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Abstract

Existing backoff scheme’s optimization of IEEE 802.11 DCF MAC protocol con-
sider only saturated networks or asymptotic conditions. In real situations, traffic
is bursty or streamed at low rates so that stations do not operate usually in satu-
rated regime. In this work, we propose and analyze a backoff enhancement for
IEEE802.11 DCF that requires information only about the network size and that
is quasi-optimal under all traffic loads. We first analyze the performance of DCF
multiple access scheme under general load conditions in single hop configuration
and we provide an accurate delay statistics model that consider the self-loop proba-
bility in every backoff state. We prove then the short-term unfairness of the binary
exponential backoff used in IEEE802.11 by defining channel capture probability
as fairness metric. Motivated by the results on fairness, we introduce the constant-
window backoff scheme and we compare its performance to IEEE802.11 DCF
with Binary exponential backoff. The quasi-optimality of the proposed scheme is
proved and numerical results show that it increases, both the throughput and fair-
ness, of IEEE 802.11 DCF while remaining insensitive to traffic intensity. The
analysis is then extended to consider the finite queueing capacity at nodes buffers
using results from the delay analysis. NS2 simulations validate the obtained results.



1 Introduction

Inthe IEEE 802.11 standard for wireless LAN networks [1], the primary medium
access scheme is called "distributed coordination function”(DCF) and it is based
on a CSMA/CA protocol with binary exponential backoff (BEB) retransmission
rules. Since the introduction of the standard, many works have been interested in
the analytical evaluation of its performance; most of them were based on the model
of Bianchi [2], and consider saturation throughput and delay analysis ( [3-5] to cite
few).

1.1 Queueing Analysis

In real networks, packets may be queued at nodes buffer before being handled
by the MAC protocol, and typical data traffics are bursty or streamed at low rates
so that stations do note operate usually in saturated regime. Recent works have
addressed the finite load performance of IEEE802.11 DCF with queueing at nodes
buffer (queues with infinite capacity) [6, 7] or with simplifying assumptions [8].

The analysis of queueing model of MAC protocols is a challenging task, and gen-
erally do not permit to obtain closed-form expressions of quantities of interest. In
this work, we use a two-stage technique to analyze a queuing model of DCF proto-
col. In order to acquire closed-form expression of system performance, a Markov
chain model is first used to analyze the non-queueing operation of the system. The
traffic load in this case is modeled as a probability of having a packet to trapsmit
this probability is taken into account whenever the protocol is able to handle a new
packet. In this wayy allows us to consider the fact that packet arrivals may occur
anytime during the operation of the system. From the non-queueing model, we
obtain the service-time statistics corresponding to a givelm the second phase,

we consider a queueing model of the system with a given arrival progesand
gueue length. Thus, the probability of having a packet to transgnibrresponds

to the probability of having at least one packet in the quguén order to link

the two models, we use a recursive algorithms that update tlaéue used in the
Markov model to specify the service time statistics, to match the resujtiingm

the queueing model.

1.2 Backoff Scheme Optimization

It is well recognized that the key optimization issue of random access proto-
cols is the design of an optimal retransmission scheme that keeps access rate to the
multiple-access channel around its capacity. Obviously, an optimal retransmission
scheme must achieve this capacity under all network conditions and must be dis-



tributed. The optimality of the scheme depends on how accurate is the information
that is has about the multiple access channel state.

IEEE8B02.11 DCF uses a BEB retransmission scheme. The BEB scheme has the
advantage of being simple and does not require cooperation among users or any
information about the channel state, it tries to blindly adapt the contention window
to the channel congestion level based only on its experience, i.e., the contention
window is increased in case of collision and it is reset to its initial value in case
of success. Its performances however are shown to be sub-optimal, in term of the
achieved throughput as it needs several attempts to find approximately the best
contention window, and also in term of short-term fairness as it favors the first suc-
cessful user to compete again for the channel with small contention window against
potentially others users with much higher contention window. Works in [9,10] have
derived specific fairness metric to illustrate this.

The enhancement of the DCF based BEB have been extensively addressed in the
literature, the proposed schemes may be categorized into two classes:

1. Blind schemes: as in BEB, there is no need to sense the channel activity; the
change of the contention window’s length is made upon collision or success
but in a different manner than BEB (MILD [11], FCR [12], EIED [13] to
site few) in order to reach better the optimal backoff window and/or increase
short-term fairness.

2. coherent schemes: here the optimization is made in order to dynamically
adapt the contention window to meet directly some objective optimization
condition. The objective condition is derived from an analytical model and
its verification is made by measuring (estimating) some specific performance
metrics, [14-17] to site few. Even if these schemes identify and try to reach
an optimal operating point of the system, the way they update the backoff
window is not optimal as in the blind schemes.

