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Abstract— A unique feature of ultra wideband (UWB)
technology lies in its dual capabilities of communication
and ranging. As UWB pulses are very narrow, very
strict synchronization requirements are incurred as timing
errors induce severe performances degradation. In this
work, using second order statistics of the received signals,
we present the Ziv-Zakai lower bound (ZZLB) for the time
delay estimation of UWB signals. This bound is known to
be more accurate in the low SNR regime than the Cramer-
Rao lower bound (CRLB).

I. INTRODUCTION

The use of Utra-Wide Band (UWB) signaling tech-
niques are being considered for short-range indoor com-
munications, primarily for next generation high bit-rate
Wireless Personal Area Networks (WPAN). Initial works
in this direction were carried out by Scholtz [1,2],
using the most common form of signaling based duty
cycle transmission, where information is carried in pulse
position. Such techniques, as well as others are being
considered in the standardization process of the IEEE
802.15.3a WPAN proposal (see http://grouper.ieee.org).
At the same time, regulatory aspects have quickly been
defined by the FCC.

Due to low power density, duty cycle transmission and
dense UWB multipath channel [3,4], synchronization
is very crucial for reliable transmission. Many works
treated this critical issue and derived different Cramer
Rao lower bounds to set a limit on the attainable mean-
square estimation errors [5]–[8]. Its well known that
the CRLB yields an accurate answer only for large
signal-to-noise ratios [9]. As UWB systems operate at
very low SNR using duty cycle transmission, CRLB
represents a very optimistic performance limit. This
motivates our effort to derive a Ziv Zakai Lower Bound
(ZZLB) [10,11] as it is shown to be more realistic
at low SNR and include explicitly the dependence on
the a priori interval. Fundamental work on ZZLB for

time delay estimation was applied in broadband acoustic
channel [12,13]. To derive this bound in our context
we use second order statistics approach. Indeed, in
UWB systems the channel coherence time is very large
(typically 100µs), this characteristic can be very helpful
to estimate the statistics of the received signal in order
to assist the synchronization task.

II. SYSTEM MODEL

Let s(t) =
√

Ep

Tp
p(t) be the transmitted IR-UWB

single-pulse one-shot signal, with Ep been the pulse
energy and p(t) is the transmitted pulse of duration Tp

with
∫ Tp

0 p(t)2dt = 1. Propagation studies for IR-UWB
signals have shown that they undergo dense muptipath
environment producing large number of resolvable paths
[3]. A typical model for the impulse response of a
multipath channel is given by

h(t) =
L�

i=1

hiδ(t− τi) (1)

Where τi is the i − th path delay and hi is random
variable modeling signal attenuation at τi.
The received signal during an observation period of
duration Tf can then be written as

r(t) =

�
y(t) + n(t) t ∈ [θ0, θ0 + Td],

n(t) t ∈ [0, θ0] ∪ [θ0 + Td, Tf ]

Where θ0 is the time delay parameter to be estimated, Td

the channel delay spread, n(t) is additive white gaussian
noise process with zero mean and one sided spectral
density No/2, and

y(t) = s(t) ∗ h(t)

=

�
Ep

Tp

L�
i=1

hip(t− τi) (2)



Since y(t) is a combination of many significant ran-
dom variables we model it as a non-sationary guassian
process. We assume then the knowledge of the second
order satistics Ky(t, u) of y(t). Our interest is then to
assess the uncertainty in estimating time delay using IR-
UWB in one-shot procedure.

III. ZIV-ZAKAI LOWER BOUND

The Ziv-Zakai formulation of the lower bound is
based on the probability of deciding correctly between
two possible values (θ1) and (θ2) of the signal delay.
The derivation of this bound relies on result from de-
tection theory [10]. An optimal detection scheme which
minimize the probability of error performs a likelihood
ratio test between the two hypothesized delays. On the
other hand, a suboptimal procedure will be to apply, first,
some estimation procedure to estimate the delay θ̂0 of
the received signal then decide between the to hypothesis
by comparing θ̂ with (θ1 + θ2)/2.
By comparing the performance the two schemes, one
obtains the improved Ziv-Zakai lower bound [11] on
mean square error of the delay estimate

E[(θ̂0 − θ0)
2] ≥

� Tf−Td

0

xdx

� Tf−Td−x

0

Pe(θ1, θ1 + x)

Tf − Td
dθ1 (3)

