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ABSTRACT

In this paper we derive the optimal diversity versus multiplexing
tradeoff for a frequency selective i.i.d. Rayleigh MIMO channel.
This tradeoff is shown to be better than the one of the frequency flat
MIMO channel. Traditional approaches for frequency selective
channels use OFDM techniques in order to exploit the diversity
gain due to frequency selectivity. We show that although coding
in OFDM over a sufficient subset of subcarriers allows to exploit
full diversity as such (at fixed rate), such an approach leads to a
suboptimal diversity vs multiplexing tradeoff.

1. INTRODUCTION

Frequency selective channels, also known as inter-symbol interfer-
ence (ISI) channels, are regarded in general as troublesome chan-
nels from a performance point of view and practical systems as-
sume the use of the OFDM approach to avoid this type of channels.
However, recent studies [1, 2] show that SISO/SIMO frequency
selective channels improve performance and allow to achieve bet-
ter diversity versus multiplexing gain compared to frequency-flat
channels. In this paper, we generalize the optimal diversity ver-
sus multiplexing tradeoff (introduced first for flat MIMO channels
in [3]) to frequency selective MIMO channels. The tradeoff ob-
tained provides at any rate more diversity gain than in the case
of flat channels. Furthermore, this tradeoff is better than the one
obtained via coding over a set of linearly independent or even un-
correlated subcarriers of an OFDM system. Such a result is very
surprising and suggests to stay in the time domain or code across
more subcarriers for more efficient diversity exploitation.

Consider linear digital modulation over a linear channel with
additive white circular complex Gaussian noise with variance σ2

v .
The number of antennas is Nt at the transmitter side and Nr at
the receiver side. The channel is frequency selective, with a delay
spread L. The complex received signal at antenna r is

yr
k =

L−1�
l=0

Nt�
t=1

Hrt
l xt

k−l + vr
k (1)

where xt
k is the transmitted signal at antenna t at time k, Hrt

l , l =
0, . . . , L − 1 are the complex coefficients of the channel impulse
response from antenna t to antenna r, and vr

k is the noise at antenna
r. Collecting the received signals in one vector symbol
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y1
k, . . . , yNr

k ]T , we can then write

yk =

L−1�
l=0

Hlxk−l + vk (2)

xk = [x1
k, . . . , xNt

k ]T , Hl : Nr × Nt, l = 0, . . . , L − 1
matricial coefficients of the channel impulse response, and

[v1
k, . . . , vNr

k ]T , vk ∼ CN (0, σ2
vINr ). Superscripts T , H

transpose and Hermitian transpose respectively.

lock (Frame) Transmission
nsider a transmission over a large block of length T >> L,
nnel is assumed to be constant over the block, and varying
ndently from one block to another. The received signal can
tten as

Y = AT (H)X + V , (3)

Y = [yT
1 , yT

2 , . . . , yT
T+L−1]

T , X = [xT
1 , xT

2 , . . . , xT
T ]T and

vT
1 , vT

2 , . . . , vT
T+L−1]

T . AT (H) is the following Nr(T +
) × NtT block Toeplitz matrix

AT (H) =

�
���������������

H0 0 . . . 0

H1 H0

. . .
...

... H1

. . . 0

HL−1

...
. . . H0

0 HL−1

... H1

...
. . .

. . .
...

0 . . . 0 HL−1

�
���������������

. (4)

eneral input signal the mutual information per symbol pe-

IT (H) =
1

T + L − 1
I(X; Y|H) . (5)

X = E XXH be the input correlation. The power con-
is given by tr RXX ≤ T P , where P is the maximum
it power per symbol period. For a given color of the trans-
signal (RXX), the mutual information per symbol period is
ized for a Gaussian centered input, for which it is given by

1

T + L − 1
ln det(INr(T+L−1)+

1

σ2
v

AT (H)RXXAH
T (H)) .

(6)
nary Input
ge block length T >> L, we consider the case of stationary
We can then define the second order statistics of the input



Si = E xkxH
k−i. The power spectral density function of the input

is then S(z) =
�

i
Siz

−i (S(z) is the z-transform of Si). RXX is
now a block Toeplitz matrix of Si:

RXX =

�
���������

S0 S1 . . . SL−2 SL−1

SH
1 S0

. . .
. . . SL−2

...
. . .

