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Abstract— This paper presents a general methodology to
extend Gallager bounds on the maximum-likelihood decoding
error probability to arbitrary binary-input output-symmetric
memoryless channels. Based on the log-likelihood ratios, a new
space is constructed in which the signals naturally lie on a
sphere, and for which geometric analysis is straightforward. In
particular, we focus on Poltyrev’s tangential-sphere bound, and
we illustrate its connections with the Engdahl-Zigangirov bound.
Approximations to these bounds are shown to be very tight.

I. I NTRODUCTION

The tightest upper bounds on the error probability under
maximum likelihood (ML) decoding in the additive white
Gaussian noise (AWGN) channel are based on a technique
devised by Gallager [3] (we shall refer to these bounds as
Gallager bounds in the following) and revisited by Shamai
and Sason [4]. These bounds are often geometric in nature and
exploit that the transmitted codewords lie on ann-dimensional
sphere (for binary transmission) and that additive Gaussian
noise is independently added along each axis.

In this paper, we present a new geometric construction
for arbitrary binary-input output-symmetric (BiOS) memory-
less channels, such as binary-input fading channels, or bit-
interleaved coded modulation (BICM) systems which includes
binary transmission over AWGN as a particular case. The
construction creates an equivalent channel, theΛ-channel,
which verifies that 1) the equivalent received codewordsω (m)

lie on a sphere, even though they the real received codewords
may not have the same energy (such as in fading channels),
and 2) that the BiOS channel is transformed into an equivalent
channel with additive non-Gaussian noise. We then show
how this construction allows for an immediate extension of
Gallager bounds based on geometric considerations and finally
present a very tight approximation to the bounds.

II. I MPROVED BOUNDS FOR THEAWGN CHANNEL

Consider first the following channel model,

zi = wi + ηi, i = 1, . . . , n (1)

wherezi ∈ R is the received signal at thei-th instant,wi ∈
{−1, +1} is the BPSK transmitted symbol at instanti and
ηi ∈ R is the corresponding noise sample assumed to be i.i.d.
Gaussian. We denote the transmitted and received vectorsw =
(w1, w2, . . . , wn) ∈ Rn andz = (z1, z2, . . . , zn) ∈ Rn. The

vectorsw have energyn and lie on an-dimensional sphere
of radius

√
n. We assume thatw are the BPSK mapping of

the codewordsc = (c1, c2, . . . , cn) of a linear binary code of
lengthn and dimensionk.

Let codewordm be sent, and its corresponding BPSK vector
be denoted byw(m). The decoder selects the codewordm̂
such thatm̂ = arg maxm′ Pr(w(m′)|z). The error probability
is thenPre(m) = Pr(m̂ �= m). Finally, for linear codes and
equiprobable codewords, we havePre = Pre(m).

Most efficient bounds onPre(m) are based on a basic tech-
nique devised by Fano and Gallager [3]. The space of possible
received signals is partitioned in two disjoint subsets, named
“good” and “bad”, and denoted byZG andZB respectively.
Then we have that1,

Pre(m) = Pre(z ∈ ZG) + Pre(z ∈ ZB)
≤ Pre(z ∈ ZG) + Pr(z ∈ ZB)

≤ Pr(z ∈ ZB) +
∑

m′ �=m

Pre
(
m, m′|z ∈ ZG

)
, (2)

where we have applied a union bound to sum over all2 k − 1
candidate codewordsm′ �= m. We also denote the pairwise
error probability Pre(m, m′) in the “good” regionZG by
Pre
(
m, m′|z ∈ ZG

)
.

Recall that for AWGN, and assuming equally likely code-
words, the pairwise error probability (dropping the condition-
ing z ∈ ZG for simplicity) is obtained by comparing the
Euclidean distance

∣∣z − w
∣∣2 between the received signal and

codewordsm andm′,

Pre(m, m′) = Pr
(
Pr(w(m′)|z) > Pr(w(m)|z)) (3)

= Pr
(∣∣z − w(m′)∣∣2 <

∣∣z − w(m)
∣∣2). (4)

A. The Tangential Sphere Bound

1) Definition of “Good” and “Bad” Regions: We follow
the original presentation by Poltyrev [1], and add where
necessary some minor modifications. The regionZG is a
cone2 whose axis is the line connecting the origin ofRn,

1Throughout the paper, we usePr(·) to refer to a probability in a general
sense: it can be event probabilities, the distribution of discrete random
variables, or the density of a real-valued random variable. This unifies
notation, and the context makes it clear the precise meaning ofPr(·).

