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ABSTRACT

In this paper, a unified framework for Ultra-Wideband chan-
nel (UWB channel) modeling based on the maximum entropy
approach is provided. For a given set of constraints, a consis-
tent model which takes into account the information at hand
is obtained. Two cases are considered: channel power knowl-
edge and knowledge of the covariance matrix. The channel
power delay spectrum is also derived and the impact of the
channel bandwidth is assessed through information theoretic
considerations. The information variation slope with respect
to the bandwidth is also studied, based on wideband measure-
ments performed at Institut Eurecom1.

1. INTRODUCTION

UWB systems radiate waveforms that are formed by a se-
quence of “very short” pulses, i.e., pulses with durations about
few hundred picoseconds. Such signals are free of sine-wave
carriers and do not require IF processing because they can
operate at baseband. Moreover, the system uses very low
power spectral density, below the thermal noise of the re-
ceivers, which is inherently difficult to be detected and does
not cause significant interference with other systems. These
basic properties of the radio UWB system make it an ideal
candidate for commercial, short-range, low power, low cost
indoor communication systems such as Wireless Local Area
Network (WLAN) and Personal Area Network (WPAN).

Although appealing, the efficiency of UWB systems is
still questionable. Indeed, for large bandwidths, channel un-
certainty limits the achievable rates of power constrained sys-
tems and therefore the capacity depends crucially on the model
at hand. In fact, recent results [1] show that the capacity is a
function of how the number of channel paths scale with the
bandwidth (linear, sub-linear,..). Indeed, although the large
bandwidth is supposed to increase the rate, channel estima-
tion of all the channel paths becomes a real bottleneck as one
may dedicate a large fraction of the rate to estimate more and
more channel coefficients.

This contribution aims at analyzing how channel uncer-
tainty scales with bandwidth in UWB systems. Equivalently,
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the number of parameters necessary to predict (or also repre-
sent) the wideband channel is determined. In this respect, a
sound framework for UWB channel modelling [2] based on
information theoretic tools is provided. Based on a given set
of constraints (measurements, power), a channel model is de-
rived based on the maximum entropy approach and validated
through measurements performed at Institut Eurecom. Within
this setting, channel uncertainty has a straightforward mean-
ing through the notion of entropy that is analyzed with respect
to the bandwidth.

Previous studies [3] have already analyzed channel uncer-
tainty scaling through the number of significant paths. How-
ever, in many cases, additional criteria (such as AIC, MDL..)
have to be considered as, for noisy measurements, the notion
of significant paths is subjective. Note finally that previous
contributions have also focused on characterizing the wide-
band channel through a limited number of parameters (AR
models with few coefficients [4]). The benefit of such char-
acterizations rely on the fact that it is possible to reproduce
the channel frequency behavior using only a small number of
parameters.

2. MAXIMUM ENTROPY MODELING (MEM)

The problem of modelling wideband channels is crucial for
the efficient design of wireless systems. Indeed, the wireless
channel suffers from constructive/destructive interference sig-
naling and therefore yields a randomized channel for which
one has to attribute a joint probability distribution for the chan-
nel frequency response. In this contribution, we would like
to provide some theoretical grounds to model the wideband
channel based on a given state of knowledge. In other words,
knowing only certain things related to channel (power, mea-
surements), how to translate that information into a model for
the channel? This question can be answered in light of the
Bayesian probability theory [5] and the principle of maximum
entropy. The principle of maximum entropy is at present the
clearest theoretical justification in conducting scientific infer-
ence: we do not need a model, entropy maximization creates
a model for us out of the information available. Choosing
the distribution with greatest entropy avoids the arbitrary in-



troduction or assumption of information that is not available.
Note that this approach has been successfully used in spec-
trum analysis [6].

2.1. MEM for channel power knowledge

Suppose in the following that the modeler has no knowledge
about the frequency response of the wideband channel and
would like, with this limited knowledge, to determine the
number of clusters in the environment. The modeler knows
however that the channel carries some powerP and is sta-
tionary during the channel modelling phase.

Let {hi}i∈Z be the sequence of samples at frequencies
iδf (δf is the frequency resolution) of the channel frequency
response. In this case, the spectral autocorrelation function is
defined as:

R(k) = E[hih
∗
i+k] (1)

and the power delay spectrum is defined as

P (τ) =
∞∑

k=−∞
R(k)e−j2πτk, (2)

whereτ = τ̂
Ts

is the normalized delay and̂τ is the delay in
seconds.

In the following, we suppose that
∫ τmax

2
− τmax

2
P (τ)dτ is the

power of the channel equal toP andτmax is the maximum
delay. The modeler would like to take into account the power
constraint without additional information that is not available.
Maximizing the entropy of the process guarantees such a set-
ting as one finds the sequence of autocorrelations that make
the impulse response as white as possible. In other words,
such an extrapolation places the least amount of structure in
the channel.

