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ABSTRACT

In this paper techniques are proposed for combining in-
formation about the mean and the covariance of the chan-
nel for the purpose of MIMO transmission. (Partial)
channel state information at the transmitter (CSIT) is
typically used in MIMO systems for the design of spatial
prefiltering and waterfilling. For the purpose of gener-
ating CSIT, the cases of mean or covariance informa-
tion have only been solved separately in the literature. A
Bayesian approach is presented here incorporating both
pieces of information, but in which correlations are lim-
ited to the transmitter side. The approach yields the ex-
isting cases of mean or (transmit) covariance informa-
tion as special instances. Various cases of mean and
covariance information are discussed, including prior
mean and covariance (Ricean channel distribution) and
posterior mean and covariance (based on a noisy chan-
nel estimate and prior covariance information). The case
of a singular covariance matrix is treated in detail also,
allowing to treat zero covariance (known channel) as a
special case.

1. INTRODUCTION

In practical wireless systems, training sequences or pilot
symbols are incorporated in the transmitted signal to allow
for channel estimation at the receiver. The density of train-
ing data needs to increase as the mobility and the channel
variation increases. Nevertheless, even with training data
available, the channel estimate can only be of limited qual-
ity, and the channel estimation errors reduce the channel
capacity. Furthermore, the fact of substituting data to be
transmitted by training data obviously also limits the ca-
pacity. All this means that the channel capacity degrades
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with mobile speed and to minimize this decrease, all a pri-
ori information about the channel should be exploited for its
estimation.

In order to exploit partial Channel State Information at
the Transmitter (CSIT) in MIMO systems, most of the cur-
rent precoding schemes exploit either mean [1] or covari-
ance [2] information. A combination of the two can im-
prove exploitation of channel knowledge by weighting them
according to a certain criteria. However, mean and covari-
ance information do not necessary have to correspond to ac-
tual channel mean and covariance, i.e. to prior distributions.
They can be given by a Bayesian approach, with a certain
posterior mean and covariance.

In our work, we present different techniques to com-
bine mean and covariance information. We show how to
exploit both sources of partial CSIT to optimize the error
rate in MIMO systems, by performing linear precoding at
the transmitter.

2. SYSTEM DESCRIPTION

We consider transmission over a flat-fading MIMO chan-
nel, described by a matrix h with random complex entries
and dimension ��� x ��� , being ��� and ��� the number of
transmit and receive antennas, respectively. Prior to trans-
mission, the data codewords are prefiltered with the matrix
W, which takes into account mean and covariance informa-
tion, as we detail in the following section. In the presence of
additive white Gaussian noise, the received signal is given
by

Y � h WC � V (1)

where the noise power spectral density matrix is 	�
�
�
��������� . The transmitted data is recovered by a Maximum Like-
lihood receiver.

We assume that the channel impulse response matrix h
has separable covariance structure. Hence

E hh ��� tr ����������� (2)
E h � h  !� tr �������"���



3. PARTIAL CSIT COMBINING MEAN AND
COVARIANCE

When mean and covariance information are present at the
transmitter side, this information can be of different na-
ture. In the presence of a Line-of-Sight component between
transmitter and receiver, the MIMO channel may be mod-
eled as Ricean. In this first case of interest, the channel
h has a prior distribution h #%$'&(
�) h * � hh � , with mean) h due to the LOS component. The Ricean channel can be
modeled as h �%) h �+�-,/. �� h 0�� � . �� with h 0 distributed
as $'&(
�1 */243�563�7 � . A special case can be considered in the
Ricean model when also the mean is separable. Thus, the
vectorized mean can be represented as ) h �8)  �:9 ) �
and matricially as ) h �+) � ) �� . A second source of par-
tial CSIT is the case when mean information corresponds to
the channel estimate and perfect covariance information is
present at the transmitter. The channel in this case is mod-
eled as Rayleigh with distribution h #;$6&(
<1 * � hh � . On
the other hand, the channel estimates can be modeled as=
h � h �?>h, where >h follows a distribution $'&(
�1 * �@�A B 243�563�7 �
and could be due to a combination of the following sources
of error: estimation noise, quantization noise and prediction
noise. The combination of mean and covariance informa-
tion leads to a Gaussian posterior distribution with posterior
mean given by==

h �(
 243"7C3�5 � � �A B ��D ,� 9 ��D ,� � D , =h (3)

and posterior covariance>�E�F
 � D �A B 2 3 7 3 5 �G��D ,� 9 ��D ,� � D , (4)