. . .
. . .

...

SH
L−2

. . .
. . . S0 S1

SH
L−1 SH

L−2 . . . SH
1 S0

�
���������

. (7)

Frequency Selective Block Fading Rayleigh Model
We construct this model as a generalization of the flat Rayleigh
MIMO channel model. Hl, l = 0, . . . , L−1 are i.i.d, and each Hl

has i.i.d. Gaussian components Hrt
l ∼ CN (0, 1

L
) for 1 ≤ r ≤ Nr

and 1 ≤ t ≤ Nt.

1.2. Continuous transmission (T → ∞)

The mutual information I(H) in this case corresponds to the limit
of IT (H), and is given in the following lemma.
Lemma 1: The limit of IT (H), I(H) = lim

T→+∞
IT (H), is

I(H) =
1

2πj

�
dz

z
ln det(I +

1

σ2
v

H(z)S(z)H†(z)). (8)

Proof: This is a generalization of the SISO case shown in [4], the
proof is similar.

1.3. Bounds on the mutual information (MI) for white input
Let JT (H) denote the MI for spatiotemporally white input,

JT (H) =
1

T + L − 1
ln det(INr(T+L−1) + ρAT (H)AH

T (H)) .

(9)

where ρ = σ2
x

σ2
v

= P

Ntσ
2
v

. For large block length T , JT (H) con-

verges to

J(H) =
1

2πj

�
dz

z
ln det(INr + ρ H(z)H†(z)) . (10)

For finite block length, the following lemma gives useful bounds
on JT (H) in terms of the infinite block length mutual information
(J(H)).
Lemma 2 : For white input, the mutual information of a block of
length T is bounded by

(1 − L−1
T+L−1

)J(H) ≤ JT (H) ≤ J(H) . (11)

Proof : The proof is omitted for lack of space.

2. DIVERSITY AND MULTIPLEXING FOR FREQUENCY
SELECTIVE MIMO CHANNELS

In [3], Zheng and Tse give a new definition of the diversity and
spatial multiplexing that considers adaptive SNR schemes. For the
generalization of the tradeoff to frequency selective MIMO chan-
nel we consider the same definitions. Scheme C(ρ) is a family of
codes of block length T (one for each SNR level), that supports a
bit rate R(ρ). This scheme is to achieve spatial multiplexing r and
diversity gain d if the data rate satisfies

lim
ρ→∞

R(ρ)

ln(ρ)
= r , (12)
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lim
ρ→∞

lnPe(ρ)

ln(ρ)
= −d . (13)

ch r, d∗(r) is defined to be the supremum of the diversity
age achieved over schemes. The maximal diversity gain is

by d∗
max = d∗(0) and the maximal spatial multiplexing

r∗max = sup{r : d∗(r) > 0}.
ll use the special symbol

.
= to denote the exponential equal-

., we write f(ρ)
.
= ρb to denote

lim
ρ→∞

ln f(ρ)

ln(ρ)
= b . (14)

and Tse considered a flat Rayleigh MIMO channel, and
roperties of the distribution of eigenvalues they showed the

ing results.

al Tradeoff Curve for a flat MIMO channel : Assume
Nr + Nt − 1. The optimal tradeoff curve d∗(r) is given
piecewise-linear function connecting the points (k, d∗(k)),
1, . . . , p, where

d
∗(k) = (p − k)(q − k) . (15)

= min{Nr , Nt}, q = max{Nr, Nt}. In particular d∗
max =

and r∗max = min(Nr, Nt).

ehavior of the diversity vs multiplexing optimal tradeoff
requency selective Rayleigh MIMO channel
case of a frequency selective channel the optimal tradeoff
d∗(r) has a behavior characterized by the following theo-

(2, (LNr − 2)(Nt − 2))

(r, (LNr − r)(Nt − r))

(Nt, 0)

Spatial Multiplexing Gain: r

(1, (LNr − 1)(Nt − 1))

(0, LNrNt)

