H̃, respectively.β = K

N is the
system load.

III. L INEAR MULTIUSER DETECTION

We consider the large class of linear multiuser detectors that
can be expressed as multistage detectors of rankM ∈ Z+ in
the Krylov subspaceχM,k(H̃) = span(T̃

m
h̃k)|M−1

m=0 , i.e.

b̂k =
M−1∑
m=0

(wk)mh̃
H

T̃
m

ỹ (3)

This class includes the linear MMSE detectors, the linear
Parallel Interference Cancelling (PIC) detectors, multistage
Wiener filters (MSWF), polynomial expansion detectors [8].
The weighting vectorswk and M in (3) define completely
the detector and, eventually, can be determined by enforcing
an optimality criterion. The framework for the performance
analysis provided in this work can be applied to any mul-
tistage detector inχM,k(H̃). However, we devote special
attention to multistage detectors with weights̃wk for the



k-th user such that the mean square error (MSE)E{‖bk −∑M−1
m=0 (w̃k)mh̃

H
T̃

m
ỹ‖2} is minimized. We refer to them

as Type J-I detectors. They coincide with the linear MMSE
detector forM = min(rN, K) (e.g. [8]). Additionally, for
M < K, their output SINR converge exponentially in the
rank M to the output SINR of the linear MMSE detectors, as
assessed by simulations in [9] and analytically proven in [10].
An 8-stages detector achieves near linear MMSE performance
independently of the system size [9]. Therefore, the analysis
of Type J-I detectors yields also the analysis of linear MMSE
detectors. The weights̃wk are given by

w̃k = Φ̃
−1

k ϕ̃k

where Φ̃k =
(
(R̃

2i+j
)kk + σ2(R̃

i+j−1
)kk

)
i,j=1...M

and

ϕ̃k =
(
(R̃

j
)kk

)
j=1...M

.

The SINR of multistage detectors with arbitrary weights
wk = ((wk)0 . . . (wk)M−1) is given by

SINRk =
wH

k ϕ̃kϕ̃H
k wk

wH
k (Φ̃k − ϕ̃kϕ̃H

k )wk

For a Type J-I detector

SINRJI,k =
ϕ̃T

k Φ̃
−1

k ϕ̃k

1− ϕ̃T
k Φ̃

−1

k ϕ̃k

.

The large system analysis, i.e. the performance analysis as
K, N → ∞ with K

N → β, reduces to the computation of the

asymptotic values̃Rs
kk,∞ = limK=βN→∞(R̃s)kk.

The convergence of the diagonal elements ofR̃
`

to deter-
ministic values is established in the following theorem whose
assumptions summarize the properties of system model (2).

Theorem 1:Assume
(a) s

(N)
k , for k = 1, . . .K, areK independentN -dimensional

column vectors with i.i.d. random elementssnk ∈
C such that E{s(N)

nk } = 0, E{|s(N)
nk |2} = 1

N , and
limN→∞ E{N3|s(N)

nk |6} < +∞.1

(b) (τ1, τ2, . . . , τK) is a sequence ofK elements withτk ∈
[0, Tc) andTc positive real2.

(c) A(K) ∈ CK×K is a diagonal matrix withkth elementakk.
(d) The sequence of the empirical joint distributions

F
(K)
|A|2,T (λ, τ) = 1

K

∑K
k=1 1(λ−|akk|2)1(τ−τk) converges

almost surely, asK → ∞, to a non-random distribution
function F|A|2,T (λ, τ) with bounded support3.

(e) Given the functionψ̃(t) : R → R with unitary Fourier
transformΞ(j2πf), the sequence{ψ̃(Tcn− τ)} is square
root summable, for anyτ ∈ [0, Tc].

(f) Let Ψ̃
(N)

k =
(
ψ̃

(
(i−1)Tc

r − (j − 1)Tc − τk

))j=1...N

i=1,...rN
.

(g) S̃
(N)

= (Ψ̃
(N)

1 s1, Ψ̃
(N)

2 s2, . . . Ψ̃
(N)

K sK).

(h) H̃
(N)

= S̃
(N)

AK .

1These random column vectors model the spreading sequences.
2τk corresponds to the time delay of userk.
31(·) denotes the indicator function.

(i) The spectral radius of the matrix̃R
(N)

= (H̃
(N)

)HH̃
(N)

is almost surely upper bounded asK, N → +∞ with
K
N → β4.

(j) K = K(N) with limN→∞
K(N)

N = β.