Where Pe(θ1, θ1 +x) denotes the probability of error of
the likelihood ratio test when deciding between θ1 and
θ1 + x.
Assuming that Pe(θ1, θ1 + x) is independent of θ1, the
expression in (3) becomes

E[(θ̂0 − θ0)
2] ≥

� Tf−Td

0

x
Tf − Td − x

Tf − Td
Pe(θ1, θ1 + x)dx (4)

We start first by deriving the detcetion error probability
in our context, then we use (4) to express the ZZLB.
The received signal during the observation interval
[0, Tf ] is first projected on a Fourier basis as

r(t) =
N�

i=1

Riψi(t) (5)

Ri =

� Tf

0

r(t)ψi(t)dt (6)

ψi(t) = 1√
Tf

e
− j2πit

Tf are elements of the Fourier basis

defined in the interval [0, Tf ] and j =
√−1.

Ri are complex gaussian variables with zero mean and
covariance matrix given as

K0(i, k) = E[RiR
†
k]

= E

�
1

Tf

� Tf

0

� Tf

0

r(t)r(u)ψi(t)ψ
†
k(u)dtdu

�

=
N0

2
δ(i− k) +

1

Tf

� θ0+Td

θ0

� θ0+Td

θ0

Ky(t, u)e
− j2π(it−ku)

Tf dtdu

(7)

Let θ1 and θ2 denote the hypothesized delays. We have
then

r(t) =

�
y(t− (θ1 − θ0)) + n(t) t ∈ [θ1, θ1 + Td] | H1

y(t− (θ2 − θ0)) + n(t) t ∈ [θ2, θ2 + Td] | H2
(8)

Let ∆1 = θ1 − θ0 and x = θ2 − θ1, we get then ∆2 =
θ1 − θ0 = ∆1 + x.
Under Hypothesis H1, R has a covariance matrix given
as

1Kθ1,x(i, k) = E[RiR
†
k|H1]

= E

�
1

Tf

� Tf

0

� Tf

0

r(t)r(u)ψi(t)ψ
†
k(u)dtdu

�

=
N0

2
δi,k +

1

Tf

� θ1+Td

θ1� θ1+Td

θ1

Ky(t− ∆1, u− ∆1)e
− j2πit

Tf e
j2πku

Tf dtdu

=
N0

2
δi,k +

1

Tf

� θ0+Td

θ0� θ0+Td

θ0

Ky(t′, u′)e
− j2πi(t′+∆1)

Tf e
j2πk(u′+∆1)

Tf dt′du′

= e
− j2π∆1(i−k)

Tf K0(i, k) +
N0

2

�
1 − e

− j2π∆1(i−k)
Tf

�
δi,k

(9)

Similarly, under hypothesis H2, R has a covariance
matrix given as

2Kθ1,x(i, k) = E[RiR
†
k|H2]

= e
− j2π∆2(i−k)

Tf K0(i, k) +
N0

2

�
1 − e

− j2π∆2(i−k)
Tf

�
δi,k

(10)

The resultant log-likelihood function is then

L(θ1, x) = ln

�
P (R|H1)

P (R|H2)

�
= R†Qθ1,xR−Dθ1,x (11)

Where

Qθ1,x = 1K
−1
θ1,x − 2K

−1
θ1,x (12)

Dθ1,x = ln det( 2Kθ1,x) − ln det( 1Kθ1,x) (13)



The two hypothesis are then compared according to the
decision rule

L(θ1, x)
H2
>
<
H1

Dθ1,x (14)

The resulting probability of detection error is then

Pe(θ1, θ1 +x) =
1

2
[P (Z > Dθ1,x|H1)+P (Z < Dθ1 ,x|H2)] (15)

Where Z = R†Qθ1,xR.
In the following we derive the distribution of Z under
H1. The same procedure is used under H2 so it is
omitted here.
Under H1, ∆1 = 0 so K1 = K0. As 1Kθ1,x and
2Kθ1,x are Hermitian, Q is also Hermitian.
We begin by making a Karhunen-Loeve decomposition
of R in the basis of its covariance matrix.

