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Abstract
Behavior of the least squares filter (LeSF) is analyzed for a
class of non-stationary signals that are composed of multiple
sinusoids whose frequencies and the amplitudes may vary from
block to block and which are embedded in white noise. Analytic
expressions for the weights and the output of the LeSF are de-
rived as a function of the block length and the signal SNR com-
puted over the corresponding block. Recognizing that such a
sinusoidal model is a valid approximation to the speech signals,
we have used LeSF filter estimated on each block to enhance
the speech signals embedded in white noise. ASR experiments
on a connected digits task, OGI Numbers95 show that the pro-
posed LeSF based features yield an increase in speech recog-
nition performance in various non-stationary noise conditions
when compared directly to the un-enhanced speech and noise-
robust RASTA filtering technique. Besides achieving noise ro-
bustness, this filtering technique yields an enhanced speech sig-
nal as a by-product. This is particularly suitable for ASR in
mobile telephony networks where the noise robust feature ex-
traction module also performs the speech signal enhancement
task without incurring additional computational load.

1. Introduction
Most of the adaptive filtering techniques require an explicit ex-
ternal noise reference to remove additive noise from the a de-
sired signal as discussed in [8]. In situations where an external
noise reference for the additive noise is not available, the inter-
fering noise may be suppressed using a Wiener linear prediction
filter ( for stationary input signal and stationary noise) if there
is a significant difference in the bandwidth of the signal and the
additive noise [5]. One of the earliest use of the least mean
square filtering for speech enhancement is due to Sambur[1]. In
his work, the step size of the LMS filter was chosen to be one
percent of the reciprocal of the largest eigenvalue of the corre-
lation matrix of the first voiced frame. However, speech being
a non-stationary signal, the estimation of the step size based on
the correlation matrix of just single frame of the speech sig-
nal, may lead to divergence of the LMS filter output. Neverthe-
less, the treatment in [1] helped to illustrate the efficacy of the
LMS algorithm for enhancing naturally occurring signals such
as speech. In [5], Zeidler et. al. have analyzed the steady state
behavior of the adaptive line enhancer (ALE), an implementa-
tion of least mean square algorithm that has applications in de-
tecting and tracking narrow-band signals in broad-band noise.
In [4], Anderson et al extended the above mentioned analysis
for a stationary input consisting of finite band-width signals in
white noise. In this paper, we extend the previous work in [4, 5]
for enhancing a class of non-stationary signals that are com-
posed of multiple sinusoids whose frequencies, phases and the
amplitudes may vary from block to block and which are embed-
ded in white noise. The key difference in the approach proposed

in this paper is that we relax the assumption of the input sig-
nal being stationary. Therefore the input signal is blocked into
frames and we analyze a

�
-weight least squares filter (LeSF),

estimated on each frame which consists of � samples of the
input signal. We have derived the analytical expressions for the
impulse response of the

�
-weight least squares filter (LesF) as

a function of the input SNR (computed over the current frame),
effective band-width of the signal ( due to finite frame length),
filter length ’

�
’ and frame length ’ � ’. Recognizing that such

a time-varying sinusoidal model[7] is a reasonable approxima-
tion to the speech waveforms, we have applied the block es-
timated LeSF filter for de-noising speech signals embedded in
broad-band noise. A Sinusoidal model is particularly suitable
for voiced speech which consists of sinusoids with frequencies
at the multiple of the fundamental frequency (pitch).

2. Least Squares filter (LeSF) for signal
enhancement

The LeSF filter consists of
�

weights and the filter coeffi-
cients ��� for k ��� �
	��	������ ��� ��� are estimated by minimiz-
ing the energy of the error signal ������� over the current frame,����� �
	�� � ��� . ����� �"!�#������ ��$ ����� (1)

where
$ ��� �"! %'&�() * +-, �.��/0�1#2��� �43�� /1� (2)

The basic operation of the LeSF can be understood intuitively
as follows. The autocorrelation sequence of the additive noise�.��� � that is broad-band decays much faster for higher lags
than that of the speech signal. Therefore the bulk delay

3
causes de-correlation between the noise components of the in-
put. The LeSF filter responds by adaptively forming a frequency
response which has pass-bands centered at the frequencies of
the formants of the speech signal. Let A denote the �5�76 � �98 �
data matrix[2] of the input frame x !:� #��5�;��	<#2�=����	>�����?� #2�5� � �@�0�
and d denote the �5�A6 � �B87� desired signal vector which in
this case is just a delayed version of signal x. The LeSF weight
vector w is then given by

w !DC A E A F &�( A E d (3)

As is well known, A E A is a symmetric
� 8 �

Toeplitz
matrix whose ��/G	0H�� element is the temporal autocorrelation of
the signal vector x estimated over the frame length [2].I

A E A J *5K L ! M
�GN / � H'N � (4)! OQP &�R
* & L RS +T, #2��� �1#2���U6VN / � H'N � (5)

In practice, A E A can always be assumed to be non-singular
due to presence of additive noise[2] for filter length

��W � .