For a Gaussian random process, with power delay spec-
trumP (τ), the entropyH is given by

H = log(πe) +
∫ 1

2

− 1
2

log(P (τ) + ε)dτ, (3)

whereε is an arbitrary small constant (ε ≥ 0) used to regular-
ize the non-regular Gaussian process (hi).

The modeler would like to maximizeH under the con-
straint that the received power in a given delay interval is
known. This statement can simply be expressed if one tries
to maximize the following expression using Lagrange multi-
pliers with respect toR(k):

C = H − µ0(
∫ τmax

2

− τmax
2

P (τ)dτ − P ) (4)

∂C

∂R(k)
=

∫ 1
2

− 1
2

1
P (τ) + ε

∂P (τ)
∂R(k)

dτ − µ0

∫ τmax
2

− τmax
2

e−j2πτkdτ,

=
∫ 1

2

− 1
2

1
P (τ) + ε

e−j2πτkdτ +
µ0

j2πk

[
e−j2πkτ

] τmax
2

− τmax
2

,

=
∫ 1

2

− 1
2

1
P (τ) + ε

e−j2πτkdτ − µ0τmaxsinc(kπτmax),

= 0.

Let Q(τ) = 1
P (τ)+ε andqk =

∫ 1/2

−1/2
Q(τ)e+j2πkτ dτ . We

have

∫ 1
2

− 1
2

Q(τ)ej2πτkdτ = µ0τmaxsinc(kπτmax) (5)

⇔ qk = µ0τmaxsinc(kπτmax). (6)

Thus,Q(τ) =
∑∞

k=−∞ µ0τmaxsinc(kπτmax)e−j2πkτ , which
is constant for all−τmax

2 ≤ τ ≤ τmax

2 . As a consequence,

P (τ) =
{

P
2τmax

; −τmax

2 ≤ τ ≤ τmax

2

0 ; elsewhere.

andR(k) = P
2 sinc(kπτmax) for all k. P (τ) is constant and

vanishes on[− 1
2 , + 1

2 ]/[− τmax

2 , + τmax

2 ]. In other words if
there is no knowledge except the maximum delay, the model
gives an infinite number of clusters and the power is equally
split across the different clusters. The methodology can be
easily extended if the modeler has knowledge of the band-
width (which determines the number of correlation coeffi-
cientsR(k)) used.

2.2. MEM for covariance channel knowledge

In the following, we suppose that the modeler has knowledge
(through measurements) of a finite number of frequency au-
tocorrelation coefficientsR(k). The number of coefficients is
determined by the measured bandwidth as well as the mea-
surement resolution. Based on this knowledge, the modeler
would like to derive a wideband model taking into account ac-
count the previous constraints and not more, i.e, the modeler
would like to extrapolate the missing autocorrelation coeffi-
cients for deriving the power delay spectrum function. Using
the same methodology as Section 2.1, the following theorem
due to Burg [7] can be obtained:

Theorem 1 The maximum entropy rate stochastic process
{hi}i∈Z that satisfies the constraints

E[hihi+k] = R(k), k = 0, 1, ....., N, for all i, (7)



is the N -th order Gauss-Markov process of the form

hi = −
N∑

k=1

akhi−k + Zi, (8)

where the Zi are i.i.d. ∼ N(0, σ2) and a1, a2, ..., aN , σ2 are
chosen to satisfy Equation (7).

Remark: The theorem does not assume thehi to be
wide-sense stationnary.

A process satisfying (8) is also called autoregressive of
orderN (AR(N)). The coefficientsa1, a2, ..., aN , σ2 are ob-
tained by solving the Yule-Walker equations

R(0) = −
N∑

k=1

akR(−k) + σ2, (9)

R(l) = −
N∑

k=1

akR(l − k), l = 1, 2, ..., N. (10)

Fast algorithms such as the Levinson and Durbin algo-
rithm have been devised which exploit the special structure
of these equations to efficiently calculate the coefficientsa1,
a2, ...., aN from the covariance samplesR(0), ..., R(N). The
power delay spectrum of theN th order Gauss-Markov process
(8) is given by

P (τ) =
σ2∣∣∣1 +

∑N
k=1 ake−i2πkτ

∣∣∣2
. (11)

In general, from a finite set ofN frequency measurements
[hl

1, ...h
l
N ] over a bandwidth ofNδf (l is thelth channel re-

alization), there are many ways to estimate the spectral auto-
correlation coefficients. In the following, the sample autocor-
relation function is defined as:

R̂N (k) =
1
L

1
N − k

L∑
l=1

N−k∑
i=1

hl
i(h

l
i+k)∗, k ≥ 0.

For a given N, we estimate and determine the autocorre-
lation functionR̂N(k), the autocorrelation coefficientŝa(N)

k

and the power delay spectrum̂PN (τ). As a consequence, the
estimated entropy is given by:

ĤN = log(πe) +
∫ 1

2

− 1
2

log
σ2∣∣∣1 +

∑N
k=1 a

(N)
k e−i2πkτ

∣∣∣2
dτ.

