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ABSTRACT the DPCCH and CPICH needs to be estimated in order to properly

We consider a family of user dedicated downlink channel estimaform a combined estimate of the actual dedicated channel.

tion methods in WCDMA receivers which are particularly suited for ~ In general, even in the presence of dedicated beamforming the
the presence of dedicated channel transmit beamforming and whidPPCH and CPICH associated propagation channels are correlated
assume no a priori knowledge of the path delays and the beamfornte a certain extent, as it has been shown by field test measurements.
ing parameters. They exploit all the transmitted pilot sequences & general dedicated channel estimation technique which optimally
well as the structured dynamics of the channel. First we build slotcombines the channel estimates from common and dedicated pilots
wise least squares (LS) estimates of the channels associated wita a generic CPICH-DPCH channel correlation model was intro-
dedicated and common pilots. Then we optimally improve the dedduced in [2]. In addition to the correlation between dedicated and
icated channel estimate quality by jointly Kalman filtering the two common channels, there is also the channel temporal correlation
LS estimates or alternatively (suboptimally) Kalman filtering themgoverned by the Doppler spread, which can be exploited to improve
separately and combining via weighted LS. In the suboptimal casdhe channel estimation accuracy. To this end, by fitting the chan-
the order of Kalman filtering and weighted LS combining results innel dynamics to an autoregressive model of sufficient order, Wiener

differing performance and complexity in different conditions. filtering or Kalman filtering can be applied to refine the previously
block-wise obtained estimates.
1. INTRODUCTION In this paper we elaborate on one optimal and two suboptimal

. . . patio-temporal Kalman filtering and Kalman smoothing methods
The UMTS standard [1] user dedicated downlink physical channefhat benefit from all the known sources of information, i.e the tem-
(DPCH) consists of dedicated physical control channel (DPCCH)y 5 and cross-correlations of common and dedicated pilots. Their
carrying user dedicated pilots, time multiplexed with the dedlcate‘gerformances are quantified via simulations in terms of the dedi-

physical data channel (DPDCH) carrying dedicated data. In addizateq channel estimate normalized mean square error (NMSE).
tion, common pilots are continuously provided over the common

pilot channel (CPICH). Most channel estimation techniques pro-

posed for WCDMA receivers are based on either the DPCCH (see 2. CHANNEL MODELS

e.g. [3, 4] and references therein), or on the CPICH (see e.g [5])Ve assume the time-varying continuous time channels associated
However, on the one hand, the accuracy of channel estimation apvith dedicated and common pilotdy(t,7) and he(t,7) respec-
proaches relying only on the DPCCH is limited by the reduced numtively, to obey the wide sense stationary uncorrelated scattering
ber of dedicated pilots per slot and by the lack of pilots during the(WSS-US) model [8]

DPDCH period that prevents effective tracking of fast fading chan-

nels. On the other hand, classical channel estimation approaches P-1

based on the CPICH can better adapt to fast fading conditions, but ha(t,7) = Z Cd,p(H)Y(T —Tp)
they are not suited for dedicated channel estimation in the presence p=0

of dedicated transmit beamforming. Both approaches remain sub- P-1

optimal though, due to the fact that they neglect the shared structure he(t, 1) = 3 Cep(t)y(T—Tp)
by the common and the dedicated propagation channels. There al- p=0

ready exist some works for path-wise dedicated channel estimation )
which make use of both dedicated and common pilots [6], [7], unWhere y/(t) represents the pulse-shape filterdenotes the num-

der the assumption of perfect a priori knowledge of the path delayder of significant pathsr, represents the-th path delaycq p(t)
Moreover they implicitly assume the channel associated with th@ndce p(t) are time-varying complex channel coefficients associ-
DPCH to be identical to the one associated with the CPICH. Howated with thep-th path of the dedicated and common channel re-
ever, as envisaged in the Release 5 of the UMTS standard, this agpectively. In many practical circumstances, the two coefficients
sumption does not hold in the case when beamforming is employegh, p(t) andce p(t) result to be fairly highly correlated even in the
for DPCH transmission. Indeed user dedicated transmit beamfornpresence of dedicated downlink beamforming. Notice that in (1)
ing affects only the DPCH transmission while the CPICH is evenlythe coefficientgy y(t) for p=0, ...P— 1 account also for the com-
broadcasted to all users in the cell. Hence, when dedicated bearplete cascade of the beamforming weight vector, the antenna array
forming is present one would be tempted to conclude that CPICHesponse on the excited angles, as well as for the actual propaga-
can no longer be used for dedicated channel estimation, while thiéon channel between the transmitter and the receiver. The receiver
dedicated pilots can still be exploited yet with all the previously de-is assumed to samph times per chip period the low-pass filtered
scribed limitations. Actually in order to exploit the common pilots received baseband signal. Stacking Miesamples per chip period