If only posterior mean is present, it is due to noise-free chan-
nel estimation ( �@�A BIH 1 ) and thus JK�LJ H 1 . On the other

hand, only posterior covariance will be present if
==
h � =h �+1

or the estimation noise tends to infinity. In addition, if a rich
scattering environment is assumed at the Rx side, the covari-
ance at the receiver can be modeled as identity. In this case,
the posterior (vectorized) mean is given by==

h � =h 
 2 3 5 � � �A B � D ,� � D , (5)

and the posterior covariance>�M� I 3�7 9 >��� (6)

with posterior covariance seen from the transmitter>� � �(
 � D �A B 2 3 5 �N� D ,� � D , (7)

In a simplified scenario with noisification of the mean, as-

sume we only have access to O ==h instead of having acess

to
==
h directly, where the elements of the diagonal matrix O

are i.i.d. $'&(
<1 *QP � . Now the distribution becomes zero

mean with transmit side covariance matrix >R � � ==
h � ==h �>��� . Under these circumstances, the mean information falls

into the covariance information, and thus the correlation be-
comes the covariance. Hence, optimal MIMO transmission
schemes with partial CSIT for the case of only covariance
information will apply for the described model that com-
bines mean and covariance infomation. If linear prefiltering
is carried out at the transmitter side (after the ST encoding
stage) to adapt the transmission to the channel knowledge,
an optimal prefilter will lead to capacity maximization or
tipically Pairwise Error Probability (PEP) minimization. If
we assume � � � I 3 7 , the optimal prefilter that maximizes
capacity and minimizes PEP pours power along the eigen-
vectors of the posterior correlation matrix seen from the
transmitter, following a waterfilling power allocation pol-
icy for minimum PEP [2] and possibly different weighting
for the capacity maximization solution [6].

4. LINEAR PRECODING FOR ERROR RATE
MINIMIZATION

In this section, we derive an optimal precoding strategy for
error rate minimization in MIMO systems combining mean
and covariance information at the transmitter. The source
of mean and covariance information can be either prior or
posterior, as described in the previous section. We optimize
the performance of the proposed system in terms of PEP av-
eraged over h, prior or posterior, with a certain distribution$'&(
S) h * � hh � . We assume identity covariance matrix at
the receiver. In the analysis, we follow the work developed
by Jongren et al. in [4].

The PEP is defined as the error probability of choosing
the nearest distinct codeword C T instead of C U . The code
error matrix can be defined as >E VW�;X C U�Y C T4Z . In practice,
the average PEP is limited by the minimum distance code

error matrix, given by E �+[]\_^a`?bdcA
E e U�f T/g h]i_jlk >E 
�m *on �p>E � 
Sm *on �rq .

The average PEP is given bys 
 C U H C T ���Mt s 
 C U H CT]u h �wv h 
 h � h h (8)

where the complex Gaussian PDF v h 
 h � is

v h 
 h ��� i DyxSzy{ e h D}| h g�~����]�hh e h D�| h gS�� 3 7 3 5��'�4� 
o� hh � 3 7 (9)

By applying the Chernoff bound and averaging over the
distribution of h, an upper bound on the average PEP is
given bys 
 C U H CT_�l��t i D��������� e C � fC � g ./� v h 
 h � h h (10)



When concatenating the Space-Time encoder at the trans-
mitter with a linear prefilter to exploit partial CSIT, the min-
imum Euclidean distance ish �| U�� 
 C U * C T_��� h � 
 E ��� P� � J hWE J �� (11)

where W is the linear prefilter. On the other hand, it can be
shown that if EE � ��� I, the PEP is minimized at high SNR
for a given optimal prefilter [3]. Thus, the system under
consideration has EE ����� I, e.g. orthogonal ST block
codes [7] (single stream) or ST spreading [5] (full stream).
Introducing ��� ���  � and ¡¢� WW � , the solution to (10)
is given by

s 
 C U H C T_��� i tr { | h � �]�hh £ e�¤4¥@¦ � �]�hh g �]� D � hh § � �]�hh | ~h ��6�Q� 
S�y¡¨�N� D ,hh � 3 7©�6�4� 
<� hh � 3 7
(12)

The performance criterion can be expressed logarithmically
(neglecting parameter-independent terms) as followsª � tr

k ) h ��D ,hh
S�y¡L�N��D ,hh � D , ��D ,hh ) �h q Yy� �"«d¬®­ �6�4� 
S�y¡¯�©��D ,hh �
(13)

