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ABSTRACT

We address the problem of transmitter and receiver design in
Multi-User Multi-Input Multi-Output (MU-MIMO) commu-
nications over fading wireless channels. We assume perfect
channel state information at the transmitter (CSIT). Attrac-
tive algorithmic solutions have been proposed in the past for
the problem of minimizing total transmit power through joint
beamforming and power control for MU-MISO systems with
SINR constraints. Extensions of this approach to the MIMO
case are not immediate, due to dependency on the receiver used
for the multiple streams of a given user. By introducing a lim-
ited number of zero-forcing constraints, only between streams
of the same user, the SINRs for all streams become decou-
pled, and the MU-MISO solutions can be straightforwardly
adapted to the MU-MIMO problem. A multi-user diversity
aspect can be introduced also, since the MU-MISO solution al-
lows for straightforward identification of the most power hun-
gry streams. When optimizing the number of streams in this
way for maximum sum rate, the solution thus obtained is not
far away from the Sato bound. Simulations are presented to
also show the increased performance of the proposed approach
over some alternative proposals.

1. INTRODUCTION

Wireless Multiple-Input Multiple-Output (MIMO) systems with
multiple transmit and receive antennas offer significant advantage
in terms of rate and robustness. The presence of multiple users
(MU) leads to a Spatial Division Multiple Access (SDMA) aspect.
We consider here the case of a streaming application, in which case
multiuser diversity in time cannot be exploited. On the contrary,
users need to be constantly connected and be provided with an ac-
ceptable SINR. When channel knowledge is available at the trans-
mitter, the design of a downlink spatial prefiltering matrix or beam-
forming vectors is important to improve the quality of the system.
The problem has been adressed in [1, 2] for the MU Multiple-
Input Single-Output (MISO) case where each receiver has a single
antenna. For the multi-user case with several antennas at each re-
ceiver, some proposed solutions based on Zero-Forcing ([3]) are
proposed. A successive encoding and zero-forcing technique is
proposed in ([4]). These techniques introduce zero-forcing to the
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streams of all or a subset of the other users, and hence are quite
suboptimal. We consider flat fading MIMO channels and suppose
perfect channel state information at transmitter (CSIT). Once a
MIMO channel is known, we use its singular value decomposi-
tion (SVD) to decompose the channel into user-wise parallel sub-
channels. The solution proposed in [1, 2] for the MU MISO case
involves a convex cost function, allowing simple globally conver-
gent iterative solution algorithms. The problem addressed is either
to minimize the total transmit power used for providing each user
with a desired SINR (or hence throughput), or to maximize the
minimum of the SINRs among users subject to a given total power
constraint. The solution of these problems is intimately related to
a network congestion measure that has been introduced by Hanly
in [5], and which correspond to the maximal eigenvalue of a ma-
trix of SINR crosscouplings between users. The application of this
approach to the MU MIMO case is not straightforward since now
the received signals are vectors and the SINRs become receiver-
dependent. We propose to introduce a minimal amount of subop-
timality by requiring zero-forcing between streams of a same user,
which corresponds to a limited number of zero-forcing constraints.
As a result, the reception of the streams becomes decoupled and
the MU MIMO problem gets reduced to the MU MISO problem.
Existing algorithmic solutions can hence be adapted and applied.
The MU MISO problem is convex and hence these iterative tech-
niques exhibit globally convergence. We also introduce a mul-
tiuser diversity aspect in this approach since it becomes relatively
straightforward to identify which streams are the most difficult to
serve.

2. SYSTEM MODEL

We consider a multi-user MIMO system with N transmit antennas
at the base station and K users, each kth user (mobile station, MS)
has Nk antennas. We consider the downlink, hence the Broadcast
Channel (BC) problem. Let xk represent the Lkx1 transmit data
vector for user k , where Lk is the number of parallel data streams
transmitted simultaneously for user k (k = 1, · · · , K). Before
transmission, the data gets preprocessed through NxLk matrices
Tk, k = 1, · · · , K. We assume that the MIMO flat channel for
the kth user denoted by the NkxN matrix Hk , is perfectly known
at the transmitter. The noise is nk and yk, the received signal at
the kth mobile station, is given by:

yk = Hk

K
∑

i=1

Tixi +nk = HkTkxk +Hk

∑

i6=k

Tixi +nk (1)