2Differently from Poltyrev, we consider a single cone, rather than a double
cone as he did; this seems more natural and general a choice.



0 = (0, . . . , 0) with the pointw(m). The cone has half-angle
θ and the vertex of the cone is located at a distanceρ0 from
w(m). Figure 1 depicts such a cone for the very simple case
n = 2. The all-zero codeword(−1,−1) is also depicted, as
well as a candidate codeword at Hamming distanceh = 1.
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Fig. 1. Picture of a (single) cone inR2; it separates the space into two
regions,ZG andZB. The error region inZG is also depicted.

2) Change of Coordinates: Consider thenatural basis of
Rn be the vectorsei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) for i = 1, . . . , n.

Instead of using this basis for the analysis, it is convenient
to change to a new (orthonormal) basis with some useful
properties. We denote such anew basis by εi, for i =
1, . . . , n. Therefore, we have thatεi =

∑n
j=1 αi,jej , where

the coefficientsαi,j define the change-of-basis matrix. The
coefficientsαi,j are determined by the following conditions

1) The first new basis vector,ε1, should lie along the axis
of the cone, and should point to the origin. Then, we
easily obtain thatα1,j = 1√

n
, 1 ≤ j ≤ n. Note that it is

independent ofm′.
2) The second new basis vector lies on the plane deter-

mined by0, w(m) andw(m′), and is orthogonal toε1.
An application of the Gram-Schmidt orthogonalization
procedure gives

α2,j =




1√
n

√
n−h

h , 1 ≤ j ≤ h,

− 1√
n

√
h

n−h , h + 1 ≤ j ≤ n.

whereh is the Hamming distance betweenw(m) andw(m′).
The basis vectorse1, e2 and ε1, ε2 are depicted in Figure 1
once translated onto the transmitted codewordw (m). The
remainingn − 2 coordinates,εi for i > 2, orthogonal to the
first two, are irrelevant for the calculation of the ML error
between codewordsm and m′. The noise vector has now
different coordinates in the new basis, denoted byξ i, and
given by ξi =

∑n
j=1 αi,jηj ; the distribution ofξi remains

i.i.d. Gaussian [5].
The points of the cone with fixedξ1 lie on an (n − 1)-

dimensional sphere and satisfy
∑n

i=2 ξ2
i = ρ2(ξ1), where

ρ(ξ1) is the radius of the sphere. The radius is given by

ρ(ξ1) =

{
0, ξ1 ≥ ρ0

(ρ0 − ξ1) tan θ, −∞ < ξ1 ≤ ρ0.

3) Calculation of Probabilities: In terms of the new coor-
dinates, an error is made when

√
n sin φ ≤ ξ1 sin φ+ ξ2 cosφ,

whereφ is half the angle between the vectorsw(m) andw(m′),

cos 2φ =

〈
w(m),w(m′)

〉
|w(m)| |w(m)| =

n − 2h

n
=⇒ tan φ =

(
h

n − h

)1/2

.

Defining βh(ξ1) = (
√

n − ξ1) tan φ, the condition for error
within the cone corresponds toβh(ξ1) ≤ ξ2 ≤ ρ(ξ1).

We now invoke the union bound Eq. (2) and calculate the
contribution from the “good” region as3

Pre(z ∈ ZG) ≤
∑

h

Ah(θ)
∫ ρ0

−∞

∫ ρ(ξ1)

βh(ξ1)

Pr(ξ1, ξ2)dξ2 dξ1 (5)

Pr(ξ1, ξ2) = Pr

(
n∑

i=3

ξ2
i ≤ (ρ2(ξ1) − ξ2

2

))
Pr(ξ1) Pr(ξ2).