as well, the knowledge of the transmit beamforming parameters vectors, the discrete time finite impulse response (FIR) represen-
i.e. the beamforming weight vector, antenna array responses corrtation of both common and dedicated channels at chip rate takes the
sponding to the excited angles and their related statistics should Bermh; = [hy | ...hM7|}T, which represents the vector of the samples
known at the receiver. Furthermore, even in the absence of transnof the overall channel, including the pulse shape, the propagation
beamforming, the offset between the transmit powers assigned thannel, the anti-aliasing receiver filter and, when applicable, the

@)



beamforming weighting. The superscript’ denotes the transpos l& -
operator. Assuming the overall channel to have a delay spreldd of WIN
chip periods, the dedicated and common channel impulse responsesg, LS Estimation [ o Bo() | | - H
N Sty 1C | (n ‘ n)
take the formh(n) = We(n) whereh = [h] ... h{]T € ¥MN<1 | —— via , M -
c(n) = [ca(n)...cp(n)]T € P are the complex path amplitude Dedicated Pilot L I L UL
and the temporal inder relates to the time instant at which th I MN- 9% (oint) hex(n|n)
time-varying channel is observed. The assumption of fixed delayd(", aton = f(n) o2 Fex(n|n+1)
Tp's over the observation window, yields to a constant pulse-shape Common Pilot o || —
e
convolution matrix® € ZMN*P given by
f&(n) (a) (b1)
W=W(1y, -, 1p) = [P(12),..., ¥(TP)]
. ha(n)
wherey(1p) represents the sampled version of the pulse shape fn“;;” o _
ter impulse response delayed by, The complex path amplitudes Uhi“ " (1) EMKal Pax(n|m)
variations are modeled as an autoregressive (AR) processes of Ok ULMMSE Combining " o da:“j)" Ros(nlned)
der sufficiently high to characterize the Doppler spectrum. Matchfex(n— o ecieate |aenl
ing only the channel bandwidth with the Doppler spread leads t¢ &% —
first-order AR(1) model of the form % — (b2)
2 ax(n) ys(n | n). Fg(n|n+) .
a(n) = pen—1) + /1 plac) = VPl acin) N o hes(r
=P p T 1—pg? % (Dedicated) 33, (n[n), 83, (n[n+ 1) ULMMSE Combining
a [ /g
. o eidm) Fesn 1), Fgin|n 1] X2 =
so that,W being constant over the observation time interval, we EM-Kalman " (Filtered and Smoothed)| Rgx(n | n+ 1)
obtain O’é (Common) 82 (n|n), 82 (nx‘c:.]ﬁ)'
. €k v ek (b3)
2
h(n) = ph(n— 1)+ /1 |p[2ah(n) = @Ah(n) (2 . o .
1—pqg1 Figure 1: a: LS estimation (joint for all taps)b1,b2,b3: {optimal

scheme, suboptimal scheme 1, suboptimal schepnferzach tap

whereq~! denotes the delay operator such thaty(n) = y(n—

1) and p represents the AR process temporal coherence correla- H - .
tion coefficient. Since the Doppler spread is assumed to be th here(-)™ denotes Hermitian transpose. Note that the equations

same for both channels (1), the model (2) applies to tiggm) () reduce to
and he(n). The variance ok-th componenth;k(n) of he(n) is f ~p-1 - ~ 3L

: a(n) ~ B nY(n); he(n)=~pB n)Y(n
02 = 0h . = WkDcWl! whereyy denotes thé-th line of W and (0 B S Y(; - eln) ~ B ()

D — diag(agcl, . UAZcC_p)- Notice thatacc _ GACC Similarly if the pilot chips can be modeled as i.i.d. random variables, where