. Asymptotic diversity vs. multiplexing tradeoff for fre-
selective channel and Nt ≤ Nr

em 1: Assume T ≥ Lq +p−1. The optimal tradeoff curve
acterized by a diversity advantage function d∗(r) which is
ed as follows:

dout((1 +
L − 1

T
)r) ≤ d

∗(r) ≤ dout(r) . (16)

) is the asymptotic (in T ) diversity advantage given by the
ise-linear function connecting the points (k, dout(k)), k =



0, 1, . . . , p, and

dout(k) = (p − k)(Lq − k) . (17)

Independently of the block length the maximum achievable diver-
sity advantage is d∗

max = d∗(0) = LNrNt. However, the max-
imal spatial multiplexing gain r∗max depends on the block length
T , and is bounded by (1 − L−1

T+L−1
)p ≤ r∗max ≤ p. Then asymp-

totically r∗max = p.

Remarks :

• This theorem defines a region in the plane of diversity vs
multiplexing, where d∗(r) is situated. However, for large
block length T >> L, this region is restricted to the curve
dout(r), d∗(r) = dout(r).

• For T >> L and r = k, k = 0, 1, . . . , p, (p−k)(Lq−k)−
(p−k)(q−k) = (p−k)(L−1)q is the supplementary di-
versity gain provided by a frequency selective channel w.r.t.
to a flat one with the same number of antennas.

• OFDM systems assume in general coding of the transmitted
signal over L independent subcarriers. This is equivalent to
coding over L independent blocks of a MIMO flat block
fading channel. The optimal diversity gain is then [3] the
piecewise-linear function connecting the points (k, L(p −
k)(q − k)), k = 0, 1, . . . , p. The difference (p − k)(Lq −
k) − L(p − k)(q − k) = (p − k)(L − 1)k, is the supple-
mentary diversity gain provided by the frequency selective
channel, and can be attained by exploiting the diversity in
the time domain (TDMA) or by coding across more subcar-
riers. The exact number of needed subcarriers is left here as
an open problem . Note that coding across L independent
subcarriers in an OFDM system allows to attain the unre-
duced d∗

max = LNtNr , which motivated the introduction
of coding over such a reduced set of subcarriers.

In the following we present the proof of Theorem 1.

2.2. Preliminary Results
Bounds on I(H) for general input color
For a general input spectrum, under the power constraint
( 1
2πj

�
dz
z

tr{S(z)} ≤ P ), the mutual information I(H) for infinite
block length is given in (8). The following lemma gives an upper
bound on I(H).
Lemma 3: The mutual information for infinite block length is
bounded as follows

I(H) ≤ ln det(I + ρLNt H̄H̄H
) , (18)

where H̄ =

�
��

H0

...
HL−1

�
�� = [HT

0 , . . . , HT
L−1]

T in the case Nt ≤

Nr , and H̄ = [H0, H1, . . . , HL−1] for Nt ≥ Nr (for both cases H̄
has rank p = min{Nr, Nt}).
Proof : The proof is omitted for lack of space.

We introduce now a paraunitary precoder for white input (S(z) =
σ2

xINt ) that will allow us to characterize J(H) in (10).
Introduction of the STS precoder:
The STS precoder T(z) was introduced in [5]. T(z) is a Nt × Nt

MIMO filter

T(z) = D(z) Q
D(z) = diag {1, z−L, . . . , z−L(Nt−1)} ,

(19)

where
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zeros a
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2π

phase
Q is a unitary matrix (QHQ = I)

Qs =
1√
Nt

�
����

1 θ1 . . . θ1
Nt−1

1 θ2 . . . θ2
Nt−1

...
...

...
1 θNt . . . θNt

Nt−1

�
���� , (20)

the θi are the roots of θNt − j = 0 , j =
√−1. T(z) is

itury (T(z)T†(z) = INt ), and so is T(zL), hence using it
recoder does not modify the mutual information for white
an input

= 1
2πj

�
dz
z

ln det(INtx + ρ H†(z)H(z))

= 1
2πj

�
dz
z

ln det(INtx + ρ T†(z)H†(z)H(z)T(z))

= 1
2πj

�
dz
z

ln det(ρ R(z))

= 1
2πj

�
dz
z

ln det(ρ L†(z)ΣL(z))