Early in the work of Bianchi [2], the notion of optimal backoff window that opti-
mizes the saturation network throughput has been introduced. Unfortunately, the
calculation of this optimal window requires information about the network size
and the average duration of collisiof81.,]. Even ifn could be easily obtained

in single-hop network, channel activity sensing is required to estithgig,] in

case of heterogeneous networks where users employ different physical rates and/or
packet sizes.

As DCF provides equal long-term access rate to different users, several studies
have shown that DCF is unable to fairly and efficiently manage heterogeneous net-
works [7,14,18-21]. As solution, time-based scheduling [19] have been shown to
increase both the throughput and fairness of the MAC protocol.



In order to achieve trivially time-based scheduling with DCF, it is sufficient to nor-
malize the packet duration by normalizing the packet-size/physical-rate ratio, i.e.,
each physical rate is to be used with a corresponding packet size in order to get
unigue packet duration on the channel and hence, a priori, fair input to the system.
In this case, we can implement the optimal-window backoff scheme of [2] without
estimatingE [T ).

In this work, we consider backoff-window optimization issue of finite load single-
hop networks based on the idea in [2]. In order to avoid estimating collision du-
rations, we suppose that packet durations are normalized. Obviously, the optimal
backoff-window in this case will depend also on the traffic load. However, we will
show that is sufficient to use the saturation’s optimal window under all loads to
achieve nearly the maximum achievable throughput. This is an extended version
of the paper in [22]. Our main contributions are:

e New analytical model to consider finite load performance of DCF without
gueueing at nodes buffer.

e Proof of the short term unfairness of the binary exponential scheme by using
channel capture probability as fairness metric.

e Accurate delay statistics model considering self-loop probability on every
backoff state.

e Introduction of the optimal constant-window backoff (OCB) scheme that
maximizes the network throughput. The optimal window depends, among
aothers, on the traffic load, and it is achieved only for arrival rates greater
than a specific threshold. However, we prove in this work that the saturation
optimal window is quasi-optimal under all traffic loads.

e Deep analysis of the operations of the BEB and OCB schemes with respect
to load variations using numerical results. We show especially that OCB
performs better than BEB, both in term of throughput and fairness, while
remaining quasi-insensitive to traffic load.

e Analytical model to consider finite queuing capacity of nodes based on the
delay statistics model of the non-queueing model. Using results on M/G/1/K
gueues, we will use a recursive algorithm to link the delay statistics produced
by a given traffic load to a corresponding arrival process (Markovian in our
case) and queue length.

The paper is organized as follows. In section Il we introduce the analytical model,
we derive the throughput and the delay statistics, and we show the unfairness of



the BEB retransmission scheme. In section Ill we introduce the optimal constant
window backoff scheme and give bounds on performances loss when using only
the saturation window for all arrival probabilities. The performances of the two
schemes are then deeply analyzed in section IV. The finite capacity queueing model
is given is section V, simulation results in section VI and concluding remarks are
provided in section VII.

2 Binary Exponential Backoff Scheme

The analytical model we use is based on the work in [2] but extends it to con-
sider general load performance (with backoff freezing and finite retry limit).
We consider a network af nodes evolving in single hop configuration. The key
approximation of the Bianchi's model is to assume that the channel is busy with
fixed probabilityp independently from the backoff counter value (equilibrium point
analysis). Each node state is identified by its backoff window counter and backoff
stage. The backoff counter and stage are modeled as a bidimensional discrete-time
Markov procesgs(t),b(t)) wheres(t) andb(t) denote respectively the backoff
stage and the backoff counter at time instantf the channel is busy the back-
off counter is frozen for the duration of the current transmission. Otherwise, it
is decreased when the channel is sensed again idle. Hence, transitions time of
the Markov process depend on the current state of the channel. To alleviate this
problem, a second approximation is made by defining an average time slot as the
unit-time of the Markov chain. This unit-time is an average of the three possible
time slot durations that correspond to successful transmission, collision or idle,
weighted by their probability of occurrence:

Tavg = Pidle0 + psuchuc + pcochol (1)
o is the idle slot duration. For the basic access mdgg,andT,,; are given as

Towe = 26+ H+ E[P|+ SIFS+ Ack + DIFS 2
T.w = 6+ H+E[P|+EIFS (3)
And for the RTS/CTS access mode
+ACK + DIFS 4
Teot = 06+ RTS+ EIFS (5)

Didies Psuc @Ndp.o; Will be derived in the following.

When the backoff counter reach@she node is allowed to transmit. In case of a
collision, the node must double is contention window to reduce collision probabil-
ity (binary exponential backoff). Otherwise it resets its contention window to its



initial value. The scheme defines also a maximum numberl of retransmission
trials after which the packet is dropped, and a maximum window’s size afder
Let 7; ; denotes the steady state probability of node to be in backoff stagfi
backoff counter aj. i € {0..m}, j € {0.W; — 1} andW; denotes contention
window value at stagé According to the standard we have:

2'Wo for i< m’

Wi :{ W, for i>m/
whereW is the initial value of the contention window.
To avoid channel capture, each node must wait a random backoff time after each
successful packet transmission. We add then the new stateg), j € {0..1j —

1} to model node’s state during inter-packets transmission(Inter-transmission back-
off (ITB) states).