(12)
The roots of the power delay spectrum (11) determine the

number of significant clusters. Practically, although the roots
may exist, some may be not significant and therefore unnec-
essary to model. In order to assess the number of significant
modelling coefficients, we will analyze in Section 3 the infor-
mationĤN contained in the process with respect toN .

3. MEASUREMENT DESCRIPTION

3.1. Measurement setup

Wideband measurements were performed at Institut Eurecom.
The measurements were carried out in the Mobile Communi-
cations Laboratory, which is a typical lab environment, rich
in reflective and diffractive objects. The measurement de-
vice used is a wideband Vector Network Analyzer (VNA)
which allows complex transfer function parameter measure-
ments in the frequency domain, extending from 10MHz to
20GHz. This instrument has low inherent noise, less than
-110dBm for a measurement bandwidth of 10Hz, and high
measurement speed, less than 0.5ms/point. The maximum
number of equally-spaced frequency samples (amplitudes and
phase) per measurement is 2001. The measurement data were
acquired and controlled remotely using RSIB protocol over
Ethernet permitting off-line signal processing and instrument
control in MATLAB.

In order to perform truly wideband measurements with
sufficient resolution, several bands can be concatenated us-
ing consecutive measurements. In this contribution, measure-
ments were performed from 3GHz to 9GHz by concatenating
three groups of 2001 frequency samples per 2GHz sub-bands
(3-5GHz,5-7GHz,7-9GHz). This yields a 1MHz spacing be-
tween the frequency samples. Systematic and frequent cal-
ibration (remotely controlled) was employed to compensate
for undesirable frequency-dependent attenuation factors that
might affect the collected data. The calibration included the
cables and the connectors. It was performed through response
calibration. The wideband antennas employed in the mea-
surements are omnidirectional in the vertical plane and have
an approximate bandwidth of 7.5GHz (varying from 3.1GHz
to 10 GHz). They were not perfectly matched across the entire
band, with a Voltage Standing Wave Radio (VSWR) varying
from 2 to 5.

3.2. Measurement environment

The data analyzed in Section 4 were collected in a Line of
Sight (LoS) setting with measurements performed at spatially
different locations. The experiment area is set by fixing the
transmitting antenna on a mast at 1m above the ground and
close to the VNA. The receiving antenna moves then to dif-
ferent locations on a horizontal linear grid of side 50 cm in
steps of 5cm. The transmitter antenna’s height was varied by
5cm up to 20cm after completion of the measurements at var-
ious receiver positions. The transmitter and the receiver were
separated by a distance of six meters.

4. RESULTS

In the following, the scaling of channel uncertainty with re-
spect to the bandwidth is analyzed. In Fig. 1, the variation of
ĤN is plotted for the LoS case as well as the Gaussian case



(zero mean i.i.d frequency samples are generated in this case)
versusNδf (the frequency band is[3000, 3000+Nδf]MHz).
As one can observe, the channel uncertainty decreases with
bandwidth. However, in the Gaussian case, additional infor-
mation provided by the frequency samples does not lower the
uncertainty as the samples are completely independent. Re-
markably, the results show that in UWB settings and for a
given channel representation complexity (here, the slope of
the entropy), there is an optimum number of parameters to
be chosen. In other words, AR modelling based on a limited
number of parameters is adequate. In this respect, we have
plotted in Fig. 2 and Fig. 3 the power delay spectrum based
on 500MHz and 6GHz measurements. The results show that
with increasing bandwidth, one is certainly able to capture the
small variations but a great amount of the information is al-
ready included in the 500MHz band. Note that the delay of
20 nanoseconds corresponds to the 6 meter distance between
the transmitter and the receiver. Moreover, in both cases, the
AR model fits the measured power delay spectrum response.

5. CONCLUSION: INFORMATION VERSUS
COMPLEXITY

In section 4, we have shown that although in modelling, one
should take into account all the information at hand, there
is a compromise to be made in terms of model complexity.
Each information added will not have the same effect on the
channel model and might as well more complicate the model
for nothing rather than bring useful insight on the behavior
of the propagation environment. In this respect, entropy is
a useful measure and the slope decrease characterizes how
information scales with bandwidth. In particular, in wide-
band schemes, we have shown that it is possible to reproduce
the channel frequency behavior with a limited number of co-
efficients since the channel uncertainty decreases with band-
width. We have also provided a sound methodology to model
channels that can be used when additional channel constraints
are given.
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Fig. 1. Entropy variation with respect to the bandwidth.
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Fig. 2. Power delay spectrum with 500Mhz bandwidth.
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Fig. 3. Power delay spectrum with 6Ghz bandwidth.

[5] E. T. Jaynes,Probability Theory: The Logic of Science, Cam-
bridge, 2003.

[6] G. L. Bretthorst, Bayesian Spectrum Analysis and Parameter
Estimation, Ph.D. thesis, Wahsington University, St. Louis,
1987.

[7] T. Cover and J. Thomas,Elements of Information Theory, Wiley,
1991.