= ln det(ρ Σ) =

Ntx�
n=1

Jn ,

(21)
Jn = ln Σnn and in the fourth equality we replaced R(z) =
+T†(z)H†(z)H(z)T(z) by its UDL matrix spectral factor-
. L(z) is lower triangular, with diagonal elements, Lii(z), i =
Nt, causal, monic1 and minimum phase2. The lower trian-

elements Lij(z), i > j, are arbitrary (non causal) trans-
ctions. W.r.t. a classical causal MIMO spectral factor,

grees of freedom of the strictly causal upper triangular el-
have been transferred to the anticausal part of the lower

lar elements. In the fifth equality we exploit the fact that
(z)) =

�Nt

n=1 Lnn(z) is causal, monic and minimum phase.
denote Vn = [en, en+1, . . . , eNt ], where en is the Nt × 1
with 1 at the nth position and all other entries are zeros.
ntification from the UDL spectral factorization of R(z),
z)†ΣL(z) = R(z), we show that ([VH

n R(z)Vn]−1)11 =
1

n(z)L†
nn(z)

, where the diagonal coefficient Lnn(z) is causal,

and minimum phase, hence it satisfies
dz
z

ln(Lnn(z)L†
nn(z)) = 03. Finally

ln ρΣnn = − 1

2πj

	
dz

z
ln([VH

n ρR(z)Vn]−1)11 . (22)

s on J(H) :
case
a 4:
s case the mutual information J(H) is bounded by

||h||2
L

) ≤ 1

2πj

	
dz

z
ln(1+ρh†(z)h(z)) ≤ ln



1+ρ||h||2�

(23)

h =

�
��

h0

...
hL−1

�
�� represents the vectorized channel impulse

se and γL =

L−1�
l=0

�
L − 1

l


2

.

monic SISO filter has first coefficient equal to 1
rational f(z) is said to be minimum phase if all of its poles and
re inside the unit circle

j

�
dz
z

ln(f(z)f(z)†) = 0 for f(z) causal, monic and minimum



Proof : The proof is omitted for lack of space.

MIMO case
Let us introduce first

cn =

�
(q − n) ln

�
γqL(q−n+1)

q−n

�
, 1 ≤ n ≤ q − 1

0 , n = q
(24)

Lemma 5:
For Nt ≥ Nr , Jn is bounded by

− ln(NtLγNtL) − cn ≤ Jn − ln(1 + ρL sNt(L−1)+n) ≤ cn ,
(25)

where sn, n = 1, . . . , NtL, are the eigenvalues of H̄HH̄ sorted in
a nondecreasing order.
Proof : The proof is omitted for lack of space.
Lemma 6:
Using the results of lemma 5, we conclude for any Nt, Nr ,

−q ln(qLγqL) − c ≤ J(H) − ln det(I + ρL H̄H̄H
) ≤ c (26)

where c =
�q

n=1 cn.
Proof : For Nt ≥ Nr , the derivation is straightforward from
Lemma 5, in fact for Nt ≥ Nr there are only p = Nr non-zero
eigenvalues in H̄HH̄: sNtL−Nr+1, . . . , sNtL. This ensures that�Nt

n=1 ln(1 + ρLsNt(L−1)+n) = ln det(I + ρL H̄H̄H
).

For the case Nt ≤ Nr we observe that the instantaneous mutual
information satisfies

J(H) = 1
2πj

�
dz
z

ln det(I + ρ H(z)H†(z))

= 1
2πj

�
dz
z

ln det(I + ρ H(z)HH(z))

= 1
2πj

�
dz
z

ln det((I + ρ H(z)HH(z))T )

= 1
2πj

�
dz
z

ln det(I + ρ HT (z)H∗(z)) .

(27)

In the second equality we replaced † by H because the integral is
done on the unit circle, the two operators are then equivalent. We
conclude that the capacity is the same as for a new virtual channel
HT (z). As a consequence the result of the first case, Nt ≥ Nr ,
holds also here after interchanging Nr and Nt, and replacing Hi

by HT
i for i = 0, . . . , L − 1.