Bq andf; represent the dedicated and common pllot chip sequences

the variance ok-th componenhg k(n) of hg(n), is Uﬁd_k Ofn, = total energies respectively. We can estimagg, andoZ,, from fq
@Dy} whereDy = diag(0Z,, . ..., 0%, .)- andhc at delaysk where we expect the channel not to carry any
' ' energy. That can be achieved by, e.g., overestimating the channel
3. LS ESTIMATIONS OF COMMON AND DEDICATED delay spread, and using the tails of the channel estimates to obtain
CHANNELS unbiased estimatesg , ando?,, .
All the three proposed approaches start with block-wise dedicated opTIMAL RECURSIVE APPROACH: JOINT KALMAN
and common channel least squares (LS) estlrrm,t@rs andhd( ) EILTERING AND SMOOTHING

which are computed based on the a priori knowledge of the common

and dedicated pilot chips. For the sake of simplicity, without losschannel Dynamics (State Vector)
of generality, in this paper, we assume that block-wise correspong Sh
to slot-wise estimates. We assume that dedicated pilot chips afe
sent in every slot. Le§;(n) = Sq(n) ® Im, where® denotes the n) +Bu State Transition Process
Kronecker product, represent the block Hankel matrix comprisinq
the dedicated pilot chip sequence intended for the user of interestg — Vi—1p?
in slot n. Similarly we refer toS;(n) = S¢(n) ® Im as the block
Hankel matrix containing the common pilot chip sequence in slo
n. LetY(n) be the received signal samples vector corresponding u(
to slotn. The LS unstructured FIR common and dedicated channel

( ) ( ) : Present State Vector

hd‘ 2| . Input Gain
Ahd n

n; : Input Vector,a: CPICH-DPCH corr. coef.

estimates FIR are given by Ruu = { U%hd o2 } Input Covariance
Ahe
A ; 2 Bu(n): Process Noise
hd(n) =arg rrr‘LInHY(n) - Sd(n)hd(n)” Qi I)BRuuBH' Process Noise Covariance
~ d 3 -
he(n) =arg rnlnHY(n) —S(n)hg(n)|2 ® First Step LS Estimation (State Measurement)
C

h(n) = [ E‘C‘EE) } = h(n) +w(n): Measurementl(S estimates

The exact LS solutions of problems (3) are readily given by )
. » w(n) = [ ZEQ)) ]: Measurement Noise
ha(n) = (S (N)Sy(m) S ()Y () o

2
ﬁc(n) _ (i‘(n)&(n))’lsg‘ (MY (n) 4) Ryw = { ng Uezc }: Measurement Noise Covariance




Algorithm Initialization 5. SUBOPTIMAL SCHEME 1: EM-KALMAN
¥(0) = 0. Moving Averaging Weight PROCEDURE AFTER ULMMSE COMBINING
A = 0.95: Forgetting Factor
p(0) = 0.999 Temporal Correlation Coefficient Estimate
h(0|0) = h(0| 0): Initial State Estimate
S(0]0) = Ryw: Initial State Error Covariance 5.1 Unbiased LMMSE Combining of LS Estimates
S(1]0) =| p(0) |* Rww: Initial Prediction Error Covariance
Q(0) = 02,2: Process Noise Covariance Estimate
M; = M2 = M3, = 022: Supporting Adaptation Parameters

Kalman Filtering and Smoothing (E-Step)

This scheme corresponds to Figure 1.b2, it runs independently for
each channel tap and it has two phases as explained in the sequel.

Let by (n) = [Agk(n) hek(n)]T denote the vector of the LS estimates
of thek-th elements of the dedicated and common pilot channel FIR
responses at slat i.e.,

h(n+1|n) = ph(n | n): Time Update hi(n) = { ha k() } - [ Pld,k(n) ] + { edk(n) } G
G(n+1)=S(n+1[n)[S(n+1n) +Ruw] *: Filter Gain he k() e k(M) €ck(n)

h(n+1|n+1) = [l2x2 — G(n+ D] h(n+1|n)+G(n+1)h(n): Mea- In order for our derivation to be fully general, we introduce the fol-
surement Update lowing dedicated and common channel correlation model
S(n+1|n+1) =[l2x2—G(n+1)]S(n+1|n): Filtered State Co-

variance e hc,k(n) = akhd,k(n) +Xc,k(n) (6)

_ pH 1. ; i
A(n) =p"S(n|mS(n+1]|n)~": Smoothing Gain where axhg «(n) represents the short-term ULMMSE estimate of

h(n| n+1) = h(n | n)+ A(n) <h(”+1\”+1)) —h(n+1]n): hek(n) on the basis ohg k(n), andx.k(n) represents the associ-
Smoothing Update ated estimation error. Then, a refined estimate can be obtained as
S(nn+1)=S(n|n)+AMN)(S(n+1|n+1)-Sn+1|n))An)": hg k(n) = fhg(n) by optimal combining of common and dedicated
Smoothed State Error Covariance LS channel estimates. In order not to introduce bias for the process-
Adaptive Estimation of Model Parameters (M-Step) ing in the next estimation step, we shall determinas the UL-