We have exploited the linearity of the code to define the
number of codewords with Hamming weighth by Ah, 1 ≤
h ≤ n and group the terms with common Hamming distance
in the bound. Of these, we need consider only the terms with

h such thattan φ =
√

h
n−h < tan θ, that is, Ah(θ) = Ah

if tanφ < tan θ, and zero otherwise. The independence of
the transformed variablesξi allows us to factorize the joint
densities into the product of marginal densities.

Similarly we obtain for the “bad” region

Pr(z ∈ ZB) =
∫ ρ0

−∞
Pr
( n∑

i=2

ξ2
i > ρ2(ξ1)

)
Pr(ξ1) dξ1

+
∫ +∞

ρ0

Pr(ξ1) dξ1. (6)

4) Solution of the Optimization Problem: The standard TSB
setsρ0 =

√
n. Then, the optimum value ofθ, is found by

setting the partial derivatives to zero. With some algebra, the
optimality condition can be expressed as∑

h

Ah(θ)
Γ
(

1
2 (n − 1)

)
√

πΓ
(

1
2 (n − 2)

) ∫ ϕh

0

sin ϕn−3 dϕ = 1, where

ϕh = arccos tan φ
tan θ = arccos

(
1

tan θ

√
h

n−h

)
. (7)

B. Connection with the Engdahl-Zigangirov Bound

1) “Good” and “Bad” Regions: The general optimization
program that minimizes Eqs. (5)-(6) includes two variables
ρ0 and θ. The standard formulation of the TSB setsρ0 and
optimizesθ. An interesting possibility is to fixθ and optimize
the cone apexρ0. Setting the angleθ = π/2 makes the cone

3Although this analysis holds for block error probability, it is very easy
to show that the same bounding technique can be applied for bit error
probabilities, ifAh is given a suitable meaning. Similarly, the bound is also
applicable to average performance for ensembles of codes.



collapse into a half-space, and the axis of the cone to a single
point. This is the “good” region considered by Engdahl and
Zigangirov [2] for their analysis of binary AWGN. If we set
tan θ = +∞, the radius of the cone is

ρ(ξ1) =

{
0, ξ1 < ρ0

+∞, −∞ < ξ1 ≤ ρ0.

which implies thatAh(θ) = Ah for every h. We can now
rewrite Eqs. (5)-(6) as follows:

Pre(z ∈ ZG) =
∑

h

Ah

∫ ρ0

−∞

∫ +∞

βh(ξ1)

Pr(ξ1) Pr(ξ2) dξ2 dξ1

=
∑

h

Ah

∫ ρ0

−∞
Q

(
βh(ξ1)

σ

)
Pr(ξ1) dξ1, (8)

Pr(z ∈ ZB) =
∫ +∞

ρ0

Pr(ξ1) dξ1. (9)

2) Solution of the Optimization Problem: The optimization
of Eqs. (8), (9) is done by setting the first derivative with
respect toρ0 to zero. We obtain∑

h

AhQ

(
βh(ρ0)

σ

)
Pr(ρ0) − Pr(ρ0) = 0

=⇒
∑

h

AhQ

(
βh(ρ0)

σ

)
= 1.

This is equivalent to the same optimization equation in [2],
after a change of variable which does not modify the bound.

III. E XTENSION TO BIOS MEMORYLESSCHANNELS

A. A Posteriori Log-Likelihood Ratio

For the purpose of estimating the error probability, the direct
use the received signalz in Eq. (3) can be circumvented. We
shall show that it is in fact sufficient to consider a different
variable, thea posteriori log-likelihood ratio, denoted by
Λi(c), and given by

Λi(c) = log
Pr(ĉi = c̄|Vi(c))
Pr(ĉi = c|Vi(c))

(10)

where ĉi is the i-th bit, c is the sent bit (assumed known for
decoding error estimation),̄c its complement.V i(c) is a vector
containing all the random elements in the channel when bitc
is sent4 at timei. Note that this definition is slightly different
from that of the standard log-likelihood ratio, as the bit at
denominator is the trasmitted bitc rather than0. We shall
see later that this convention brings about new clarity in the
geometric analysis.