The weight vector w in (3) can be obtained using Levinson
Durbin algorithm[2] without incurring a significant computa-
tional cost.

3. LeSF applied to Sinusoidal model of
Speech

As proposed in [7], speech signals can be modeled as a sum of
multiple sinusoids whose amplitudes and frequencies can vary
from frame to frame. Lets assume that a given frame of speech
signal x can be approximated as a sum of � sinusoids.

#2��� � ! �;��� � 6�� ��� � (6)

#2��� � ! �) * + ( �
*
���
	 � ���� * � 6��

* �-6�� ��� �
where � � � �	�� � and � ��� � is a realization of white noise. Then
the ����� lag autocorrelation can be shown to be,

M
��� �"!QO P & �S + ( #2��� �1#2��� 6��9�� O �* + ( �5� � � � ���* ��� �;� ����� * � �-6 �! ��" ���9� (7)

where it is assumed that �$# �%�'&��(� * � �
L � for all frequency

pairs ��/<	 H�� and the noise �-��� � is white, ergodic and uncorrelated
with the signal x(n). The LeSF weight vector is then obtained
as the solution of the Normal equations,O % & (� +T, M
��) � �9�1� ��� �"! M9��)
6 3 �)2��� ��	�� 	����?� � � ��� (8)

The set of
�

linear equations described in (8) can be solved by
elementary methods if the z-transform ( *,+-+ ��.�� ) of the symmet-
ric autocorrelation sequence ( M
��� � ) is a rational function of .
[3].

*,+-+9��.��"! /)� + & / M
��� �0. & � (9)

Consider then, a conjugate symmetric rational . transform with� pairs of zeros and � pairs of poles.

* +-+ ��.�� ! 1
2 �3 + ( ��. � � &54%687

L
9:6 ����. & ( � � &54%6B&

L
9:6 �2 �3 + ( ��. � � &<;=687 L > 6 ����. & ( � � &5;=6B& L > 6 �
(10)

If the signal x is real, then so its autocorrelation sequence, M
��� � .
In this case the power spectrum, *,+-+ ��.�� , has quadruplet sets
of poles and zeros because of the presence of conjugate pairs
at . ! ��#@?��(A�B 3 �  3 � and . ! ��#@?2�(ADC 3 �FE 3 � . An-
derson et. al.[4] have derived the general form of the solution
to (8) for input signal with rational power spectra such as that
described by (10). In this case, the LeSF weights are given by,

� ��� � ! �)
3 + ( C-G 3 � &54%6 � 7

L
9:6 � 6�H 3 � 7:4%6 � 7

L
9,6 � F

(11)

As can be seen, LeSF consists of an exponentially decaying
term and an exponentially growing term attributed to reflection
[8], that occurs due to finite filter length

�
. The value of the

coefficients G 3 and H 3 can be determined by solving the set

of coupled equations obtained by substituting the expression for�.���9� given in (11) into (8).
To be able to use the general form of the solution of the

LeSF filter as in (11), we need a pole-zero model of the input
autocorrelation in the form as described in (10). For sufficiently
large frame length � , such that filter length

�JI � , we can
make the following approximation.

�5� � �9� � � � & ��K P (12)

� ��� �
	��	���	>�>����	 � � and
��I �

Using this approximation in (7), we get,

M
��� �"!�� � & ��K P �) * + ( � �
*
��� ���L * � �-6 �M � " ���9� (13)

In this form, M
���9� corresponds to a sum of multiple decaying
exponential sequences and its . transform takes up the form,

*:+-+ ��.�� ! �2 �3 + ( ��. � � &5;=687 L > 6 ����. &�( � � &<;=6B& L > 6 �8 ���. � � &5; 6 & L > 6 ����. & ( � � &5; 6 7 L > 6 � 6� �
where B 3 ! �%&��

(14)

As explained in [3, 4] and making the following assump-
tions,N

The pole pairs in (14) lie sufficiently close to the unit
circle (easily satisfied as B � ��� )N
All the frequency pairs �L * 	O L � in (14) are sufficiently
separated from each other such that their contributions
to the total power spectrum do not overlap significantly.