Then, given(|akk|2, τk), thekth diagonal element of the matrix

(R̃
(N)

)` = ((H̃
(N)

)HH̃
(N)

)` converges with probability one
to a deterministic value, conditionally on(|akk|2, τk),

lim
K=βN→∞

(R̃
(N)

)`
kk

a.s.= R̃`(|akk|2, τk)

with R̃(|akk|2, τk) determined by the following recursion

R̃`(λ, τ) =
`−1∑
s=0

g(T̃
`−s−1

, λ, τ)R̃s(λ, τ)

and, for0 ≤ x ≤ 1,

T̃
`
(x) =

`−1∑
s=0

f(R̃
`−s−1

, x)T̃
s
(x)

f(R̃
s
, x) = β

∫
λ∆τ (x)∆H

τ (x)R̃s(λ, τ)d F|A|2,T (λ, τ)

g(T̃
s
, λ, τ) = λ

∫ 1

0

∆H
τ (x)T̃

s
(x)∆τ (x)d x

where

∆τ (x) =
(
ξτ (x), ξτ−Tc

r
(x) . . . ξ

τ−Tc(r−1)
r

(x)
)T

.

with ξτ (x)
4
= 1

Tc

∑+∞
s=−∞ e−j2π τ

Tc
(x+s)Ξ∗

(
j2π
Tc

(x + s)
)

.

The recursion is initialized by settingT
0
(x) = Ir and

R
0
(λ, τ) = 1.

Theorem 1 is proven in [11].

IV. EFFECTS OFASYNCHRONISM AND OFCHIP PULSE

WAVEFORMS

In the following we focus on two cases:

• Chip pulse waveforms with bandwidthB ≤ 1
2Tc

.
• Chip pulse waveforms with bandwidth12Tc

≤ B ≤ 1
Tc

.

A. Chip pulses waveforms withB ≤ 1
2Tc

Let us consider chip pulse waveforms̃ψ(t) with bandwidth
B non greater than 1

2Tc
. We sample the received signal at a

rate equal or multiple than the chip rate.
Theorem 1, applied to this case, yields the following al-

gorithm to deriveR̃`(λ) and meR, the asymptotic eigenvalue
moments of the matrix̃R.

Algorithm 1:
1st step Let ρ0(z) = 1 andµ0(y) = 1

r .
`th step • Define u`−1(y) = yµ`−1(y) and write it as a

polynomial iny.
• Define v`−1(z) = zρ`−1(z) and write it as a

polynomial inz.

4This condition can be replaced by the less restrictive condition that the
integer positive eigenvalue moments are upper bounded.



• Define Es = 1
T 2s

c

∫ 1/2

−1/2

∣∣∣Ξ(j2π x
Tc

)
∣∣∣
2s

dx and

replace all monomialsy, y2, . . . , y` in the poly-
nomial u`−1(y) by E1, E2, . . . , E`, respectively.
Assign the result toU`−1.

• Define ms
|A|2 = E{|akk|2s} and replace

all monomialsz, z2, . . . , z` in the polynomial
v`−1(z) by the momentsm1

|A|2 , m2
|A|2 ,. . . ,

m`
|A|2 , respectively. Assign the result toV`−1.

• Set

ρ`(z) =
`−1∑
s=0

r2zU`−s−1ρs(z)

µ`(y) = r

`−1∑
s=0

βyV`−s−1µs(y).

• Assignρ`(λ) to R̃`(λ)
Replace all monomialsz, z2, . . . , z` in the poly-
nomialρ`(z) by the momentsm1

|A|2 , m2
|A|2 ,. . . ,

m`
|A|2 , respectively, and assign the result tom`eR.

Algorithm 1 is derived in [11].
For ideal Nyquist sinc functions with bandwidthB = 1

2Tc
,

Es = 1, s = 1, 2, . . .. Then,R̃`(|akk|2) = r`R`(|akk|2), where
R`(|akk|2) are the asymptotic diagonal elements obtained by
Algorithm 1 in [8] for synchronous systems. It can be verified
that the asymptotic performance is independent ofr and
coincides with the performance of synchronous systems.

In the general cases, the eigenvalue moments ofR̃ depend
only on the system loadβ, the sampling rater

Tc
, the eigenvalue

distribution of the matrixAHA, andEs, s ∈ Z+. These last
coefficients take into account the effects of the shape of the
chip pulseψ̃(t). The diagonal elements̃R`(|akk|2) and the
eigenvalue momentsm`eR are also independent of the delay
distribution. In particular, Algorithm 1 can be applied also
to synchronous systems with or without oversampling and
any kind of chip-pulse waveform. Therefore, the performance
of asynchronous and synchronous systems coincides. Asyn-
chronism does not cause any performance degradation on the
system. In this way we have generalized the results obtained
in [7] for systems using an ideal Nyquist sinc waveform to
any kind of chip pulse waveforms with bandwidthB ≤ 1

2Tc
.

The output SINR is also independent of the initial sampling
time. Therefore, the system does not incur any degradation in
SINR if, for all signals of interest, we consider a discrete
statistic obtained by sampling the received signal starting at
a random instant and with a proper sampling rate, instead
of consideringK different statistics obtained by sampling
the received signal at the exact arrival time of each signal
of interest.Therefore, without performance degradation we
can replace a bank ofK different samplers andK different
multiuser detectors by a single sampler followed by a single
multiuser detector processing jointly all users.