In order to consider the non-saturated regime we defias the probability of
having a packet to transmit (all nodes have the sgimend to keep the analysis
tractable we do not consider for the moment queueing at node’s buffer (each node
has at maximum one packet per time). In a queueing mqdmrresponds to the
probability of having at least one packet in the buffer.

Others works have addressed the performance analysis of 802.11 DCF under fi-
nite load conditions. In [6, 7], the authors analyzed the finite load performance of
802.11 considering queueing at nodes buffers. The analysis is more complex so
they consider queues with infinite capacity. We mention also the work in [8] where
the case of users with heterogeneous finite loads and with small buffers is analyzed.
Using the assumptions of small buffers, the authors in [8] have modeled the arrival
probability as the probability of having at least one arrival during the mean system
time 7,4, Which in fact remove the queuing effect as it is true only when the buffer
size is equal to 1.

Here, we proceed differently, from the no-queueing model parameterized by the
packet availability probability;, we derive the delay statistics and then we relate
them to the finite capacity queueing model (section 5).

Fig. 1 illustrates the Markov chain model used for the no-queueing model. After a
packet transmission (success or drop), a node may transit to the following states:

(6)

e (0,0): if it choosesD as backoff value and it has a packet to transmit

0G0 = S22 e qom-1 )
P{(0,0)[(m,0)} = = ®)

! extension to heterogeneous arrival case is straightforward [8]



Fig. 1. Markov chain model

e (—1,0): ifit choosesD as backoff value but has no packet to transmit.

p{(—1,0)|(i,0)} %(01—9)

Pl-1.0)[(m,0)) = T (10)

©)

In this case, the node will stay in this state waiting for a new packet to trans-
mit; Idle state.

e (—1,7), j € {1.Wy — 1}:ifit chooses; as backoff value.

pl-1l60y = Y2 ieqom-1 (1)

0
1
1.4 = — 12
p{(=1,7)I(m, 0)} W 12)
At the end of the ITB (staté—1, 1)), the node may transit to th@, 0) state
if it has a packet to transmit. Otherwise, it goes toltifle state.

p{(0,01(-=1, 1)} = (1-p)g (13)
p{(=1,0)(-1,1)} = (1-p)(1-q) (14)



m m W;—1 o\ Wp—1 o _ _
w3 s T W L] e

Wo(1—p)[1—(2p)™ 1]+ (1—2p)2[1—p™ 1] 42 Wy (1—2p) [p™ T1—p™H1]
2(1—p)2(1—2p)

—1
(Wp—1) 1
+(1-9q) [pzu(ip) + EH m 2 m' )
Wo(1—p)[1=(2p)™ ]+ (1-2p) 2 [1—p™ 1] wo-1 111" '
T atorras o t(1-9) fz(fip) ty msm
_ _omA41 _ - .
[—(WOHQ(?{)E)J L+ (1-q) [”%‘lpi) + %H m' =0 (constant window)
(23)

Transitions from thedle state occur at new packet arrival. If the medium is sensed
idle during DIFS, the node proceeds directly with packet transmission and transits
to the statg0, 0). Otherwise, it executes the BEB scheme.

p{(0,0/(=1,0)} = (1-p)g (15)
PONLOY = 5 je{0.Wo—1} (16)

Solving the global balance equations leads to the following steady state probabili-
ties

o for the lastm — 1 backoff stages:

(Wi = j)p’ .
. WV —7)p LW —1 17
Ti.j Wi~ p) 00 jef{l,Wi-1} a7)
o = Pp'moo (18)

o for the inter-transmission backoff states:

(Wo — 7) .
_ e — 1 —1 19
-1, Wo(l—p) ™ Jje{1,Wo -1} (19)
m-1,0 = ! ; qﬂ'o,o (20)

e and for the first backoff stage

(Wo —j)p(1 = q)

Wo(l 7p) 70,0 ] e {1, W; — 1} (21)

70,5 —
The normalizing equation and the resulting steady state probability of being in state
(0,0) are given in Egs. (22,23). The probability of transmission in a given slot is
then

m—+1

T = Ti0 = T 0,0 (24)
i=0 p
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Then the probabilities of busy, idle, success, and collision are given as

p = 1—-(1-—7)""" (25)
Pidgte = (1—7)" (26)
psue = nr(l—7)""" (27)

Peol = 1 —DPpidie — Psuc (28)

and the throughput is defined as

Th?"p _ psucL _ psucL

= 29
Tavg PidleC + psucTsuc + pcochol ( )

wherelL is the data packet length.

2.1 Delay Statistics

We define packet success delay as the time duration a packet lasts in the system
since itis being handled by the MAC layer until the reception of acknowledgement
of its successful reception.

