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ABSTRACT
We consider a family of user dedicated downlink channel estima-
tion methods in WCDMA receivers which are particularly suited for
the presence of dedicated channel transmit beamforming and which
assume no a priori knowledge of the path delays and the beamform-
ing parameters. They exploit all the transmitted pilot sequences as
well as the structured dynamics of the channel. First we build slot-
wise least squares (LS) estimates of the channels associated with
dedicated and common pilots. Then we optimally improve the ded-
icated channel estimate quality by jointly Kalman filtering the two
LS estimates or alternatively (suboptimally) Kalman filtering them
separately and combining via weighted LS. In the suboptimal case,
the order of Kalman filtering and weighted LS combining results in
differing performance and complexity in different conditions.

1. INTRODUCTION

The UMTS standard [1] user dedicated downlink physical channel
(DPCH) consists of dedicated physical control channel (DPCCH),
carrying user dedicated pilots, time multiplexed with the dedicated
physical data channel (DPDCH) carrying dedicated data. In addi-
tion, common pilots are continuously provided over the common
pilot channel (CPICH). Most channel estimation techniques pro-
posed for WCDMA receivers are based on either the DPCCH (see
e.g. [3, 4] and references therein), or on the CPICH (see e.g [5]).
However, on the one hand, the accuracy of channel estimation ap-
proaches relying only on the DPCCH is limited by the reduced num-
ber of dedicated pilots per slot and by the lack of pilots during the
DPDCH period that prevents effective tracking of fast fading chan-
nels. On the other hand, classical channel estimation approaches
based on the CPICH can better adapt to fast fading conditions, but
they are not suited for dedicated channel estimation in the presence
of dedicated transmit beamforming. Both approaches remain sub-
optimal though, due to the fact that they neglect the shared structure
by the common and the dedicated propagation channels. There al-
ready exist some works for path-wise dedicated channel estimation
which make use of both dedicated and common pilots [6], [7], un-
der the assumption of perfect a priori knowledge of the path delays.
Moreover they implicitly assume the channel associated with the
DPCH to be identical to the one associated with the CPICH. How-
ever, as envisaged in the Release 5 of the UMTS standard, this as-
sumption does not hold in the case when beamforming is employed
for DPCH transmission. Indeed user dedicated transmit beamform-
ing affects only the DPCH transmission while the CPICH is evenly
broadcasted to all users in the cell. Hence, when dedicated beam-
forming is present one would be tempted to conclude that CPICH
can no longer be used for dedicated channel estimation, while the
dedicated pilots can still be exploited yet with all the previously de-
scribed limitations. Actually in order to exploit the common pilots
as well, the knowledge of the transmit beamforming parameters,
i.e. the beamforming weight vector, antenna array responses corre-
sponding to the excited angles and their related statistics should be
known at the receiver. Furthermore, even in the absence of transmit
beamforming, the offset between the transmit powers assigned to

the DPCCH and CPICH needs to be estimated in order to properly
form a combined estimate of the actual dedicated channel.

In general, even in the presence of dedicated beamforming the
DPCH and CPICH associated propagation channels are correlated
to a certain extent, as it has been shown by field test measurements.
A general dedicated channel estimation technique which optimally
combines the channel estimates from common and dedicated pilots
via a generic CPICH-DPCH channel correlation model was intro-
duced in [2]. In addition to the correlation between dedicated and
common channels, there is also the channel temporal correlation
governed by the Doppler spread, which can be exploited to improve
the channel estimation accuracy. To this end, by fitting the chan-
nel dynamics to an autoregressive model of sufficient order, Wiener
filtering or Kalman filtering can be applied to refine the previously
block-wise obtained estimates.

In this paper we elaborate on one optimal and two suboptimal
spatio-temporal Kalman filtering and Kalman smoothing methods
that benefit from all the known sources of information, i.e the tem-
poral and cross-correlations of common and dedicated pilots. Their
performances are quantified via simulations in terms of the dedi-
cated channel estimate normalized mean square error (NMSE).