K0 = UΛU† (16)

where Λ is a diagonal matrix with eigenvalues of K0

as diagonal elements, and U is a unitary matrix formed
by the corresponding eigenvectors.
R can be written then as

R = UΛ
1
2 Ṙ (17)

Where

Ṙ = Λ− 1
2U†R , KṘ = I (18)

So we get

Z = Ṙ†Q̇θ1,xṘ (19)

Whith

Q̇θ1,x = Λ
1
2U†Qθ1,xUΛ

1
2 (20)

Q̇θ1,x is hermitian and can be decomposed also as
VMV † where V is an orthonormal matrix of
eigenvectors of Q̇θ1,x and M is a diagonal matrix of
corresponding eigenvalues µi

θ1,x
.

We can thus write

Z = (V †Ṙ)†M(V †Ṙ) =
�

µi
θ1,x|R̈i|2 (21)

Where

R̈ = V †Ṙ = V †Λ− 1
2U†R , KR̈ = VKṘV

† = I (22)

We have thus expressed Z as weighted sum of squares
of uncorrelated random variables with unit variance.
The moment generating function of Z can then be
written as

GZ(s) =
1

det (I − sK0Qθ1,x)

=
N�

i=0

1

1 − sµi
θ1,x

for|�(s)| < 1/max(|µi
θ1,x|)

=

N�
i=0

πi
θ1,x

1 − sµi
θ1,x

for µi
θ1,x distinct (23)

Where the coefficients πi
θ1,x

are the residues given by

πi
θ1,x =

N∏
k=0
k �=i

µi
θ1,x

µi
θ1,x

− µi
θ1,x

(24)

This can be inverted to yield the distribution of Z:

FZ(z, θ1, x) =

	


�



�



{i|µi

θ1,x
>0} πi

θ1,xe
−z/µi

θ1,x z > 0

{i|µi

θ1,x
<0} πi

θ1,x(1 − e
−z/µi

θ1,x )

+



{i|µi
θ1,x

>0} πi
θ1,x z ≤ 0

(25)

Under H1, ∆1 = 0 so K1 = K0. Similarly, Under H2,
∆2 = 0 so K2 = K0. As the probability error is
independent from θ1 we remove the dependence on θ1.
The decision threshold can then be written as

Dθ1,x =

�
1zx = ln det( 2Kθ1,x) − ln det(K0) | H1

2zx = ln det(K0) − ln det( 1Kθ1,x) | H2
(26)

We can now express the ZZLB as

E[(θ̂0 − θ0)
2] ≥

� Tf−Td

0

x(Tf − Td − x)

Tf − Td
Pe(θ1, θ1 + x)dx

≥ 1

2(Tf − Td)

� Tf−Td

0

x(Tf − Td − x)

[1 − FZ( 1zx, x) + FZ( 2zx, x)]dx (27)

IV. NUMERICAL RESULTS

In this section, we evaluate the ZZLB for IR-UWB one
shot signal where the received signal y(t) is modeled
as a non-stationary gaussian process. For numerical
purpose, we assume the knowledge of a degenerate
kernel of the second order statistics Ky(t, u)
characterized by a finite number of eigenmodes. In Fig.
1, we plot the obtained standard deviation of ZZLB for
different delay spread durations Td Vs. Average
transmitted SNR.The pulse is of duration Tp = 1ns
and the observation period is of length Tf = 100ns.
The average SNR is defined as SNRavg = EpTp

Tf N0
.

As predicted by the bound, we observe three different
operating regions:

1) The full ambiguity region corresponding to a
very small SNR, in this region the receiver see
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Fig. 1. Estimation error standard deviation

the signal as noise and the error in this case is
uniformly distributed over the a priori interval
[0, Tf − Td].

2) The Cramer-rao region correponds to a high
SNR, in this case the receiver success to match
well the signal with uncertainty in the order of
Tp. We observe however that for increasing delay
spread Td, and for the same pulse energy, the
error variance increases as the energy is more
spread which is intuitivly comprehensible .

3) The threshold region is located just between the
two regions cited above. The estimation error in
this case exceeds the CRLB by a large factor and
describes more precisely the limit of the
estimation error. It is then more realistic bound,
especially for UWB systems that are supposed to
operate on this range of SNR.

V. CONCLUSION

In this work, we presented the Ziv-Zakai lower bound
on the mean square error of the time delay estimation
for IR-UWB signals. The obtained bound is more tight
than the Cramer-rao lower bound in the operating SNR
region of UWB systems, showing that 1ns accuracy
range is achievable even at low average SNR in one
shot attempt. This result is encouraging for the design
of real applications based on UWB signaling
technology.
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