Notation: Bold letters are for vector or matrix, (.)T denotes trans-
pose, (.)H is for complex conjugate transpose. Let Rk denote the



linear receiver matrix at the kth user, then we have:

x̂k = RkHkTkxk + RkHk

K
∑

i6=k

Tixi + Rknk (2)

3. TX-RX DESIGN USING SVD

The SVD of the channel matrix Hi consists of three matrices
(Ui,Σi, Vi) = SV D (Hi), where Ui, Vi are unitary matrices,
and Σi is a diagonal matrix of the singular values of Hi sorted
in descending order, which verifies ([6]) Hi = UiΣiV

H
i . With

the SVD, the channel matrix can be decomposed into independent
or orthogonal modes referred to as the eigenmodes of the chan-
nel ([7]). With this decomposition we need to recall that: Ui is
Li × Li matrix, Σi is Li × N matrix, and Vi a N × N matrix.
We take initially Li = Ni.
The SVD method is a popular technique for channel equalization
in multi-antenna systems with perfect CSI ([8, 9]), and can be used
for the multiuser case also. In this section we propose to use this
decomposition to design transmit and receive matrices. The ith re-
ceived vector signal is given by (1). This signal is subject to inter-
user interference, noise but also Interstream Interference (ISI) of
the same user. Unlike in the single receive antenna case, since the
received signal is a vector, a transformation through a receiver is
required to obtain stream estimates and express streamwise SINR.
In the case of perfect CSI we can introduce the (user-wise) chan-
nel SVD, absorb the unitary factors in transmitter and receiver and
get decoupled SISO channels. This eliminates the ISI problem and
reduces the MU MIMO problem to the MU MISO problem. How-
ever, instead of transmitting in the transformed domain, we shall
continue to transmit in the original domain and force the beam-
former for a particular stream to remain orthogonal to the right
channel singular vectors of the other eigenmodes. So consider for
user i ∈ {1, . . . , K} the spatial prefiltering transmit matrix

Ti = Vi Wi Λ
1

2

i , Vi =
[

V
1
i V

0
i

]

, Wi =

[

Dwi

Wi

]

(3)

and the receiver
Ri = U

H
i (4)

where V1
i is a N × Li matrix, containing the right channel sin-

gular vectors corresponding to the Li intended streams, V0
i is

a N × (N − Li) matrix containing the singular vectors that are
orthogonal to the ones used for the streams of user i, Dwi

is
a Li × Li diagonal matrix, Wi is (N − Li) × Li matrix, and
Λi = diag{λi,1, . . . , λi,Li

} is a diagonal power control matrix,
the introduction of which allows the columns of Wi to be normal-
ized. Column m of Wi contains the prefilter coefficients of stream
m of user i, and due to its structure, the beamforming weights for
this stream are orthogonal by construction to the singular vectors
of the other streams of the same user. So at the receiver output for
user i, we get x̂i =

U
H
i Hi

[

V
1
i V

0
i

]

[

Dwi

Wi

]

Λ
1

2

i xi +U
H
i Hi

K
∑

k 6=i

Tkxk +U
H
i ni.

(5)
By replacing Hi by it’s SVD decomposition we get x̂i =

ΣiDwi
Λ

1

2

i xi+
K

∑

k 6=i

ΣiV
1H
i

[

V
1
k V

0
k

]

[

Dwk

Wk

]

Λ
1

2

k xk+U
H
i ni

(6)

where Σi = diag {σi,1, σi,2, . . . , σi,Li
} contains the square non-

singular part of Σi. We recall that x̂i =







x̂i,1

...
x̂i,Li






, so we get for

stream m of user i

x̂i,m = σi,me
H
1 wi,m

√

λi,mxi,m+

∑

k 6=i

Lk
∑

n=1

σi,mV
H
i,m

[

V
1
k,n V

0
k

]

wk,n

√

λk,nxk,n + U
H
i,mni

(7)

where e1 is the first column of the identity matrix, wk,l is a vec-
tor of size N−Lk+1 matrix, its first element is (Dwk

)l,l and the
last N−Lk elements constitute column l of Wk. With this diag-
onalization of the channel we cancel all ISI at each receiver, so
the interference is only due to inter-user interference. This means
that the solution for the multi-user multi-input single-output (MU-
MISO) problem can now straightforwadly be applied to the con-
strained MU-MIMO problem considered. In the next section we
compute the SINR for each substream of each user.