A successful transmission may occur at one of the several backoff stages. The
average time that a packet spends in the first backoff stage before its first transmis-

sion depends on whether the packet comes directly from the idle state or from ITB

states. Conditioned on being in the first transmission stagy, this time is

Wp—1

_ ql=—p)r10] ~— J
Do = 1—7] > WODB

70,0

-0 -0 -p) 2

Dp denotes the average time that nodes spent in every backoff state. Many analysis
of 802.11 delay takéDp equal toTy,, and ignore the self-loop probability on

every backoff state. In faci)p is geometrically distributed with parameteand
variates depending on the states of the- 1) remaining nodes

Dp (30)

_ pTs+ (1 —p)o
=
whereTz denotes the average slot duration seen by a node in backoff state when
the channel is busy. Conditioned on channel busy probalpilify; is

Dp =3 p*(1-p)(kTs +0) (31)
k=0

(n—1)7(1—=7)" ?[Touc — Teo + [1 — (1 = 7)" " Tear
P

Similarly, for the other backoff stages, theerage time that a packet spends in the

stagei before its transmission

Tp =

(32)

W;—1

D;,=D;1+ Dp 4+ Teol i € {lm} (33)
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D,_, represents the time that the packet spends in the system until #'d)th.
transmission7'col the fact that the last transmission was not successfub’grdD

is the average backoff time at the current backoff stage. Conditioned on starting
transmission at the sta(@, 0), transmission success probability at ihié stage is

770,0
The delay of a successful transmission can then be seen as a geometric random
variable taking values in the set
{D{"¢ = Dj + Toye, i =0...m}.
Alternatively, theaverage delay of packet drop is simply

E [Dd'rop] = Dm, + Tcol (35)
With drop probability (conditioned on starting transmissioritat)) state)

m—+1
Pdrop = P (36)
Conditioned on effectively starting packet transmission (at $tat®) success and
drop probabilities sum td

p;uc + Pdrop = 1 (37)
1=0

2.2 Short-Term Fairness

The use of exponential backoff retransmission scheme in 802.11 DCF leads to
short-term unfairness. This is mainly because the scheme favors the first successful
user to transmit again.

There exist several metrics to measure the fairness of a MAC protocol, the most
popular is the one proposed by Jain et al. [23], but it can not be used for analytical
purposes.

Many studies have then tried to characterize the short-term fairness issue by de-
riving specific fairness metrics [9], [10]. In [10], the authors define as metric the
distribution of the number of inter-transmissions that other hosts may perform be-
tween two transmissions of a given host. They derive this metric for IEEE802.11
by considering the analytically tractable case of two nodes in saturation conditions
and found surprisingly that the distribution of the number of inter-transmiskion

is independent of the contention window size. This means that changing the win-
dow size has no impact on fairness, so they conclude that unfairness of 802.11 DCF
is not related to the use of the exponential backoff scheme.

In [10], the derivation of the distribution dk was possible by approximating the
discrete uniform distribution by a continuous one. In doing so, the authors neglect
the collision probability and so the analysis did not take into account the exponen-
tial backoff scheme which explains the misleading conclusions.
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Fig. 2: Channel capture by node 1

To prevent analytical difficulties faced when deriving the distributiodofve use

as metric the channel capture probability, i.e., the probability that a node sends
successfully and consecutively 2 packets. As this probability is smaller the scheme
is fairer (for TDMA this probability is 0 as nodes use the channel alternatively).
We derive this probability also only for the case of two nodes in saturation and we
consider only two backoff stages. The goal is just to have an idea on the way the
protocol performs in this simple scenario.

Consider two node$ and2, and Ietw’“ denote thek.th backoff window value
chosen by node when it enters backoff stage We denote the backoff window
size at stage by W; and we suppose that the two nodes start simultaneously at
stage0.

The channel may be captured by nddenly in the three following transmission
cases: 11, ' 1C1’or C11 (Fig. 2). C denotes collision.

The eventl 1 represents a situation where node 1 chooses consecutively two back-
off valueswj  andwi ; such that the backoff value; , chosen by node 2 is greater
thanwj o + w? 5. The probability of this event is

p(11) = p(wio < w%o & w%o < w%o — w%o)
S Y Yy 38)
B wg 6W2

=0 j=i4+1 k=0

We can see that this probability increases with increaBifi@nd it's independent

of the choice ofi;.