My — AM1+I:1(n+1 | ntl)ﬁ(nJrl D"+ Snt1|nt1) MMSE filter, i.e. by solving for alk’s the optimization problem

M= AM2-+h(n|n+Dh(n | n+ 1" +S(n|n+1) minEhg(n) - fih(nP? stfiflad™=1

M12=AMio+h(n+1|n+1)h(n|n+1)H +S(n+1|n+1)HAN)H k

y(n+1) =Ay(n)+1 ) The optimal ULMMSE filterf . is obtained as

p(n+1) =Trace{M1oM; "} /2 o1 _ 1o—1

Qn+1) =yt (M1 — MMy M) frommse = (LagIRe ¢ [T D) Ml aIRe L

Sn+2|n+1) =pN+1)SN+1|n+1)p(n+ " +Q(n+1): =(1agR 1" YL1af]R?T

Prediction Error Covariance . ~H _ _
Steady State Performance whereRy, i = Eh(n)hy (n), R= diag(ag,,. (04, +0%,)), with

— 2 _ ~ 2 . . .
S | © — Ruw U B(e0) 2 S(o0 | o) + O(e0) + R . g)xck = E|X:k(n)|*. Notice that the covariance matd, ; is equal

[| P() |2 S(oo | o) +Q(oo)]: Steady State Error Variance Rip = ra riz } _
~ he ™ -
(o0 + 1] 00) =| p(w) |2 (w0 | ) + Q(e0): Steady State Prediction o far T2z
Error Variance 5 1 1 M o2, 0
S(e | 0+ 1) = S | )+ [ p(eo) [* S0 | 0)S(e0 + 1 | o | a a | Y| o o2 +02
_1 - —H H. €ck Xek
) [S(oo |0) — S0+ 1] oo)}S(oo +1|00) "G | 0): Steady
State Smoothed Error Variance Having an estimate of the matri Ao €0 by temporal av-

Above is given the optimal EM-Kalman filtering and smoothing eraging, we can apply theovariance matchingriterion so that

algorithm corresponding to the scheme shown in Figure 1.b1 whicltlrhzdk =Tr11— oezd.k, ox =r21/(r11 — ogdk), (i.e. ax has the same

we applyindependentlyor each channel tap, hence the tap 'Ud'cesphase ag1), where the following bounday| < On,/Ohy, =
dropped for simplicity. It has been used in several other differen © :
contexts in order to estimate the states and the unknown model pa/(r22— 02, )/(r11— 02,) can be used in actual estimation. Fur-
rameters of dynamic systems [9, 10, 11, 12, 13]. On its core lie ; 2 2 2 42

the Expectation Maximization (EM) algorithm which is the most?hermore, SINCEs o F22= ey |r2_1| /_(rll ‘Z%-k)'

referred method when the problem in hand is suffering from incom- _ Finally, the variance of the estimation err@yy(n) after UL-
plete data and the solution requires both completing this data antdMSE combining, is obtained as

estimating some parameters [14]. The algorithm iterates between 02 (02 +02)
the E-phase which is the expected log-likelihood computation of 52 — Cak\ "€k = Xok
the missing (imputed) data by using both the observed data and the Eak oezdbk|ak\2 + crezﬁk + oi_k
present parameter estimates and the M-phase which computes the ) . ' .
maximum likelihood (ML) value of the parameters by conditioning | Ne dedicated channel estimate after ULMMSE combining,
on the imputed data as if it were the correct data. For this sectioRd.x(") = hqk(n) +T%,,, is such that the post-combining estimation

h(n) = [hy(n) he(n)]™ channel parameters are the missing data anrrorg?, , is mutually uncorrelated withg k(n), G2, ando},  are

{p,Q} are the only needed parameter estimates. Fitting the E_Mnutually uncorrelated for anly+ j, and the variance?2, is inde-

e
. o : ) ik
mechanism to Kalman filtering context requires also smoothing ”:%endent okwhile it depends on the Doppler spread, on the channel