the . transform of the total input can be expressed as,

* +-+ ��.�� !  � 2
�3 + ( ��. � � &<4%6P7

L
> 6 ����. &�( � � &54%6�&

L
> 6 �2 �3 + ( ��. � � &<;=6P7 L > 6 ����. &�( � � &5;=6�& L > 6 �8 ��. � � 7:4 6 7

L
> 6 ����. &�( � � 7�4 6 &

L
> 6 ���. � � 7:;=6P7 L > 6 ����. &�( � � 7�;=6 & L > 6 � (15)

where B 3 ! �%&��
Corresponding to each of the sinusoidal component in the in-
put signal there are four poles at locations .V! � A�BQAR 3
and there are four zeros on the same radial lines as the signal
poles but at different distances away from the unit circle. Using
the general solution described in (11), which has been derived
at length in [4], the solution of the LeSF weight vector to the
present problem is,

�.��� �"! �)
3 + ( C-G 3 � &<4%6 S 6�H 3 � 7�4%6 S F ���
	  3 ��� 6 3 � (16)

The values of C 3 	SG 3 and H 3 can be determined by
substituting (16) and (13) in (8). The ) ��� equation in the
linear-system described in (8) has terms with coefficients��#@?2� � C 3 )�� , ��#@?2� 6DC 3 )�� , ��#@?�� � BT)�� ���U	 �L 3 ��) 6 3 �<� and��#@?2��BT)�� ���
	 �L 3 ��) 6 3 �<� . Besides these, there are two other
kind of terms.



N
“Non-stationary” terms that are modulated by a sinusoid
at frequency �- 3 where � �A���	 ��� . For  3��! � , 3 �! � , their total contribution is approximately zero.1N
Interference terms that are modulated by a sinusoid at
frequency �  ! �L * �  L � where ��/<	 H�� � � � 	��>�>��	 ��� .
If filter length

� # �%�'&��  , these interference terms ap-
proximately sum up to zero and hence can be neglected.

The coefficients of the terms ��#@?�� � C 3 )�� , ��#@?�� 6DC 3 ) � are the
same for each of the

�
equations and setting them to zero leads

to just one equation which relates C 3 to B and the SNR. Let�
*

denote the “partial” SNR of the sinusoid at frequency 
*

i.e�
* ! � �* &� � and the complementary signal SNR be denoted

as �
* ! � O �3 + ( K 3��+ * � �* � &% � . Then we have the following

relation,

���U	
	 C
* ! ���U	
	 B 6 �

*
��� * 6 � * 6 � 	
���	 B (17)

There is an interesting case when the sinusoid at frequency 
*

is significantly stronger than the other sinusoids such that �
*

is
quite low. This is illustrated in figure (1), where we plot the
bandwidth C

*
of the LeSF’s pass-band that is centered around

*
as a function of the partial SNR of the / ��� sinusoid, �

*
. The

complementary signal’s SNR is quite low at �
* ! ��� � ������� .

We plot curves for different “effective” input sinusoid’s band-
width B . From (14), we note that B is reciprocal of frame length� . The vertical line in figure (1) corresponds to the case when�
* !�� * . We note that for a given partial SNR �

*
, the LeSF

bandwidth ( C
*
) becomes narrower as the frame length � in-

creases, indicating a better selectivity of the LeSF filter.
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Figure 1: Plot of the filter bandwidth C
*

centered around fre-
quency 

*
as a function of partial sinusoid SNR �

*
for a given

complementary signal SNR �
* ! ��� � ������� and “effective” in-

put bandwidth B ����) ?����9� ! �
� �
�	���� � ����	��
� � ��� respectively.
The vertical line meets the three curves when �

* ! � * .
G
*

and H
*

in (16) are determined by equating their respec-
tive coefficients. The “non-stationary” interference terms be-
tween all of the pairs of the frequency �L * 	O L ��	 can be neglected
if �L * � 

L �"!�! ����& � . This requires that LeSF’s frequency
resolution � �%�'& � � should be able to resolve the constituent si-
nusoids.

G
* ! �� &54$# � &<;&% ��B 6 C * � � � C * � B ��<��B 6 C * � � � � & � 4$#0% � C * � B"� � �

H
* ! �� &54$#(' � %�7 (*)L7 ( � &5;&% ��B 6 C * ��� C * � B"� ��<��B 6�C * � � � � & � 4$# % � C * � B"� � � (18)

We note from (17) that the various sinusoids are coupled with
each other through the dependence of their bandwidth C

*
on

1due to self cancelling positive and negative half periods of a sinu-
soid.

the complementary signal SNR �
*
. As a consequence of thatG

* 	 H * are also indirectly dependent on the powers of the other
sinusoids through C

*
.
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Figure 2: Plot of the magnitude response of the LeSF filter as a
function of the input SNR. The input consists of three sinusoids
at normalized frequencies (0.1, 0.2, 0.4) with relative strength�=��+;��� � + �
� ,;� respectively.