The eventlC'1 represents a situation where the backoff values chosen by node 1
at the first backoff stage, and then after a collision at the second backoff stage, are
smaller than those of node 2. The probability of this event is
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p(1C1) = p(wiy < wyg & wiy = wip + wiy & wiy < wsy)
1 WU 1W0 1 Wi—1W;—1
= w2l | 2 2 e
Wo i= 0 Jj= z+1 i=0 j= z+1
Wo—1)(W1 —1)
- Wo-HW -1 (39)
4W %%

We observe that this probability decreases with increaHifgcollision probabil-

ity is decreased) and increases with increa3ing

The third event represents a situation where after a collision, node 1 succeeds to
transmit first its packet, then it goes-back to the first backoff stage and transmit
again before node 2. The probability of the third event is

1 1 1 1 2 1 1
p(C11) p(wig = wyg & wiy < way & wip < way — wiy)

1W11W11]11

—ZZZWW2

010]2+1k0

wW2-1
6W2 Wy

Wy < Wo

3W2HWE—3WoWi—1
6Wo W7

W1 > Wy
(40)

We observe again that this probability increases with increadingn fact, after
a collision the first successful node has a smaller contention window than the other
node so it has more chance to retransmit again.
The channel capture probability is the sum of probabilities of the last three events.
As we have seen, the channel capture probability increases with incré&gkig.
3) which means that binary exponential backoff scheme is less fair than constant
backoff schemel{; = W;). We observe also that BEB is fairer for increasing
size of the initial backoff window. The result is for the case of two nodes but
give a general idea on the behavior of the protocol. Intuitively, if the network size
increases, the collision probability increases, and so, the probability that nodes will
alternate transmissions after collision decreases as they have different windows.
The same argument can be used to prove the same behavior for increasing number
of backoff stages. We are then facing a capacity-fairness tradeoff; after a collision,
if the contention window is increased, the system becomes unfair, but in the same
time the collision probability is decreased.

Historically, the BEB scheme was introduced to blindly adapt the contention
window to the traffic load in order to reduce collisions. Recently, it was shown
in [24] that the BEB achieves a success probabilityndf /2 which is lower than
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Fig. 3: Channel capture probability Vs. W1

the capacity of a constant backoff schemae! (for slotted Aloha with uniform
retransmission). It is then legitimate to think about a constant backoff scheme that
blindly adapt or that is insensitive to traffic load.

3 Optimal Constant-Window Backoff Scheme

Motivated by the results on short-term unfairness of BEB, we analyze in depth
the case of constant backoff window. In this case, the backoff window must be
optimized to maximize the throughput and must be fixed to not decrease fairness.
The optimal backoff window can be seen as the transmission probadjlitipe-
low which the channel utilization is reduced due to high probability of idle slots
and above which reduction of throughput is due to high collision probability. The
goal of the optimization is then to adapt the backoff window to achieveghis
Obviously, under general load conditions, the backoff window must be optimized
with respect to traffic intensitygf. However, it is also obvious that tHe;, } will
not be achieved for small arrival rate € ¢, ¢; is a threshold on arrival rate) even
with the minimal backoff windowi{, = 1). For this reason, we propose in this
work to use the optimal backoff window of the saturated regifjgfor all arrival
rates. The intuition behind this choice is that belgwhe system is lightly loaded
so that the probability of going into backoff is very small and thus the effect of us-
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ing a largel¥ is minimal. Aboveg, the loss incurred by using a backoff window
Wo = W, > Wy, is due to the fact that idle slot probability is higher than the op-
timal one, but in this case, the packet collision probability is lower that the optimal
one, since in CSMA system the idle slot duration is small compared to the collision
duration, the loss in the achieved throughput is small. In the following, we derive
first the optimal transmission probability, and the arrival rate threshotgl Once

q; identified, we show that for arrival rates bellgwalmost all transmissions suc-
ceed without involving the backoff scheme, anddor ¢ we give an upper bound

on the throughput loss.

3.1 Derivation of 7, and W,

When we differentiate th&hrp with respect tor, we find that is maximal for
transmission probability;,, verifying?

n

T, — M where o = &
o = =

g an col — O

(41)

From Eq.(23) we have for the constant backoff cage=£ 0) in saturation condi-
tions (g = 1)

_ 20-p) _ 2(1 — 7)"
T ati-2p) Wo-1t20-7) (42)

The saturation optimal fixed backoff window is then

2(1 — 7)™

Top

W, =1+ (43)

3.2 Derivation of ¢

We look now under which condition apthe 7,, could not be achieved even
with the minimal allowed value of the backoff windoy = 1 (no backoff).
From Eq. 23 we have fdiy = 1

_ 49(-p)

After some algebra we find that the situationrok 7, is possible for

2 The existence and uniquenessrgf can be simply verified [2]
3 We takelW, = 1 only for analytical purpose, in real system the lowest valud/pfve may take
is 2



16

10

— 1_,N=20 **
opt L oodao
°r W, /WS N=20 . @
0p,NZSO 4
S —
LI WoWo, N=s0 ;
107 E i
I

107k : i
720
op

= =0'0 9GO0 ~0= -0 BOTETD- 3

10 '+
R s + > op

107 F

50 20
q( qi
-5
10 -5 "4 -3 -2 -1 0
10 10 10 10 10 10

Fig. 4. Optimal transmission probabilities and the corresponding optimal backoff
windows (normalized to the saturation optimal window) vs. arrival rates

q < q= M (45)
1 = pop — TopPop
Where po, = 1—(1—70p)" " (46)

In Fig 4, we plot the Optimal transmission probabilities and the corresponding
optimal backoff windows Vs arrival rates. We can see that for arrival probabilities
q < g the achieved transmission rates are below the optimal ones even with back-
off window equal tol. We then say that the system is in lightly loaded regime.
Above ¢, 7, is achieved by increasing the backoff window. We observe also that
the optimal backoff window increases, in a first phase, exponentially and then, in a
second phase, slowly converges to the saturation optimal window. During the first
phase of increase we say that the system is in transition regime while during the
second phase it is in saturation regime.