B. Chip pulse waveform with1
2Tc

≤ B ≤ 1
Tc

Let ψ̃(t) be anevenchip waveform withreal unitary Fourier
transformΞ(j2πf) and bandwidth 1

2Tc
≤ B ≤ 1

Tc
. Sufficient

statistics are obtained sampling at rate2
Tc

. Additionally, let us
assume that the received powers|akk|2 and the time delays
are statistically independent random variables andfT (τ), the
marginal eigenvalue probability density function of the time
delay, is symmetric aroundτ = Tc

2 , i.e. fT (τ − Tc

2 ) is an even
function. Then, applying Theorem 1, we obtain the following
algorithm to derive the asymptotic valuesRs

kk,∞.
Algorithm 2:
1st step Let ρ0(z) = 1 andµ0(y) = 1.
`th step • Define u`−1(y) = yµ`−1(y) and write it as a

polynomial iny.
• Define v`−1(z) = zρ`−1(z) and write it as a

polynomial inz.
• Define

Es =
(

2
T 2

c

)s ∫ 1

−1

Ξ2s

(
j
2π

Tc
x

)
dx (4)

and replace all monomialsy, y2, . . . , y` in the
polynomial u`−1(y) by E1, E2, . . . , E`, respec-
tively. Assign the result toU`−1.

• Define ms
|A|2 = E{|akk|2s} and replace

all monomialsz, z2, . . . , z` in the polynomial
v`−1(z) by the momentsm1

|A|2 , m2
|A|2 ,. . . ,

m`
|A|2 , respectively, Assign the result toV`−1.

• Set

ρ`(z) =
`−1∑
s=0

zU`−s−1ρs(z)

µ`(y) =
`−1∑
s=0

βyV`−s−1µs(y).

• Assignρ`(λ) to R̃`(λ).
Replace all monomialsz, z2, . . . , z` in the poly-
nomialρ`(z) by the momentsm1

|A|2 , m2
|A|2 ,. . . ,

m`
|A|2 , respectively, and assign the result tom`eR.

Algorithm 2 is derived in [11].
Interestingly the recursive equations do not depend on the

arrival timeτk of the signal of the userk: the performance of
such a CDMA system is independent of the time delay.

R̃`(λ) depends onΞ(j2πf) through the quantitiesEs, s =
1, 2, . . ., defined in (4).

The performance of synchronous CDMA systems with
square root Nyquist chip-pulse waveforms is well-known to
be independent of the roll-off and given in [12].

Figure 1 shows the large system performance, in terms of
asymptotic output SINR, of detectors Type J-I withM = 8
and increasing roll-off versusEs

N0
, in case of both synchronous

(lines with markers) and asynchronous CDMA systems (lines
without markers). The SINR is obtained assuming equal
received powers at the receiver, i.e.A = I, and system load
β = 3

4 .
While the SINR of synchronous systems with square root

Nyquist waveforms is independent of the roll-offγ, the
output SINR of asynchronous systems increases as the roll-
off increases. Forγ = 0, i.e. for an ideal Nyquist sinc
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chip pulse waveform, the performance of synchronous and
asynchronous systems coincides as already observed in the
previous section. Forγ > 0 asynchronous systems outperform
the correspondent synchronous systems with equal roll-off.

In Figure 2 the SINR is plotted as a function of the
system load, parametric in the roll-off, forES/N0 = 20 dB.
The improvement achievable by asynchronous systems over
synchronous systems increases as the system load increases.

The results obtained for symbol quasi synchronous and chip
asynchronous systems can be generalized to asynchronous
systems. A chip synchronous and symbol asynchronous system
with linear detection is equivalent in performance to the
corresponding synchronous system if the observation window
is sufficiently large or infinite [4]–[6]. We conjecture that
this property extends to chip asynchronous systems. Then,
an asynchronous system and a chip asynchronous but symbol
quasi synchronous CDMA system have the same performance.
This is verified in [11] by simulations.

V. CONCLUSIONS

In this work we provided a general framework for the large
system performance analysis of asynchronous CDMA systems
using a wide class of linear multiuser detectors including linear
MMSE, linear PIC detectors, MSWF, polynomial expansion
detectors.

Under general conditions verified for systems of practical
interest, the effects of chip shape is captured by the coefficients
Es, s = 1, 2, . . . simply related to the chip waveform. For
B ≤ 1

2Tc
the performance of synchronous and asynchronous

systems coincides independently of the chip pulse waveform
and the delay distribution. ForB > 1

2Tc
detectors optimum

in a MMSE sense (MMSE, MSWF, Type J-I detectors), and
for square root raised cosine waveforms asynchronous CDMA
systems outperform the corresponding synchronous systems.
The gap in SINR increases as the bandwidth of the waveforms,
or the system loadβ, or Es

N0
increases. ForEs

N0
= 20 dB a

system with roll-offγ = 0 and loadβ outperforms a system
with roll-off γ = 1 and load2β (see Figure 2). This gap
decreases asEs

N0
increases.
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