2.3. Outage Probability Behavior
An outage event occurs when the mutual information of the chan-
nel does not support a target data rate

{H : IT (H) =
1

T + L − 1
I(X; Y|H) < R} . (28)

The mutual information depends on the input distribution and the
channel realization. Since the mutual information is maximized
for Gaussian inputs, we can then define the outage probability as

Pout(R) = min
RXX≥0, tr{RXX}≤T P

P (IT (H) < R). (29)

Any covariance matrix RXX in the set {RXX ≥ 0, tr{RXX} ≤
T P} satisfies RXX ≤ T P ITNt , where ITNt is the identity ma-
trix of size TNt × TNt.
From (6) we can then write that

IT (H) ≤ 1

T + L − 1
ln det(I + NtTρAT (H)AH

T (H)) . (30)
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1
+L−1

ln det(I + NtTρAT (H)AH
T (H)) < R]

out(R) ≤ P [ 1
T+L−1

ln det(I + ρAT (H)AH
T (H)) < R] ,

(31)
for the upper bound we have just chosen RXX = P

Nt
ITNt .

been observed in [3], the two constant scalings (NtT and
lead to the same exponential equality, hence

)
.
= P [

1

T + L − 1
ln det(I+ρAT (H)(AT (H))H) < R] .

(32)
sing the results of Lemma 2, namely (11), we get

H) < R]
·≤ Pout(R)

·≤ P [(1 − L − 1

T + L − 1
)J(H) < R] .

(33)
, by the exploitation of Lemma 6, or hence (26), we con-

P [ln det(I + ρ H̄H̄H
) < R]

·≤ Pout(R)
·≤

P [(1 − L−1
T+L−1

) ln det(I + ρ H̄H̄H
) < R] .

(34)

rks :

The scale factor NtT in (30) is very loose for large block
length (T >> L), and no more valid for T → ∞. How-
ever, for such cases practical signals are stationary and ad-
mit a spectrum S(z), IT (H) then converges to the mutual
information of infinite block length I(H) (8). We can then
use the upper bound of (18) which leads directly to the
lower bound in (34). By consequence the reasoning is still
valid for infinite block length T , with the upper bound in
(34) remaining the same.

For large block length (T >> L), (34) becomes Pout(R)
.
=

P [ln det(I+ρ H̄H̄H
) < R]. The frequency selective chan-

nel behaves as the flat MIMO channel H̄ = [HT
0 , . . . , HT

L−1]
T

in the case Nt ≤ Nr and H̄ = [H0, H1, . . . , HL−1] for
Nt ≥ Nr .

data rate R = r ln ρ. In [3] it was shown that for a Nr×Nt

yleigh distributed MIMO channel

P [ln det(I + ρ HHH) < r ln ρ]
.
= ρ

−dout(r)
, (35)

dout(r) is given by the piecewise-linear function connecting
ints (k, dout(k)), k = 0, 1, . . . , p, with

dout(k) = (p − k)(q − k) . (36)

that p = min{Nr, Nt}, q = max{Nr , Nt}.
case, H̄ has the same probability distribution as that of a
yleigh distributed MIMO channel of size NrL × Nt for
Nr , and Nr × NtL for Nt ≥ Nr . These two cases lead to
e result

P [ln det(I + ρ H̄H̄H
) < r ln ρ]

.
= ρ

−dout(r)
, (37)

now dout(r) is given by the piecewise-linear function con-
the points (k, dout(k)), k = 0, 1, . . . , p, with

dout(k) = (p − k)(Lq − k) . (38)

this results it is straightforward to derive the following the-



Theorem 2: For a frequency selective and i.i.d. Rayleigh dis-
tributed MIMO channel, the outage probability satisfies

ρ
−dout(r)

·≤ Pout(R)
·≤ ρ

−dout((1+
L−1

T
)r)

, (39)

where dout(r) is given by the piecewise-linear function connecting
the points (k, dout(k)), k = 0, 1, . . . , p, and

dout(k) = (p − k)(Lq − k) . (40)

Remark : From (39) we can see that for large block T >> L, the
outage probability satisfies Pout(R)

.
= ρ−dout(r).