In the following, we give bounds on throughput loss when using the saturation op-
timal window under all load rather than the exact optimal window that take into

account the value of traffic load.
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3.3 Loss in System Performances
3.3.1 Caseofq¢g< ¢

As we have said before, in this case the system is lightly loaded and almost
all transmissions are successful without backoff. To see this we can express the
transmission success probability outside the backoff state as

PLE = nroi0g(l—p)® =01 - q)(1 - p)’mo0 (47)

While total transmission success probability is given as

Psuc = nT(l 7p) = n(l - pm+1)71—0-,0 (48)

As g < ¢, then we haver < 7, wherer; is the transmission probability corre-
sponding to traffic load;. Thus, ee can lower bound the ratiogdfZ overpy,. as
follow

PNB

ﬁ > (1—g)(1—pe)° (49)

Where p, = 1—(1—7)""" (50)

In Fig. 5 we plot this lower bound Vs. network size and we can see that about
94% of transmissions success occurs without backoff. We conclude then that the
use of the saturation optimal window in this case has almost no effect on system
performances.

3.3.2 Caseofq> ¢

In this case the,, is achieved if the backoff window is optimally adapted to
the arrival rate. The maximum system throughput is then achieved. Using Eq. 41
we can express this maximum throughput as follow

(1 = pop) E(P) (51)
(1 - pop)Teuc + popTcol

Thrpmaes =

From this last expression of the maximal throughput we can deduce that the optimal
operation of the protocol is similar to having only one node in saturation condition
who succeed its transmissions with probability- p,, and fails with probability
Pop-

Now, we want to measure the loss in the achieved throughput if we do not use
the optimal window to achieve,, but only the saturation optimal window. As
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) o SIFS DIFS FEIFS H FE[P|] RTS/CTS ACK
lpus  20ps  10us 50us  364us 416 8184 352 304

Tab. 1: Parameter set used for numerical results

q > qi, we haver > 7,, we can thus upper bound the normalized throughput loss
as follow

Thrpmae — Thrp < Thrpmaez — Thrp:

52
Thrpmagz - Thrpmas (52)

In Fig. 5 we plot this bound Vs. networks size and we find that the loss does not
exceedl.6%.

4 Numerical Results

In this section, we compare the performance of the IEEE802.11 DCF based
BEB with the proposed optimal constant backoff (OCB) scheme. Table 1 summa-
rizes the parameters used for our numerical results.
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4.1 Throughput

Fig. 6 shows the achieved throughput Vs. packet arrival probability for net-
work of sizen = 50. The optimal window for OCB scheme in this case is
1392 slots. We consider multiple BEB cases with different initial backoff window
Wy = 16,64,256. We see then that during the lightly loaded regime<( 103
in this case), both OCB and BEB (independently fréf) perform similarly and
increase their channel utilization with increasiqgDuring the transition regime
(1073° < ¢ < 10~2%), we observe that the BEB throughput is slightly higher than
the OCB one. Finally in the saturation regimex 10~%°), and depending oW/,
the throughput achieved by BEB scheme decreases and then saturates, while the
OCB throughput saturates at a higher value.

To understand the operation of the two schemes, we plot in Fig. (7,8) the reparti-
tion of success probability (is the successful transmissions occuritii@state or

from backoff states?), the collision probability and the idle probability Vs. packet
arrival probabilityq. We consider the case @i, = 64 for BEB. For both schemes

we observe that during the 1st phase, success and collision probabilities increase
with increasing load while idle probability remains almost equal to 1 which means
that the system is lightly loaded. As result, all success is almost frondlthstate

which means that almost all packets are transmitted directly at their arrivals without
any backoff delay. In the 2nd phase, for the BEB scheme, the collision probability
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continues to increase with load while idle probability starts to decreases seriously.
BEB begins then to have significant transmission success from the backoff state
while success from thiglle state saturates. At the end of this phase, the two suc-
cess probabilities are equal. The same phenomena is observed for OCB, except
the idle probability that decreases also but remains closedod a less significant
success from backoff states which means that almost all success is still produced
atidle state.