2. CHANNEL MODELS

We assume the time-varying continuous time channels associated
with dedicated and common pilots,hd(t,τ) and hc(t,τ) respec-
tively, to obey the wide sense stationary uncorrelated scattering
(WSS-US) model [8]

hd(t,τ) =
P−1

∑
p=0

cd,p(t)ψ(τ− τp)

hc(t,τ) =
P−1

∑
p=0

cc,p(t)ψ(τ− τp)
(1)

whereψ(τ) represents the pulse-shape filter,P denotes the num-
ber of significant paths,τp represents thep-th path delay,cd,p(t)
and cc,p(t) are time-varying complex channel coefficients associ-
ated with thep-th path of the dedicated and common channel re-
spectively. In many practical circumstances, the two coefficients
cd,p(t) andcc,p(t) result to be fairly highly correlated even in the
presence of dedicated downlink beamforming. Notice that in (1)
the coefficientscd,p(t) for p = 0, ...P−1 account also for the com-
plete cascade of the beamforming weight vector, the antenna array
response on the excited angles, as well as for the actual propaga-
tion channel between the transmitter and the receiver. The receiver
is assumed to sampleM times per chip period the low-pass filtered
received baseband signal. Stacking theM samples per chip period
in vectors, the discrete time finite impulse response (FIR) represen-
tation of both common and dedicated channels at chip rate takes the
form hhhl = [h1,l . . .hM,l ]T , which represents the vector of the samples
of the overall channel, including the pulse shape, the propagation
channel, the anti-aliasing receiver filter and, when applicable, the



beamforming weighting. The superscript(·)T denotes the transpose
operator. Assuming the overall channel to have a delay spread ofN
chip periods, the dedicated and common channel impulse responses
take the formhhh(n) = ΨΨΨccc(n) wherehhh = [hhhT

1 , . . . ,hhhT
N]T ∈ C MN×1,

ccc(n) = [c1(n) . . .cP(n)]T ∈ C P×1 are the complex path amplitudes
and the temporal indexn relates to the time instant at which the
time-varying channel is observed. The assumption of fixed delays
τp’s over the observation window, yields to a constant pulse-shape
convolution matrixΨΨΨ ∈RMN×P given by

ΨΨΨ = ΨΨΨ(τ1, · · · ,τP) = [ψψψ(τ1), . . . ,ψψψ(τP)]

whereψψψ(τp) represents the sampled version of the pulse shape fil-
ter impulse response delayed byτp. The complex path amplitudes
variations are modeled as an autoregressive (AR) processes of or-
der sufficiently high to characterize the Doppler spectrum. Match-
ing only the channel bandwidth with the Doppler spread leads to a
first-order AR(1) model of the form

ccc(n) = ρ ccc(n−1)+
√

1−|ρ |2∆ccc(n) =

√
1−|ρ|2

1−ρq−1 ∆ccc(n)

so that,ΨΨΨ being constant over the observation time interval, we
obtain

hhh(n) = ρhhh(n−1)+
√

1−|ρ |2∆hhh(n) =

√
1−|ρ|2

1−ρq−1 ∆hhh(n) (2)

whereq−1 denotes the delay operator such thatq−1y(n) = y(n−
1) and ρ represents the AR process temporal coherence correla-
tion coefficient. Since the Doppler spread is assumed to be the
same for both channels (1), the model (2) applies to bothhhhd(n)
and hhhc(n). The variance ofk-th componenthc,k(n) of hhhc(n) is
σ2

hc,k
= σ2

∆hc,k
= ψψψkDDDcψψψH

k whereψψψk denotes thek-th line of ΨΨΨ and

DDDc = diag(σ2
∆c1

, . . . , σ2
∆cc,P

). Notice thatσ2
cc,p

= σ2
∆cc,p

. Similarly

the variance ofk-th componenthd,k(n) of hhhd(n), is σ2
hd,k

= σ2
∆hd,k

=

ψψψkDDDdψψψH
k whereDDDd = diag(σ2

∆cd,1
, . . . , σ2

∆cd,P
).

3. LS ESTIMATIONS OF COMMON AND DEDICATED
CHANNELS

All the three proposed approaches start with block-wise dedicated
and common channel least squares (LS) estimatesĥhhc(n) andĥhhd(n)
which are computed based on the a priori knowledge of the common
and dedicated pilot chips. For the sake of simplicity, without loss
of generality, in this paper, we assume that block-wise corresponds
to slot-wise estimates. We assume that dedicated pilot chips are
sent in every slot. LetSSSd(n) = Sd(n)⊗ IM , where⊗ denotes the
Kronecker product, represent the block Hankel matrix comprising
the dedicated pilot chip sequence intended for the user of interest
in slot n. Similarly we refer toSSSc(n) = Sc(n)⊗ IM as the block
Hankel matrix containing the common pilot chip sequence in slot
n. Let YYY(n) be the received signal samples vector corresponding
to slotn. The LS unstructured FIR common and dedicated channel
estimates FIR are given by