Assuming a normalized average power constraint, the opti-
mal ¡ that minimizes the performance criterion in (13) is
given by (see Appendix A)°?±³²µ´¶4·�¸ ¹³º I » 5�¼¾½ ¹³º�¿ I » 5�¼ÁÀ ·ÂIÃ�Ä}Åhh ÆLÇh Æ h Ã�ÄCÅhh È ���ÉKÊ ´Â"Ã�ÄCÅhhËÍÌ

(14)
where Î is the Lagrange multiplier associated with the power
constraint and �®Ï�� ¦ takes the positive semidefinite part. It
can be seen straightforward from (14) that as � tends to in-
finity (i.e. SNR tends to infinity), the optimal ¡ tends to¡%� ,3 5 I 3�5 , since in this particular case the value of the
Lagrange multiplier is Î��Ð�Ñ�"��� . This result is equiva-
lent to transmission without CSIT, which shows that as the
SNR increases the importance of CSIT gets reduced. An-
other solution assuming full-rank ¡ is provided, to have
a more intuitive idea of the unequal power-loading policy
at the transmitter. We define the eigenvalue decomposition� D ,hh ) �h ) h � D ,hh � U Ò U � where U is a unitary matrix andÒG� h mÓ[Ô^�
 � , * � � *KÕQÕQÕK* � 3"5 � . The solution is given by¡�� U Ö U ��Y P� ��D ,hh (15)

where Ö×� h mr[Ô^�
<Ø , * Ø � *QÕKÕQÕK* Ø 3"5 � . The elements in the
matrix of eigenvalues Ö are given by (see Appendix B)

Ø U � � � �+Ù � � � �ÛÚ�Ü   �¤Ý Î (16)

To obtain the optimal precoder either from (14) or (15),
let the eigenvalue decomposition of ¡ be ¡Þ� V ¥ Ö ¥ V �¥ .

Since ¡ß� WW � , the optimal precoder is W � V ¥ Ö ,à. �¥ .
Thus, the optimal transmission strategy as reflected in the
above equations corresponds to transmission along the eigen-
vectors of a combination of mean and covariance and a wa-
terfilling power allocation policy. The first and second term
in (15) are differently weighted depending on the SNR and
the covariance information. In the remaining of this section
we introduce some particular cases of special interest.

4.1. Zero mean information

When the mean information is zero, it can be seen from
equation (14) that in this case ¡ becomes¡M�Þá � �Î I 3 5 Y P� ��D ,hh â ¦ (17)

The value of the lagrange multiplier can be analitically ex-
pressed as Îã� �������k P � ,¤ j \6
o� D ,hh � q (18)

It is clear from (17) and (18) that as the SNR increases the
covariance information becomes less important, and ¡ con-
verges to a scaled identity matrix.

4.2. Unit rank mean

A particular case of interest is the case when the mean infor-
mation has rank one. Since ) h is unit rank, also � D ,hh ) �h ) h � D ,hh
becomes unit rank. The mean ) h can be represented as a
combination of a pair of vectors ä and

j
, ) h �¢ä j � . The

solution for ¡ in the case of unit rank mean derived from
the full-rank solution in (15) is given by¡M�(å æ , U �Íç Ö�å æ , U �Íç � Y P� ��D ,hh (19)

where ÖG� h mr[Ô^�
 P � xSz { ���]�hh �¤ * 1 *KÕQÕQÕQ* 1Ô� , æ , is the eigenvec-
tor associated with the only non-zero eigenvalue and U � are
arbitrary vectors chosen such that the matrix å æ , U � ç forms
an orthonormal basis. It can be seen from (19) that as the
SNR increases the solution approaches to beamforming along
a single direction, defined by �?D ,hh ) �h ) h ��D ,hh, which is a
combination of mean and covariance information.