@)

the E-phase. In all the mentioned papers fixed-interval smoothin

mechanism is used which is very_complex anq large buffer siz_es a pwer and on the SINR.
required, except for [13] where single delay fixed-lag smoothlng_ls,:l2 Kalman Filtering of ULMMSE Combined Estimates
considered. In this paper we follow the latter strategy due to its _ } i

suitability for implementation. We slightly modify the M-phase by Once the ULMMSE combined dedicated channel estimates are ob-
taking the average of the twd estimates (diagonal components of tained, we apply the causal Kalman filtering and smoothing to ob-

Mlegl) via the Traceoperation, considering the temporal corre- tain the final estimates; «(n | n) andﬁdyk(n | n+1). This algorithm
lation coefficients of dedicated and common taps as equal. is similar to the one in Section 4 with the single difference that the



state vector has now only one element, which isahmplexity ad- coverage since in that case DPCH power can become compa-
vantagew.r.t. the optimal scheme that has a state vector of two rable to or even exceed the CPICH power at cell edges due to
elements. This scheme is identical to the optimal one when the nor- power control.

malized correlation factof {x |= |Qk|Oh,, /Oh,, < 1 is unity, i.e.

Zo=1, Yk - F\d(n | n) performs better than thﬁd(n | n) when DPCH and
k=5 75 CPICH are not very much correlated.
6. SUBOPTIMAL SCHEME 2: ULMMSE COMBINING - smoothing (backward pass) improves the performance w.r.t fil-
AFTER TWO SEPARATE EM-KALMAN PROCEDURES tering (only forward pass) in all the cases.

In this case we change the order of EM-Kalman procedure and All the three methods are feasible for implementation since

ULMMSE combining as shown in Figure 1.b3. The EM-Kalman COMPplexity is proportional to the number of channel taps and

filtering outputs dedicated and common channel parameter esti@iman state vectors for each tap have at most two elements.

mateshy (n | n) andf(n | n) and their associated error variances ~ P0SSible extensions to the covered schemes are _

69211k(n n) andaezck(n | n) are fed to the following ULMMSE block - straightforward extension for 3 or more pilot sequences in case
. o ~ of one or more S-CPICH assignments

- handling channel variations within the slot

- taking into account also the correlations among FIR channel
taps

- sparsification and hybrid treatment of different taps

to obtain the final estimaﬂﬁqjﬁk(n | n). Similar procedure is applied

to obtain the refined smoothed estim&yg((n | n+1) from the EM-
Kalman smoothing output parametéygc(n| n+1), hex(n| n+1),
&gd_k(n |n+1)and &ék(n | n+1). Other necessary parameters are
estimated similar to what is done in Section 5.1. This two stage pro-
cedure is suboptimal (due to the coloring of noises at EM-Kalman
outputs) unlesp = 1 and it is not as attractive for implementation REFERENCES
as the first suboptimal scheme since the Kalman state vector has tw?l]

elements as in the optimal case. 3GPP Technical Specifications,” available at:

http://www.3gpp.org/specs/specs.html

7. SIMULATIONS AND CONCLUSIONS [2] G. Montalbano and D.T.M. Slock, “Joint Common-Dedicated Pi-

Th f f th d ch | . . hods i lots Based Estimation of Time-Varying Channels for W-CDMA Re-
e performances of the presented channel estimation methods in ceivers IEEE VTC'03 Fall,Orlando, FL, Oct. 2003.

the presence of dedicated transmit beamforming are presented in o
Figure 2 to Figure 7 in terms of the channel estimate NMSE. We as- [3] J. Bsltersee, G. Fock, P. Schultz-Rittich, and H. Meyr, “Performance

sume the DPCCH to occu@0%of the UMTS slot, and the DPCH analysis of phasor estimation algorithms for FDD-UMTS RAKE re-
spreading factor to be equal 128 We define the normalized cor- ceiver,"IEEE 6th Symp. on Spread Spectrum Technologies and Appli-
relation factor| ¢y |= |a|0h,, /Oh, < 1. Being interested in the cations NJIT, NJ, September 2000.

impact of dedicated and common channel correlation we set, for(4] M. Lenardi and D.T.M. Slock, “Estimation of time-varying wireless
the sake of simplicity|ay| = |ao| constantvk. We initially as- channels and application to the UMTS WCDMA FDD downlink,”

sume the DPCCH and the CPICH to be respectively assigned 5%  ECWT'02 Firenze, Italy, Feb. 2002.
and 10 % of the base station transmitted power. We also assum?