ĥhhd(n) = argmin
hhhd

‖YYY(n)−SSSd(n)hhhd(n)‖2

ĥhhc(n) = argmin
hhhc

‖YYY(n)−SSSc(n)hhhc(n)‖2 (3)

The exact LS solutions of problems (3) are readily given by

ĥhhd(n) = (SSSH
d (n)SSSd(n))−1SSSH

d (n)YYY(n)

ĥhhc(n) = (SSSH
c (n)SSSc(n))−1SSSH

c (n)YYY(n)
(4)
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Figure 1: a: LS estimation (joint for all taps),{b1,b2,b3}: {optimal
scheme, suboptimal scheme 1, suboptimal scheme 2} for each tap

where(·)H denotes Hermitian transpose. Note that the equations
(4) reduce to

ĥhhd(n)≈ β−1
d SSSH

d (n)YYY(n); ĥhhc(n)≈ β−1
c SSSH

c (n)YYY(n)

if the pilot chips can be modeled as i.i.d. random variables, where
βd andβc represent the dedicated and common pilot chip sequences
total energies respectively. We can estimateσ2

ed,k
andσ2

ec,k
from ĥd,k

and ĥc,k at delaysk where we expect the channel not to carry any
energy. That can be achieved by, e.g., overestimating the channel
delay spread, and using the tails of the channel estimates to obtain
unbiased estimatesσ2

ed,k
andσ2

ec,k
.

4. OPTIMAL RECURSIVE APPROACH: JOINT KALMAN
FILTERING AND SMOOTHING

Channel Dynamics (State Vector)

hhh(n) =
[

hd(n)
hc(n)

]
: Present State Vector

hhh(n+1) = ρhhh(n)+BBBuuu(n): State Transition Process

BBB =
√

1−|ρ2|




1 0

α

√
1− σ2

hd
σ2

hc

|α2|


: Input Gain

uuu(n) =
[

∆hd(n)
∆hc(n)

]
: Input Vector,α: CPICH-DPCH corr. coef.

RRRuuuuuu =
[

σ2
∆hd

0
0 σ2

∆hc

]
: Input Covariance

BBBuuu(n): Process Noise
QQQ = BBBRRRuuuuuuBBBH : Process Noise Covariance

First Step LS Estimation (State Measurement)

ĥhh(n) =
[

ĥd(n)
ĥc(n)

]
= hhh(n)+www(n): Measurement (LS estimates)

www(n) =
[

ed(n)
ec(n)

]
: Measurement Noise

RRRwwwwww =
[

σ2
ed

0
0 σ2

ec

]
: Measurement Noise Covariance



Algorithm Initialization

γ(0) = 0: Moving Averaging Weight
λ = 0.95: Forgetting Factor
ρ̂(0) = 0.999: Temporal Correlation Coefficient Estimate
ˆ̂hhh(0 | 0) = ĥhh(0 | 0): Initial State Estimate
SSS(0 | 0) = RRRwwwwww: Initial State Error Covariance
SSS(1 | 0) =| ρ̂(0) |2 RRRwwwwww: Initial Prediction Error Covariance
Q̂QQ(0) = 0002×2: Process Noise Covariance Estimate
MMM1 = MMM2 = MMM12 = 0002×2: Supporting Adaptation Parameters

Kalman Filtering and Smoothing (E-Step)
ˆ̂hhh(n+1 | n) = ρ̂ ˆ̂hhh(n | n): Time Update
GGG(n+1) = SSS(n+1 | n) [SSS(n+1 | n)+RRRwwwwww]−1: Filter Gain
ˆ̂hhh(n+1 | n+1)= [III2×2−GGG(n+1)] ˆ̂hhh(n+1 |n)+GGG(n+1)ĥhh(n): Mea-
surement Update
SSS(n+ 1 | n+ 1) = [III2×2−GGG(n+1)]SSS(n+ 1 | n): Filtered State Co-
variance
AAA(n) = ρ̂HSSS(n | n)SSS(n+1 | n)−1: Smoothing Gain
ˆ̂hhh(n | n + 1) = ˆ̂hhh(n | n) + AAA(n)

(
ˆ̂hhh(n+1 | n+1)

)
− ˆ̂hhh(n + 1 | n):

Smoothing Update
SSS(n | n+1) = SSS(n | n)+AAA(n)(SSS(n+1 | n+1)−SSS(n+1 | n))AAA(n)H :
Smoothed State Error Covariance