4.3. Singular covariance information

When the covariance information is singular, it can be mod-
eled as follows� hh � X è . . èêé�Z?ë A 11 1Nì X è . . èêé"Z � (20)



where í and î î represent singular and non-singular parts
respectively. Let

k ) h . . ) h é q �ï) h X è . . è é Z and � . . be
the non-singular part of � hh. The optimization problem in
this case becomesðñññò ñññó ª �ô`?bdc¥ j \ ë ) h . . � D ,. .öõ �'¡ . . �G� D ,. .G÷ D , � D ,. . ) �h . . ìY!��� «d¬®­ �6�4� 
S�y¡ . . �N� D ,. . ��Y:� j \ õ ) h é ¡ é ) �h é ÷ä Õ j Õ j \6
o¡ . . �¨¡ é ��� P (21)
where ¡��öåW¡ . . ¡ é ç � . The objective function

ª
can be

divided in two optimization problems
ª � ª . . � ª é mini-

mized separately. The power constraints in both cases have
to be adjusted so that

s . . � s é � P . Hence, each min-
imization problem has a different power constraint associ-
ated. The optimization problem for the singular part is given
by ø ª é ��`Ñbdc¥"ù Y�� j \ õ ) h é ¡ é ) �h é ÷ä Õ j Õ j \�
Ó¡ é ��� s é (22)

The solution for ¡ é is derived in Appendix C. The pre-
coding solution corresponds to eigenbeamforming in the di-
rection of the eigenvector of ) �h é ) h é associated with the
largest eigenvalue Ø | ù f , . The result of the objective funtion
is
ª é �FY�� s é Ø | ù f , . The remaining optimization problem

for the non-singular part is given byðññò ññó ª . . ��`?bdc¥"ú ú j \ ë ) h . . ��D ,. .�õ �y¡ . . �N��D ,. .ô÷ D , ��D ,. . )û�h . . ìY!� ��«d¬®­ �'�4� 
��y¡ . . �G��D ,. . ��Y:� s é Ø é ,ä Õ j Õ j \6
Ó¡ . . ��� s . . � P Y s é (23)
The solution for this part is equivalent to the general solu-
tion with waterfilling shown in (14), but with reduced di-
mension and power constraint due to singularities. On the
other hand, an optimal power split solution exits 
 s . . * s é �under certain circumstances such that

ª 
 s . . �³� ª . . 
 s . . �"�ª é 
 P Y s . . � is minimized. If
ª 
 s . . � has an absolute min-

imum
s . .Kü ý �@��� , there are three different possibilities. If1:þ s . ._ü ý �@��� þ P , the optimal power for the non-singular

part is
s . ._ü ÿ�� x � s . ._ü ý �@��� and for the singular part

s é ü ÿ�� x �P Y s . ._ü ÿ�� x . The solution is a combination of beamforming
(in í part) and waterfilling (in î î part). If

s . ._ü ý �@��� � P thens . .Kü ÿ�� x � P and
s é ü ÿ�� x �+1 , and the solution is given by wa-

terfilling in the non-singular part. Finally, if
s . ._ü ý �@��� �Þ1

then
s . ._ü ÿ�� x �¢1 and

s é ü ÿ�� x � P , and the solution is given
by beamforming in ) � é ) é .

5. SIMULATION RESULTS

The system considered is
Ý
x
Ý

O-STBC as described in [7]
with QPSK modulation. The symbols are transmitted over
a channel with an arbitrary mean and a correlation factor �

(cross-diagonal terms in � hh). Fig. 1 shows the gain in per-
formance that can be obtained w.r.t. a non-precoded system
by combining mean and covariance knowledge. We can ob-
serve a remarkable improvement in the simulated range of
up to � Ý Õ�� dB in SNR decrease for a given

s	�-s
. In this

particular case, the performance is close to the one achived
by an optimal prefilter with perfect CSIT. In Fig. 2 we com-
pare the performance of a system with only covariance or
mean knowledge at the transmitter and a system with both
sources of CSIT. As we have shown, the cases of only mean
or covariance CSIT can be considered special instances of a
system that combines both. The contribution of the mean to
the average channel power is denoted by 
 .
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6. CONCLUSIONS

In this paper, techniques for combining mean and covari-
ance information have been presented. Both sources of in-
formation can be either prior (e.g. correlated channel with



LOS) or posterior (given by a Bayesian approach). We pro-
vide a general precoding solution for PEP minimization when
combining both sources of partial CSIT at the transmitter,
and analyze some cases of special interest. Simulation re-
sults illustrate the performance benefits that can be reached
in MIMO systems. The results show how mean and covari-
ance information should be combined in order to exploit the
available sources of CSIT.