an additional DPCH beamforming gain®fB, yielding to a power 5]
offset between DPCCH and CPICH equaldg, /o7 = 0.5 for

all ks, so that{ = x = v/2|ag|. Channels are randomly generated
from the power delay profile of the MTS Vehicular Achannel [1].
Temporal correlation coeffciens= 0.99 andp = 0.9 correspond

in Jakes model to vehicle speeds 29km/h and 92km/h for a trans-
mission atl.8GHz. The legend¢Dedicated LS, Kalman Filtering  [7] K. A. Qarage and S. Roe, “Channel estimation algorithms for third
of Dedicated LS, Kalman Smoothing of Dedicated LS, ULMMSE generation WCDMA communication systemigEE VTC Fall'01
Combining of D_edlcated LS, Kalman Filtering After ULMMS_E’ [8] J. G. ProakisDigital CommunicationsNY: McGraw-Hill, 3rd ed.,
Kalman Smoothing After ULMMSE, ULMMSE After Kalman Fil- 1995

tering, ULMMSE After Kalman Smoothing, Optimal Kalman Fil- ) ) ] ) )

tering, Optimal Kalman Smoothifgon the figures corresponds in  [9] B.R. Musicus, “Iterative Al_gor!thms_for Opt_|ma| Signal Reconstruc-
the same order to the NMSE performances of the channel estimates ~ tion and Parameter Identification Given Noisy and Incomplete Data,”

~ ~ ~ = = = = Ph.D. Thesis, Mass. Inst. Tech., Sept. 1982
{ha(n),ha(n[n),hg(n|n-+1),hg(n),hg(n|n),hg(n|n+1), hg(n| P
n),hg(n| n+1),hg(n|n),hg(n|n+1)} at the steady states of the

EM-Kalman procedures.
Some interpretations of figures are as follows:

M. Benthin and K. Kammayer, “Influence of channel estimation on
the performance of a coherent DS-CDMA systetiEEE Trans. on
VT, Vol. 46, No. 2, pp. 262-268, May 1997

[6] M. Usada, Y. Ishikawa and S. Onoe, “Optimizing the number of dedi-
cated pilot symbols for forward link in WCDMA system$ZEE VTC
Spring’00

[10] R.H. Shumway and D.S.Stoffer, “An Approach to Time Series
Smoothing and Forecasting Using the EM Algorithh, Time Series
Anal.,Vol.3, no.4, pp.253-264, 1982

[11] E.Weinstein, A.V. Oppenheim, M. Feder and J.R. Buck, “Iterative and
Sequential Algorithms for Multisensor Signal Enhancemeli@EE
Trans. Signal ProcVol.42, no.4, pp.846-859,April 1994

- hg(n| n) performs much better thawy(n). [12] V. Digalakis, J.R. Rohlicek and M. Ostendorf,“ML Estimation of a
Stochastic Linear System with the EM Algorithm and Its Application
to Speech Recognition|EEE Trans. Speech and Audio Pral.1,
no.4, October 1993

- hg(n) brings moderate improvement w.ﬁg(n) at reasonably
high cross correlations.

- ﬁd(n | n) is the best (optimal causal filter in MMSE sense), per-
forms also as close as 0.2dB w.r.t. knowing thandQ para-
meters (latter case not shown on the plots), but it is at the same

time the most complex. [13] W. Gao, S.Tsai and J.S. Lehnert, “ Diversity Cobining for DS/SS Sys-
— ) ) 2 ) tems With Time-Varying Correlated Fading BranchdgEEE Trans.
- hg(n| n) is equivalent tchy(n | n) when the channels associated Communicationsyol.51, no.2, Feb. 2003

with DPCH and CPICH are fully correlated. Their performance
difference is non-negligible only when the Doppler spread and
DPCH-CPICH correlations are both low. It is attractive also for
the non-beamforming case, especially in order to increase the

[14] A.P. Dempster, N.M. Laird and D.B. Rubin, “Maximum Likelihood
From Incomplete Data via the EM AlgorithmJ. Roy. Statist. B,
vol.39, no.1, pp.1-38,1077
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Figure 4: NMSE vs DPCCHE; /Ny, r = 0.9, p = 0.9
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Figure 5: NMSE vs DPCCHE:/Ng, r = 0.9, p = 0.99
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Figure 6: NMSE vs DPCCHE;/Ng, r = 0.8, p = 0.99
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Figure 7: NMSE vs DPCCHE;/Ng, r = 0.6, p = 0.9