Adaptive Estimation of Model Parameters (M-Step)

MMM1 = λMMM1 + ˆ̂hhh(n+1 | n+1) ˆ̂hhh(n+1 | n+1)H +SSS(n+1 | n+1)

MMM2 = λMMM2 + ˆ̂hhh(n | n+1) ˆ̂hhh(n | n+1)H +SSS(n | n+1)

MMM12 = λMMM12+ ˆ̂hhh(n+1 | n+1) ˆ̂hhh(n | n+1)H +SSS(n+1 | n+1)HAAA(n)H

γ(n+1) = λγ(n)+1
ρ̂(n+1) = Trace{MMM12MMM

−1
2 }/2

Q̂QQ(n+1) = 1
γ(n+1)

(
MMM1−MMM12MMM

−1
2 MMMH

12

)

SSS(n+ 2 | n+ 1) = ρ̂(n+ 1)SSS(n+ 1 | n+ 1)ρ̂(n+ 1)H + Q̂QQ(n+ 1):
Prediction Error Covariance

Steady State Performance

SSS(∞ | ∞) = RRRw,w

[
| ρ̂(∞) |2 SSS(∞ | ∞)+ Q̂QQ(((∞∞∞)))+RRRw,w

]−1
×[

| ρ̂(∞) |2 SSS(∞ | ∞)+ Q̂QQ(((∞∞∞)))
]
: Steady State Error Variance

SSS(∞ + 1 | ∞) =| ρ̂(∞) |2 SSS(∞ | ∞)+ Q̂QQ(((∞∞∞))): Steady State Prediction
Error Variance
SSS(∞ | ∞ + 1) = SSS(∞ | ∞)+ | ρ̂(∞) |2 SSS(∞ | ∞)SSS(∞ + 1 |
∞)−1

[
SSS(∞ | ∞)−SSS(∞ + 1 | ∞)

]
SSS(∞ + 1 | ∞)−HSSS(∞ | ∞)H : Steady

State Smoothed Error Variance

Above is given the optimal EM-Kalman filtering and smoothing
algorithm corresponding to the scheme shown in Figure 1.b1 which
we applyindependentlyfor each channel tap, hence the tap indices
dropped for simplicity. It has been used in several other different
contexts in order to estimate the states and the unknown model pa-
rameters of dynamic systems [9, 10, 11, 12, 13]. On its core lies
the Expectation Maximization (EM) algorithm which is the most
referred method when the problem in hand is suffering from incom-
plete data and the solution requires both completing this data and
estimating some parameters [14]. The algorithm iterates between
the E-phase which is the expected log-likelihood computation of
the missing (imputed) data by using both the observed data and the
present parameter estimates and the M-phase which computes the
maximum likelihood (ML) value of the parameters by conditioning
on the imputed data as if it were the correct data. For this section
hhh(n) = [hd(n) hc(n)]T channel parameters are the missing data and
{ρ̂,Q̂QQ} are the only needed parameter estimates. Fitting the EM
mechanism to Kalman filtering context requires also smoothing in
the E-phase. In all the mentioned papers fixed-interval smoothing
mechanism is used which is very complex and large buffer sizes are
required, except for [13] where single delay fixed-lag smoothing is
considered. In this paper we follow the latter strategy due to its
suitability for implementation. We slightly modify the M-phase by
taking the average of the twôρ estimates (diagonal components of
MMM12MMM

−1
2 ) via theTraceoperation, considering the temporal corre-

lation coefficients of dedicated and common taps as equal.

5. SUBOPTIMAL SCHEME 1: EM-KALMAN
PROCEDURE AFTER ULMMSE COMBINING

This scheme corresponds to Figure 1.b2, it runs independently for
each channel tap and it has two phases as explained in the sequel.