To explain this and how the difference in success probability repartition produces
the small difference in the channel utilization, we can say that during this tran-
sition phase, the probability of busy slot at packet arrival increases for the two
schemes. They start then to execute occasionally their backoff procedures. As the
BEB scheme begins with a relatively small valud/f, its busy slot probability is
bigger than for OCB (the users are not delayed for a long time), so it enters more
frequently into backoff states, but as the system is still lightly loaded, it succeeds
its transmission without excessive backoff delay (the panel of backoff windows
(from Wy to W,,,4.) is sufficient to statistically multiplex efficiently all access de-
mands). The OCB scheme operates differently; as its backoff window is bigger
(1392), its busy slot probability is smaller than for BEB (high idle probability), so

it enters less frequently the backoff state. But in the same time, as the system is
lightly loaded, even if the system delays far enough the unlucky users who find the
system busy at their packet arrival, the channel is not used frequently during this
time which explains the small loss in channel utilization.

During the 3rd phase, the total success probability of the two schemes saturate
as well as idle and collision probabilities (and so the throughput). For the BEB,
success from backoff states continues to increase with load becoming the only sig-
nificant source of transmission success. While for the OCB scheme, success from
backoff states becomes significant only at valueg approaching 1. The degra-
dation of throughput of BEB can be seen as a failure of the scheme to adapt its
window to access demands (high collision probability). The OCB scheme is more
efficient during this phase, as its backoff window is tailored for a saturated regime.
Even if it continues to delay unlucky user for a longer time than BEB, the channel
utilization get higher as the load increases.

Another important observation is that even if BEB achieves higher success prob-
ability than OCB, the resultant throughput is lower! This gives us a more precise
idea on the philosophy of the scheme; In fact, OCB fixes the optimal window in
order to keep transmission probability in an optimal level. At this optimal level loss
due to idle slots is equal to loss due to collision. Below this optimal level, idle slot
probability increases while success and collision probabilities decrease. Above the
optimal transmission level, success increases but also collisions. In carrier sense
multiple access scheme, idle slot duration is shorter than collision, the scheme tries
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then to equalize the duration of idle and collision events which explains the large
value for the contention window and so the smaller success probability.

OCB seems then to operate at optimal level regardless of traffic intensity except
during the transition phase. In Fig. 9, we compare the throughput achieved by
OCB to the one achieved by exactly optimizing the backoff window to the traffic
load ¢. As predicted by the bounds in section (3.3), we observe that the loss of
OCB is small for all network size considered, and is located on a small interval
that corresponds to the transition phase.

To illustrate better the superiority of OCB aver BEB, we plot in fig. 10 the
achieved throughput of the two schemes in saturation vs. network size. We ob-
serve that OCB performs better than BEB at all network size. We observe also that
BEB operates differently depending on its initial backoff window value. We can
see that every value &¥; has only a limited interval of network sizes where it per-
forms optimally which shows the inability of BEB to adapt efficiently the backoff
window to the access demands.

4.2 Delay & Fairness

Fig. 11 depicts the normalized achieved delay (to packet transmission time
Tsue) VS. packet arrival probability. We observe a logical behavior with respect
to the throughput, i.e., no excess delay in the non-backoff regime, delay of OCB
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slightly greater than BEB in the transition regime and lower in saturation regime.
Moreover, we can see that OCB packet's mean delay at saturation approximates

50 * Ty, Which is the delay of a pure TDMA scheme with 50 users in saturation.
To illustrate the BEB unfairness, we use the Jain’s fairness index relative to the

delay. The Jain’s fairness can be related to the delay statistics as follow

1

var(D)
1+ Zme

Fig. 12 pictures the Jain index for the same setting as previously. We can see
that OCB is less fair than BEB during the transition phase but much more fair in
saturation regime. We observe also that during the transition phase, the system can
not guarantee equal service time even with the exact window OCB scheme. As the
system is not really loaded, neither unloaded, packets got service depending on the
system’s state at their arrival time: lucky users got immediate service while others
are delayed. During the saturation regime, OCB becomes fairer as all packet get
access from backoff states while BEB remain unfair due to its intrinsic unfairness.

. ! .
Jain's index =

(53)

5 Buffered Terminals Model

In real networks, packets may be queued at node’s buffer before being handled
by the MAC protocol. It is then necessary to include the queueing delay in the
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characterization of the system performance. In section 2.1, we have derived the
delay statistics of the protocol for a given packet availabijitywe consider now

each terminal with a queue of siz& — 1) packets, the probability corresponds

then to the probability that the queue is not empty.