Appendix A.
The optimization problem described in (13) can be expressed
as ���� ���

�	������ �"! Æ h Ã�ÄCÅhh # Â ° ¼ Ã�Ä}Åhh $ ÄCÅ Ã�ÄCÅhh ÆLÇh %Ê ¹³º'&)(+*-,/.1032 Â ° ¼ Ã ÄCÅhh 45 � � � � � 2 ° 4 ± ´ (24)

The solution is obtained by means of the Karush-Kuhn-
Tucker (KKT) conditions. Defining the Lagrangian as

L 
o¡ * Î���� j \ ë ) h � D ,hh õ �y¡G�G� D ,hh ÷ D , � D ,hh ) �h ì (25)Y!��� «�¬Ô­ �6�Q� 
��'¡¨�G� D ,hh ���ÛÎ å j \6
Ó¡©��Y P ç
where Î is the Lagrange multiplier associated with the equal-
ity constraint. Differentiating L 
Ó¡ * Î�� w.r.t. ¡ we getÎ7686 Y:�6���96NYµ�'��D ,hh )I�h ) h ��D ,hh ��1 (26)

where the change of variable 6�� �y¡¢�F� D ,hh has been
used for clarity. The solution for ¡ to the quadratic matrix
equation described above is given by°?± ² ´¶4· ¸ ¹³º I » 5�¼¾½ ¹³º�¿ I » 5�¼ÁÀ ·ÂIÃ�Ä}Åhh ÆLÇh Æ h Ã�ÄCÅhh È �� É Ê ´Â"Ã�ÄCÅhhË Ì

(27)
where �]Ï�� ¦ takes the positive semidefinite part.

Appendix B.
Introducing the eigenvalue decompositions Ã Ä}Åhh Æ Çh Æ h Ã ÄCÅhh

±
U : U Ç and

° ¼ Å; Ã ÄCÅhh
±

V < V Ç in equation (24) and elim-
inating constant terms, the minimization problem becomes�� � �	�)�� ��� ½ ´Â < Ä}Å V Ç U : U Ç V È Ê ¹³º'&)(=*>,/.?032 < 45 � � � ��� 2 < 4 ±A@ (28)

where B�� P � ,¤ j \ k ��D ,hh q and the properties
j \6
DC'E����j \6
DEFC¾� and V � V � I 3 5 have been used. Since the so-

lution we seek assumes ¡ positive semidefinite, also Ö�Y,¤ V �©� D ,hhV is assumed PSD. The optimum V that mini-
mizes the first term can be chosen as V � U [4].
Let ÒG� h mr[Ô^�
 � , *Q*KÕQÕKÕQ* � 3"5 � and Ö¨� h mr[®^�
<Ø , *QÕQÕKÕ4* Ø 3�5 � .The Lagrangian in this case is given by

L 2DGIH�J · 4 ± » 5K HML Å ½ ´Â'N HGIH Ê ¹³º'&)(=*OGIH È ¼ ·QP » 5K HRLTS GIH Ê @VU
(29)

where Î is the Lagrange multiplier corresponding to the
power constraint. Differentiating L 
<Ø U * Î�� w.r.t. Ø U we get

GIH ± ¹³º ¼XW ¹³º ¿ ¼ ÀZY\[ �;¶4· (30)

Thus, the solution for ¡ is given by°N±
U < U Ç Ê ´Â"Ã�ÄCÅhh (31)

Appendix C.

In order to minimize the objective function in (22) sub-
ject to the power constraint, introduce the following eigen-
value decompositions: ) �h é ) h é � V | ù Ö | ù V �| ù and¡ é � V ¥�ù Ö ¥�ù V �¥ ù . By applying the following inequal-
ity

j \�
]C^EÑ���`_ U Ø U 
DC¾�àØ U 
DE�� , it can be seen that (22)
is minimized (the trace is maximized) by setting V ¥�ù �
V | ù . Let Ö | ù � h mr[Ô^�
oØ | ù f , *KÕQÕQÕQ* Ø | ù f 3 5 � and Ö ¥�ù �h mÓ[Ô^�
<Ø ¥ ù f , *KÕQÕQÕK* Ø ¥ ù f 3 5 � ordered decreasingly. The opti-
mization problem becomesðñò ñó ª é � `?bdca�b ùdc � Y�� 3 5e URf , Ø ¥�ù f U Ø | ù f Uä Õ j Õ _ 3"5UMf , Ø ¥"ù f U � s é (32)

Clearly, the function described above is minimized (the sum-
mation is maximized) if all the power is transmitted along
the strongest eigenvalue, Ø | ù f , . Hence, the solution is given
by choosing Ø ¥�ù f , � s é and Ø | ù f U �+1 , m�� Ý *1g'*QÕKÕQÕÍ* � � .
With this choice, the value of the objective function be-
comes

ª é �(Y�� s é Ø | ù f , .
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