5.1 Unbiased LMMSE Combining of LS Estimates

Let ĥhhk(n) = [ĥd,k(n) ĥc,k(n)]T denote the vector of the LS estimates
of thek-th elements of the dedicated and common pilot channel FIR
responses at slotn, i.e.,

ĥhhk(n) =
[

ĥd,k(n)
ĥc,k(n)

]
=

[
hd,k(n)
hc,k(n)

]
+

[
ed,k(n)
ec,k(n)

]
. (5)

In order for our derivation to be fully general, we introduce the fol-
lowing dedicated and common channel correlation model

hc,k(n) = αkhd,k(n)+xc,k(n) (6)

whereαkhd,k(n) represents the short-term ULMMSE estimate of
hc,k(n) on the basis ofhd,k(n), andxc,k(n) represents the associ-
ated estimation error. Then, a refined estimate can be obtained as
hd,k(n) = fff kĥhhk(n) by optimal combining of common and dedicated
LS channel estimates. In order not to introduce bias for the process-
ing in the next estimation step, we shall determinefff as the UL-
MMSE filter, i.e. by solving for allk’s the optimization problem

min
fff k

E|hd,k(n)− fff kĥhhk(n)|2 s.t. fff k[1 αk]T = 1

The optimal ULMMSE filterfff k is obtained as

fff k,ULMMSE = ([1 α∗k ]RRR−1
ĥhhkĥhhk

[1 αk]T)−1[1 α∗k ]RRR−1
ĥhhkĥhhk

= ([1 α∗k ]RRR−1[1 αk]T)−1[1 α∗k ]RRR−1

whereRRRĥhhkĥhhk
= Eĥhhk(n)ĥhh

H
k (n), RRR= diag(σ2

ed,k
, (σ2

ec,k
+ σ2

xc,k
)), with

σ2
xc,k

= E|x̂c,k(n)|2. Notice that the covariance matrixRRRĥhhkĥhhk
is equal

to

RRRĥhhkĥhhk
=

[
r11 r12
r21 r22

]
=

σ2
hd,k

[
1

αk

][
1

αk

]H

+

[
σ2

ed,k
0

0 σ2
ec,k

+σ2
xc,k

]

Having an estimate of the matrixRRRĥhhkĥhhk
, e.g. by temporal av-

eraging, we can apply thecovariance matchingcriterion so that
σ2

hd,k
= r11− σ2

ed,k
, αk = r21/(r11− σ2

ed,k
), (i.e. αk has the same

phase asr21), where the following bound|αk| ≤ σhc,k
/σhd,k

=√
(r22−σ2

ec,k
)/(r11−σ2

ed,k
) can be used in actual estimation. Fur-

thermore, sinceσ2
xc,k

= r22−σ2
ec,k
−|r21|2/(r11−σ2

ed,k
).

Finally, the variance of the estimation errorˆ̂ed,k(n) after UL-
MMSE combining, is obtained as

σ2
ed,k

=
σ2

ed,k
(σ2

ec,k
+σ2

xc,k
)

σ2
ed,k
|αk|2 +σ2

ec,k
+σ2

xc,k

(7)

The dedicated channel estimate after ULMMSE combining,
hd,k(n) = hd,k(n)+σ2

ed,k
, is such that the post-combining estimation

errorσ2
ed,k

is mutually uncorrelated withhd,k(n), σ2
ed,k

andσ2
ed, j

are

mutually uncorrelated for anyk 6= j, and the varianceσ2
ed,k

is inde-
pendent ofk while it depends on the Doppler spread, on the channel
power and on the SINR.

5.2 Kalman Filtering of ULMMSE Combined Estimates

Once the ULMMSE combined dedicated channel estimates are ob-
tained, we apply the causal Kalman filtering and smoothing to ob-

tain the final estimateshd,k(n | n) andhd,k(n | n+1). This algorithm
is similar to the one in Section 4 with the single difference that the



state vector has now only one element, which is thecomplexity ad-
vantagew.r.t. the optimal scheme that has a state vector of two
elements. This scheme is identical to the optimal one when the nor-
malized correlation factor| ζk |= |αk|σhd,k

/σhc,k
≤ 1 is unity, i.e.

ζk = 1, ∀k.

6. SUBOPTIMAL SCHEME 2: ULMMSE COMBINING
AFTER TWO SEPARATE EM-KALMAN PROCEDURES

In this case we change the order of EM-Kalman procedure and
ULMMSE combining as shown in Figure 1.b3. The EM-Kalman
filtering outputs dedicated and common channel parameter esti-
matesh̃d,k(n | n) andh̃c,k(n | n) and their associated error variances
σ̃2

ed,k
(n | n) andσ̃2

ec,k
(n | n) are fed to the following ULMMSE block

to obtain the final estimatẽ̃hd,k(n | n). Similar procedure is applied

to obtain the refined smoothed estimate˜̃hd,k(n | n+1) from the EM-
Kalman smoothing output parametersh̃d,k(n | n+1), h̃c,k(n | n+1),
σ̃2

ed,k
(n | n+1) andσ̃2

ec,k
(n | n+1). Other necessary parameters are

estimated similar to what is done in Section 5.1. This two stage pro-
cedure is suboptimal (due to the coloring of noises at EM-Kalman
outputs) unlessρ = 1 and it is not as attractive for implementation
as the first suboptimal scheme since the Kalman state vector has two
elements as in the optimal case.