4. SUBSTREAM SINR OPTIMIZATION

The receiver output for subtream m of the ith user is given by (7),
and can be rewritten as

x̂i,m =gi,m,i,mwi,m

√

λi,m xi,m+

∑

k 6=i

Lk
∑

n=1

gi,m,k,nwk,n

√

λk,n xk,n + U
H
i,mni

(8)

where

gi,m,i,m =σi,me
H
1

gi,m,k,n =σi,mV
H
i,m

[

V
1
k,n V

0
k

]
(9)

can be interpreted as equivalent channel impulse responses and
wi,m as the beamforming vector for the substream m of the ith

user. With the considered scenario, γi,m, the SINR of the sub-
stream m of the ith user, is given by:

γi,m =
λi,m gi,m,i,mwi,mwH

i,mgH
i,m,i,m

∑

k 6=i

∑Lk
n=1 λk,n gi,m,k,nwk,nwH

k,ngH
i,m,k,n + σ2

ni

=
λi,m wH

i,mRi,m,i,mwi,m
∑

k 6=i

∑Lk
n=1 λk,n wH

k,nRi,m,k,nwk,n + σ2
ni

(10)

where E|xi,m|
2 = 1, E|UH

i,mni|
2 = σ2

ni
, and

Ri,m,k,n = gH
i,m,k,ngi,m,k,n, 1 ≤ i, k ≤ K, 1 ≤ m, n ≤ Li.

The maxmin SINR optimization problem is given by

max
W ,λ

min
(i,m)

γi,m

s.t.

K
∑

k=1

Lk
∑

n=1

|λk,n|
2 ≤ Pmax

‖wi,m‖ = 1, 1 ≤ i ≤ K, 1 ≤ m ≤ Li

(11)

where Pmax is the total available transmit power,
W = {w1,1,w1,2, . . . ,w1,L1

,w2,1, . . . ,wK,LK
},

λ = [λ1,1, λ1,2, . . . , λ1,L1
, λ2,1, . . . , λK,LK

]T .



Consider that for each stream (i, m) individual SINR targets
αi,m should be achieved. The problem is feasible if it is possible
to have

min
1 ≤ i ≤ K
1 ≤ m ≤ Li

γi,m

αi,m
≥ 1

s.t.

K
∑

k=1

Lk
∑

n=1

λk,n ≤ Pmax

(12)

The feasibility of this problem is studied by Boche & Schubert in
([2]). The SINR γi,m depend on the power Pmax and its distribu-
tion λ, and on the choice of transmit beamformes W. The above
problems are solved in the absence of noise case in ([1]) and in the
general case in ([2]). The solution can be found through an uplink
downlink duality. For a given W we consider the following power
optimization problem:

max
λ

min
(i,m)

γi,m (W)

αi,m

s.t.

K
∑

k=1

Lk
∑

n=1

λk,n ≤ Pmax

(13)

The optimum is characterized by c =
γi,m(W)

αi,m
, ∀i, m. Let λ be

the power distribution that allows to achieved the optimum, we can
optimize w.r.t. W to find the beamforming vectors. We have the
following matrix representation of the problem ([1, 2]).

λ
1

c
=DΨλ + Dν

1

c
=

1

Pmax
1

T
DΨλ +

1

Pmax
1

T
Dν

(14)

where ν = [ν1,1, . . . , ν1,L1
, ν2,1, . . . , νK,LK

]T , νi,m = σ2
ni

,
1T = [1, . . . , 1],

D =diag

{

α1,1

wH
1,1R1,1,1,1w1,1

, . . . ,
α1,L1

wH
1,L1

R1,L1 ,1,L1
w1,L1

, . . . ,

α2,1

wH
2,1R2,1,2,1w2,1

, . . . ,
αK,LK

wH
K,LK

RK,LK ,K,LK
wK,LK

}

(15)

Ψ = [Ψi,k]1≤i,k≤K ( block (i,k) of a block matrix Ψ) and

(Ψi,k)m,n =

{

wH
k,nRi,m,k,nwk,n for m 6= n

0 if m = n
(16)

Let us denote

Φ =

[

DΨ Dν
1

Pmax
1T DΨ 1

Pmax
1T Dν

]

(17)

then

Φ

[

λ

1

]

=
1

c

[

λ

1

]

(18)

where 1
c

is the maximum eigenvalue of Φ with corresponding eigen-
vector [λT 1]T . The problem is feasible is the maximum eigen-
value is less than one. This maximum eigenvalue has been given
an interpretation as a congestion measure in [5].