We assume that packet arrivals at each terminal is Poissonian process with mean
A, hence each node buffer can be modeled as a finite capacity single server queue
M/G/1/K. The number of packet in the system at the embedded points corre-
sponding to the time instants just after a job completion (successful transmission
or drop) forms a Markov chain. We define the packet service time as the packet
success delay in case of successful transmission or the packet drop delay in the
contrary case. The average packet service time at the MAC layer is then

n= Z D" pi*° + Dayropparop (54)

=0
Let (w,‘j,rrk) denote respectively the steady state probability of hakipgckets in
the queueing system at departure instants, and at arbitrary ingtantf) .. . K —
1}. And let Qg{j denotes the system transition probabilities upon departure, we
have then [25]

o, — [ o 0<k<K-—2 .
ok T 1= 2 k=K—1 1=
(55)
d Af— 541 j—lSkSK—Q .
: = ; <5< -
Qjk {1*2526]_1% h_K_1 1SisK-1
(56)

Whereqy, represents the probability of havigarrivals during a service time

m )\D.isuc k _ suc sue )\Ddrop k _ drop
Q. = Z %3 AP pi  + %6 AP DPdrop (57)

i=—1

The global balance equations and the normalization condition are given as follow

i

K—1
=) mQiy . 1= m (58)
Jj=0 0

>
Il

Therefore, the steady state probabilities at arbitrary instants are given by

1

R
wherep = A\ is the queue load.
The probability of having at least one packet in the queue is then

T, ke{0...K -1} (59)

q:l—ﬂ'o (60)
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And the blocking probability is

1
T +p
To specify the service time distribution using results of section 2.1 we need to iden-
tify the packet availability probability;. In the same time, to specify the packet
arrival probability from the queueing analysis we need to identify the service time
distribution!

To resolve this problem, given an input ratend a queue length’ — 1, we use a
recursive algorithm to estimate the corresponding arrival probalility

Starting with an initial guess;,, on the arrival probability, we derive the service

time distribution, then we use the queueing analysis to identify the produced arrival
probability ¢,..:(Eq. 60). If the difference between the input probabilityand the

output probabilityg,,,; is greater than a thresholg,, is replaced withy,,,; and the
operation is repeated. Otherwise the search is stopped.

Convergence in ensured since the case,gf > ¢, (respectivelyg,,: < gin)

means that even with a lower estimate of arrival probabijity and so a lower
estimate of the service time, the system is more loaded which indicates that the
search must continues on the directioryf (respectively, even with an upper es-
timate of the service time the system is less loaded so the search must also continue
in the direction ofg,.).

The average queue length can then be expressed as

(61)

Tk =1 —

N = i ke (62)
The mean packet service time (inclugi:r(;g MAC delay) by
W= M (63)
And the end-to-end throughput as
Thrpe = nA(1 — 7x ) (1 = Parop) (64)

6 Simulation results

In this section we validate our analytical results with NS2 (Network Simulator)
simulations. We use the same parameters as previously, the queue length is taken
equal to50 and we consider now the RTS/CTS access mode. The optimal constant
window in this case i863 slots. In Fig. 13, we plot the achieved throughput
under BEB and OCB schemes vs. data arrival rate. First, we observe that results
from analytical model are almost equal to that from simulations which validates,
not only our queueing model, but also our non-queueing models and our delay
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statistics model. Second, we can see that BEB performances are close to that of
OCB which means that even if BEB collision probability is higher than that of
OCB, the penalty in throughput is very small since collision duration is reduced
by the use of RTS/CTS handshaking.  Fig. 14 depicts the corresponding mean
packet service time (including queueing delay) and shows clearly the existence of
the three operating modes (no-backoff, transition and saturation regimes). In fig.
15, we plot the delay Jain’s fairness index Vs. packet arrival rate. We observe again
that during the no-backoff regime the two schemes are fair, at transition regime the
two schemes are less fair, and finally at saturation the two schemes becomes again
fair which is different from our previous observation when we analyze the delay
fairness. This is due to the fact that at saturation, the queueing delay is much
more higher than the mac delay. To illustrate the short-term unfairness of the BEB
scheme, we plot in fig. 16 the throughput Jain’s fairness index using the sliding
window method [9]. The data arrival rate is taken equaQtf bits/s, the network

is then in saturation regime. We observe that OCB is relatively fair even at short
time horizon, and is much fairer than BEB.
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7 Conclusion

In this paper, we investigated the performance of the IEEE 802.11 DCF multi-
ple access scheme under general load conditions in single-hop configurations and
we proposed a backoff scheme enhancement that is quasi-optimal under all traf-
fic conditions. First, we presented a Markov chain model to analyze finite load
situations without considering queuing at nodes buffer from which we derived an
accurate delay statistics model. We derived then the size of the optimal constant
window that maximizes the network throughput in saturation regime. Then, we
used this window for all traffic loads and we proved that the system operate quasi-
optimally independently from the traffic load. Numerical results have shown that
OCB performs better than BEB both in term of throughput, delay, and short-term
fairness. We have extended then the study to consider finite queueing capacity at
nodes buffer, and we have developed a recursive algorithm to alleviate the com-
plexity of the analysis. Finally, we validated our results by NS2 simulations where
we show clearly the superiority of OCB over BEB. OCB requires just information
about the network size. This information is easier to obtain in single hop networks,
and its coherence time is larger compared to other parameters (backlog state, active
nodes, or any other information measured from the channel state).
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