7. SIMULATIONS AND CONCLUSIONS

The performances of the presented channel estimation methods in
the presence of dedicated transmit beamforming are presented in
Figure 2 to Figure 7 in terms of the channel estimate NMSE. We as-
sume the DPCCH to occupy20%of the UMTS slot, and the DPCH
spreading factor to be equal to128. We define the normalized cor-
relation factor| ζk |= |αk|σhd,k

/σhc,k
≤ 1. Being interested in the

impact of dedicated and common channel correlation we set, for
the sake of simplicity,|αk| = |α0| constant∀k. We initially as-
sume the DPCCH and the CPICH to be respectively assigned 5%
and 10 % of the base station transmitted power. We also assume
an additional DPCH beamforming gain of6dB, yielding to a power
offset between DPCCH and CPICH equal toσ2

hc,k
/σ2

hd,k
= 0.5 for

all k’s, so thatζ = ζk =
√

2|α0|. Channels are randomly generated
from the power delay profile of theUMTS Vehicular Achannel [1].
Temporal correlation coeffcientsρ = 0.99 andρ = 0.9 correspond
in Jakes model to vehicle speeds 29km/h and 92km/h for a trans-
mission at1.8GHz. The legends{Dedicated LS, Kalman Filtering
of Dedicated LS, Kalman Smoothing of Dedicated LS, ULMMSE
Combining of Dedicated LS, Kalman Filtering After ULMMSE,
Kalman Smoothing After ULMMSE, ULMMSE After Kalman Fil-
tering, ULMMSE After Kalman Smoothing, Optimal Kalman Fil-
tering, Optimal Kalman Smoothing} on the figures corresponds in
the same order to the NMSE performances of the channel estimates

{ĥhhd(n), h̃hhd(n | n), h̃hhd(n | n+1),hhhd(n),hhhd(n | n),hhhd(n | n+1), ˜̃hhhd(n |
n), ˜̃hhhd(n | n+1), ˆ̂hhhd(n | n), ˆ̂hhhd(n | n+1)} at the steady states of the
EM-Kalman procedures.

Some interpretations of figures are as follows:

- hhhd(n) brings moderate improvement w.r.tĥhhd(n) at reasonably
high cross correlations.

- h̃hhd(n | n) performs much better thanhhhd(n).

- ˆ̂hhhd(n | n) is the best (optimal causal filter in MMSE sense), per-
forms also as close as 0.2dB w.r.t. knowing theρ andQQQ para-
meters (latter case not shown on the plots), but it is at the same
time the most complex.

- hhhd(n | n) is equivalent tô̂hhhd(n | n) when the channels associated
with DPCH and CPICH are fully correlated. Their performance
difference is non-negligible only when the Doppler spread and
DPCH-CPICH correlations are both low. It is attractive also for
the non-beamforming case, especially in order to increase the

coverage since in that case DPCH power can become compa-
rable to or even exceed the CPICH power at cell edges due to
power control.

- ˜̃hhhd(n | n) performs better than thehhhd(n | n) when DPCH and
CPICH are not very much correlated.

- smoothing (backward pass) improves the performance w.r.t fil-
tering (only forward pass) in all the cases.

All the three methods are feasible for implementation since
complexity is proportional to the number of channel taps and
Kalman state vectors for each tap have at most two elements.

Possible extensions to the covered schemes are

- straightforward extension for 3 or more pilot sequences in case
of one or more S-CPICH assignments

- handling channel variations within the slot

- taking into account also the correlations among FIR channel
taps

- sparsification and hybrid treatment of different taps
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Figure 2: NMSE vs DPCCHEc/N0, r = 1, ρ = 0.99
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Figure 3: NMSE vs DPCCHEc/N0, r = 0.95, ρ = 0.9
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Figure 4: NMSE vs DPCCHEc/N0, r = 0.9, ρ = 0.9
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Figure 5: NMSE vs DPCCHEc/N0, r = 0.9, ρ = 0.99
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Figure 6: NMSE vs DPCCHEc/N0, r = 0.8, ρ = 0.99
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Figure 7: NMSE vs DPCCHEc/N0, r = 0.6, ρ = 0.9