2.4. Proof of Theorem 1
In order to prove Theorem 1, we characterize the error proba-
bility of any coding scheme (for a given rate R = r ln ρ) by
Pe(ρ) = ρ−d(r). We recall that d∗(r) is the supremum of the
diversity advantage d(r) achieved over all these schemes.
To show the upper bound in (16), we can use the same proof of
lemma 5 in [3]. This will lead to the following result

Pe(ρ)
·≥ ρ

−dout(r)
. (41)

Or in other terms, for any scheme d(r) ≤ dout(r). Hence, the
supremum verifies

d
∗(r) ≤ dout(r) . (42)

Proof of the lower bound in Theorem 1 : We need now to prove
that dout((1 + L−1

T
)r) ≤ d∗(r), for T ≥ Lq + p − 1. To show

this result we provide an upper bound on the error probability by
choosing the input to be a random code from an i.i.d. Gaussian
ensemble.
The proof is very similar to the one provided in [3] for the proof
of theorem 2 of that paper. As has been done in [3], we can show
that

Pe(ρ) ≤ Pout(R) + P (error, no outage) . (43)

Now using (39), we get

Pe(ρ)
·≤ ρ

−dout((1+
L−1

T
)r) + P (error, no outage) . (44)

In the same way as in [3], we can show that for a given channel,
the error probability is upper bounded by

P (error |H) ≤ ρ
T r det(I +

ρ

2
AT (H)AH

T (H))−1
. (45)

Using (11) and results of Lemma 6, we then show that

P (error |H) ≤ ρT re− ln det(INr(T+L−1)+
ρ
2
AT (H)AH

T (H))

≤ ρT re
−T 1

2πj

�
dz
z

ln det(INr
+

ρ
2

H(z)H†
(z))

≤ eTc1ρT r det(I + ρ

2
L H̄H̄H

)−T

(46)
where c1 = p ln(qLγqL) + c. This bound depends on H̄ only
through the p non zero eigenvalues of H̄H̄H , λi, i = 1, . . . , p

sorted in a nondecreasing order. With the following change of
variables λi � ρ−αi , we then get

P (error |α)
·≤ ρ

−T [
�p

i=1
(1−αi)

+ − r]
. (47)

From the upper bound in (11) we can conclude that the no outage

event is included in the event (A)c, complement of the event (A) :

{J(H)
r},

P (e
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< R} = {α1 ≥ . . . ≥ αp ≥ 0, and
�p

i=1(1 − αi)
+ <

rror, no outage)
·≤
�

(A)c

p(α) ρ
−T [

�p
i=1

(1−αi)
+ − r]

.

(48)
mainder of the proof is the same as the one in [3]. For
q + p − 1 it leads to

P (error, no outage)
·≤ ρ

−dout(r)
. (49)

Pe(ρ)
·≤ ρ−dout((1+

L−1
T

)r) + ρ−dout(r)

·≤ ρ−dout((1+
L−1

T
)r) ,

(50)

(r) ≥ dout((1 + L−1
T

)r). This completes the proof.

PTIMALITY OF THE MMSE ZF DFE EQUALIZER
FOR SIMO CHANNELS

SIMO channel (Nt = 1) the optimal tradeoff curve is the
function d∗(r) = LNr(1 − r), 0 ≤ r ≤ 1. In [1] we show
e SNR at the output of the Decision Feedback Equalizer

MMSE Zero-Forcing design verifies SNRDF E ≥ ρ ‖h‖2

γL
,

L−1�
i=0

‖hi‖2
2. We assume the use of a uniform QAM con-

on of size ρr (corresponding to a rate r ln ρ), and minimum

e d2 = 3σ2
x

2(ρr−1)
.

ansmitted frame is of size T and no space time coding is
he transmitted symbols are detected sequentially at the re-

using the MMSE ZF DFE, which reproduces the same sit-
as the detection over a SISO flat channel with a SNR =

F E, and this at each step. Pe can then be upper-bounded
≤ T P (E), where P (E) is the detection error probability
e equivalent SISO flat channel. A point in the QAM con-
on has at most four nearest neighbors, the P (E) can then be
bounded by four times the Pairwise Error Probability with
um distance. Finally using the PEP expression in[1] we get

4T (1 +
3

8cL(ρr − 1)
ρ)−LNr .

= ρ
−LNr(1−r) = ρ

−d∗(r)
.

(51)
hows the optimality of the MMSE ZF DFE equalizer for
channels.
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