5. SVD-SINR BALANCING ALGORITHM

The algorithm for the proposed scheme is given in Table 1. The
design of this algorithm is based on non-negative matrices and
properties of their maximum eigenvalue and corresponding eigen-
vectors. Similar algorithms have been proposed in ([1, 2]) for the
MISO case. The global convergence of these algorithms has been
shown in [2].

1: Initialize λ = 1
L Pmax

1, L =
∑K

k=1 Lk,
ν = [ν1,1, . . . , νK,LK

]T

2: Compute the SVDs [Ui, Σi,Vi] = SV D (Hi)
3: Compute Ri,m,k,n = gH

i,m,k,ngi,m,k,n,
1 ≤ i, k ≤ K, 1 ≤ m,n ≤ Li

4: Repeat
5: Ri,m =

∑K
k 6=i

∑Lk
n=1 λk,nRk,n,i,m + I

6: wi,m(n) = Vmax

(

Ri,m,i,m,Ri,m

)

,
1 ≤ i ≤ K, 1 ≤ m ≤ Li

7: Solve Φ
[

λ
T , 1

]T
= λmax

[

λ
T , 1

]T

8: Untill convergence
9: Compute Ti, 1 ≤ i ≤ K using (3)

Table 1. MU-MIMO SVD-SINR balancing algorithm

In line 6, Vmax(A, B) is the normalized generalized eigenvector
corresponding to the maximum generalized eigenvalue of the ma-
trices A and B.

6. TX DESIGN BASED ON SVD AND MULTIUSER
DIVERITY

In this section we will introduce a scheduling aspect that will allow
to improve the performance of the proposed approach. For this we
assume that the base station has multiple frequency bands available
and can select within a certain frequency band to serve only the
users that go well together in the sense of requiring minimal power
to satisfy their SINR requirements. Although the global optimiza-
tion problem requires to consider all frequency bands jointly, we
shall here just concentrate on optimizing performance within one
frequency band. The solution of the problem (13) will provide
each substream with the same ratio of achieved SINR over desired
SINR for the substream, but with a different required power contri-
bution λi,m from the base station. Clearly, the stream requiring the
largest power λi,m to achieve the same SINR as the other streams
has the channel that is the least compatible with the others (clearly,
in a more sophisticated version, the product of power λi,m times
(average) attenuation of the user i should be compared instead of
just the instantaneous required power for the stream). Although for
the purpose of the streaming application considered, this is of lim-
ited relevance, we shall consider the effect of eliminating incom-
patible streams on the sum capacity of the system. By eliminating
the least compatible stream and resolving the maxmin SINR prob-
lem again using the algorithm in Table 1, it is possible that the sum
capacity improves in spite of feeding one less stream because of
the eliminated interference from the most interfering stream. With
the system model described above, the ith user with Ni antennas
is looking for Li data streams with a required SINR target. So for



the overall system we have L =

K
∑

i=1

Li substreams. We recall that

we take initially Li = Ni. After the successive scheduling opti-
mization steps, the system will send less than L streams with the
best QoS. Thus the proposed scheme will enhance the throughput
of the system. The algorithm in Table 2 gives the description of
the procedure of this technique.