In figure (2), the magnitude response of the LeSF filter is
plotted for various SNR. The input in this case consist of three
sinusoids at normalized frequencies ( 0.1, 0.2, 0.4). The frame
length is � !-�� � and filter length is � � ! �>� �;� . As the sig-
nal SNR decreases, the bandwidth of the LeSF filter starts to
decrease in order to reject as much of noise as possible. The
LESF filter’s gain decreases with decreasing SNR. Similar re-
sults were reported in [4, 5] for the case of stationary inputs.
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Figure 3: Clean spectrogram of an utterance from the OGI
Numbers95 database
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Figure 4: Spectrogram of the utterance corrupted by F16-
cockpit noise at 6dB SNR.

In Fig. 3, we plot the spectrograms of a clean speech utter-
ance. Fig. 4 and Fig. 5 display the same utterance embedded in
F16-cockpit noise at SNR 6dB and its LeSF enhanced version
respectively. As can be seen from the spectrograms, the LeSF
filter has been able to reject significant amount of additive F-16
cockpit noise [9] from the speech signal.

4. Experiments and Results
In order to assess the effectiveness of the proposed algorithm,
speech recognition experiments were conducted on the OGI
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Figure 5: Spectrogram of the noisy utterance enhanced by a� � ! �>� � � tap LeSF filter that has been estimated over blocks
of length �5�D! � � � � .
Numbers corpus. This database contains spontaneously spoken
free-format connected numbers over a telephone channel. The
lexicon consists of 31 words. Speech signals were blocked into
frames of 500 samples (62.5ms) each and a 100 tap LeSF filter
was derived using (3) for each frame. The relatively high order� � !:����;� of the LeSF filter is required to be able to have suffi-
ciently high frequency resolution ( �%�'& � ) to resolve constituent
sinusoids. The speech frame was then filtered through its cor-
responding LeSF filter to derive an enhanced speech frame. Fi-
nally MFCC feature vector was computed from the enhanced
speech frame. These enhanced LeSF-MFCC were compared to
the baseline MFCC features and RASTA-PLP features with the
same window size (62.5ms). Hidden Markov Model and Gaus-
sian Mixture Model (HMM-GMM) based speech recognition
systems were trained using public domain software HTK on the
clean training set from the original Numbers corpus. The sys-
tem consisted of 80 tied-state triphone HMM’s with 3 emitting
states per triphone and 12 mixtures per state.

To verify the robustness of the features to noise, the clean
test utterances were corrupted using Factory and F16 cockpit
noise from the Noisex92 [9] database. The speech recognition
results for the baseline MFCC, RASTA-PLP and the proposed
LeSF-MFCC, in various levels of noise are given in Tables 1
and 2. The proposed LeSF processed MFCC performs signifi-
cantly better than others in all noise conditions. The slight per-
formance degradation of the LeSF-MFCC in the clean is due
to the fact that the LeSF filter being an all-pole filter does not
model the valleys of the clean speech spectrum well. As a re-
sult, the LeSF filter sometimes amplifies the low spectral energy
regions of the clean spectrum. Besides achieving noise robust-
ness, this filtering technique yields an enhanced speech signal
as a by-product. This is particularly suitable for ASR in mo-
bile telephony networks where the noise robust feature extrac-
tion module also performs the speech signal enhancement task
without incurring additional computational load.

Table 1: Word error rate results for factory noise

SNR MFCC PLP-JRASTA LeSF MFCC

Clean 5.7 7.8 6.8
12 dB 12.3 12.2 12.0
6 dB 27.1 23.8 21.0
0 db 71.0 59.8 42.6

5. Conclusion
We consider a class of non-stationary signals as input that are
composed of multiple sinusoids whose frequencies and the am-

Table 2: Word error rate results for f16 noise

SNR MFCC PLP-JRASTA LeSF MFCC

Clean 5.7 7.8 6.8
12 dB 13.6 14.2 12.4
6 dB 28.4 25.3 20.6
0 db 72.3 59.2 41.2

plitudes may vary from block to block and which are embed-
ded in the white noise. We have derived the analytical expres-
sions for the impulse response of the

�
-weight least squares

filter (LesF) as a function of the input SNR (computed over the
current frame), effective band-width of the signal ( due to finite
frame length), filter length ’

�
’ and frame length ’ � ’. Recogniz-

ing that such a time-varying sinusoidal model[7] is a reasonable
approximation to the speech waveforms, we have applied the
block estimated LeSF filter for de-noising speech signals em-
bedded in broad-band noise. The proposed technique leads to
a significant improvement in ASR performance as compared to
RASTA-PLP and the usual MFCC features.
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