1: C0 = 0, L =

K
∑

i=1

Li

2: Run the algorithm in Table 1

3: Compute C =
∑

i,l

log (1 + γi,l)

4: If C0 ≥ C keep solution at L+1 and stop
5: Find (k, l) = arg max

(i,l)
λ1

i,l

6: Hk ←
[

hT
k,1, . . . ,h

T
k,l−1, h

T
k,l+1, . . . ,h

T
k,Lk

]T
,

Hi ← Hi for i 6= k
Lk = Lk − 1, L = L − 1, C0 = C, go to step 2

Table 2. MU-MIMO SVD-SINR balancing and MU Diversity al-
gorithm 7. SIMULATION AND RESULTS

The performance of the proposed scheme is investigated through
computer simulations. The noise power is assumed the same for
all users (σ2

n = 1). The flat channel matrices are chosen as Hi =

H0iR
H/2
T,i . The elements of H0i are i.i.d. complex Gaussian with

E
(

HH
0iH0i

)

= IN and RT,i is chosen as follows: RT,i =

diag (V (θi))Πdiag (V (θi))
H , where Π is Hermitian Toeplitz

with first row [1 ρ ρ2 · · · ρN−1], ρ = exp
(

−σ2
)

, ϕi = 2π sin θid
λ

,
V (θi) = [1 exp jϕi exp 2jϕi . . . exp (N − 1) jϕi]

T . θi is
the nominal angle of the ith user, d is the distance between an-
tennas. For the simulations we use ρ = 0.5 and d = λ/2. The
figures show the performance of the proposed multi-user MIMO
downlink Tx-Rx scheme (SVD-SINR balancing). Since we have
parallel subchannels the average sum capacity of the system is

C = E
{

∑K
i=1

∑Li

m=1 log (1 + γi,m)
}

. We compare the result

to some proposed schemes and to the Sato upper bound which can
be achieved by using an iterative water-filling algorithm proposed
in [10]. The proposed algorithm gets much closer to the Sato up-
per bound than the other algorithms considered, which are CZF-
SESAM (cooperative zero-forcing with successive encoding and
allocation method [4]), Joint MU-MIMO Decomposition design
[11] and block diagonalization zero-forcing (BD-ZF) [3]. These
techniques perform signicantly worse than the proposed technique.

In the figures 1 and 1 1000 channel realizations are averaged.
For CZF-SESAM, the sum capacity in the MISO case is given by

C = E
{

∑K
i=1 log (1 + γi)

}

. For BD-ZF and Joint MU-MIMO

Decomposition case, the expression used for the sum capacity is
∑K

i=1 E

(

log(
det(HiTiT

H
i H

H
i +Hi

∑

k 6=i TkT
H
k H

H
i +σ

2

ni
I)

det(Hi

∑

k 6=i TkTH
k

HH
i

+σ2
ni

I)
)

)

, the

preprocess transmit and receive matrices are computed as described
in [3, 11]. The Figure 3 presents the sum capacity when the num-
ber of total transmitted streams is varying at SNR = 10dB. This
figure is plotted for 100 channel realizations. The system config-
uration used is K = 5 users, N = 5 antennas at the base sta-
tion, Ni = 3 antennas for each user, and the initial number of
streams for each user is Li = 3. We can observe that the pro-

posed scheme gets closer to the Sato bound when we eliminate
the worst channels. Figure 4 gives the capacity for each step of
the SVD-SINR balancing MU-Diversity algorithm, and the Sato
bound. The system configuration is the same as for Figure 3. Thus
the proposed algorithm outperforms the other approaches, which
use zero-forcing of the interference between users, whereas the
proposed approach only zero-forces between streams of a same
user.

8. CONCLUSIONS

A novel method for multi-user MIMO channel decoupling is pre-
sented. The approach is based on full channel state information
and the singular value decomposition (SVD). The signal to inter-
ference plus noise ratio of the resulting substreams is optimized
w.r.t. quality of service requirements and the total available power
at the transmitter contraints. Finally we introduce a multi-user
(multi-stream) diversity aspect to improve the performance of the
algorithm.
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Fig. 1. MU-MIMO sum capacity K=2, N=4,Lk = 2, k = 1 . . . 5.
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Fig. 2. MU-MISO sum capacity K=5, N=4,Lk = 1, k = 1 . . . 5.
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∑K
k=1 L0

k, L0
k is the number of streams

sent to user k, SNR=10dB.

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

SNR(dB)

B
its

/c
ha

nn
el

 u
se

K=5, N=5, L=3

Sato bound
L=6
L=7
L=8
L=9

Fig. 4. MU-MIMO sum capacity K=5, N=5,Nk = 3, and initially
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