It is an easy consequence of the definition of BiOS channels
that the distribution ofΛ(c) is actually independent of the
transmitted bit (be it 0 or 1), as shown by

4In the case of AWGN it is only the noise realization. In the binary-input
Rayleigh fading channel,V includes both, fading (in the form of channel
state information) and noise realizations. In the case of BICM,Vi includes
the noise, fading (if any), the signal constellation and the binary label [6], [7].
It may also include the effects of incoherent detection, or imperfect channel
estimation.

Proposition 1 For memoryless BiOS channels Λi(c) are i.i.d.
and, in particular, are identical for both values of the trans-
mitted bit, i. e., c = 0 and c = 1.

Proof: Thanks to the absence of memory in the channel
we may safely drop the time indexi. Let us assume that bitc
was transmitted. The channel outputz is distributed asPr(z|c).
The density ofΛ(c) is given by the theorem of total probability
[5] by integrating over all possible channel outputsz

Pr
(
Λ(c) = λ

)
=
∫

z|Λ(c)=λ

Pr(z|c)µ(dz).

Hereµ(dz) is the measure of the intervaldz. Inverting the sign
of the outputs and using the definition of output-symmetric
channels (Pr(z|c) = Pr(−z|c̄)) we have

Pr
(
Λ(c) = λ

)
=
∫

z|Λ(c)=λ

Pr(−z|c)µ(dz)

=
∫

z|Λ(c̄)=λ

Pr(z|c̄)µ(dz) = Pr
(
Λ(c̄) = λ

)
.

This result allows us to drop the bit valuec in the definition
of Λ and in its density function, which we denote byPr(Λ).

In the AWGN channel, it is straightforward to show that
Λ ∼ N (−4 SNR, 8 SNR). In the case of BPSK transmission
over the fully-interleaved Rayleigh fading channel, we have
that conditioned on the instantaneous fadingγ ∈ C, Λ ∼
N (−4|γ|2 SNR, 8|γ|2 SNR). If we let χ = |γ|2, thenχ is then
exponentially distributed with densityPrχ(χ) = 1

2σ2 e−
χ

2σ2

whereσ2 = 1. This integral takes the closed form

Pr(Λ) =
1

4
√

SNR + SNR2
exp
(
−Λ

2
− |Λ|

2

√
1 + SNR

SNR

)
,

i. e., a two-sided exponential with mean〈Λ〉 = −4 SNR and
varianceVar(Λ) = 8 SNR+16 SNR2 = 8 SNR(1 + 2 SNR).
For BICM [6], the codewords ofC are bit-interleaved and
mapped onto constellation symbolsw ∈ C. After symmetriz-
ing the bit labeling (if required) [6], BICM is another example
of BiOS channel. In this caseΛ does not have a simple
distribution but its moments can be easily evaluated [7].

B. Λ-Sphere and Λ-Channel

In this section, we introduce another set of variables based
on Λ which gives the same result for the AWGN channel and
enables a formulation of Gallager bounds for general BiOS
memoryless channels.

The first step is to define the channel codeword . To every
codeword, saym, we associate a pointω (m) ∈ Rn,

ω(m) ∆= rw(m), (11)

wherew(m) is the BPSK mapping of the codeword,r
∆=
∣∣〈Λ〉 |

and 〈Λ〉 ∆= E[Λ] ≤ 0. Eq. (11) constitutes the core of our
geometric approach: the pointsω (m) all lie now on then-
dimensional sphere inRn with center at the origin and radius
r
√

n. Along each axis ofRn we define an equivalent additive



zero-mean noisẽηi of value η̃i
∆= Λi − 〈Λ〉 which results in

the followingΛ-channel,

Λi = −r + η̃i.

For AWGN, the noise distribution is̃ηi ∼ N (0, 8 SNR) and
r = 4 SNR. After dividing all variablesΛi by a common factor
r, the normalized variables pointsω (m)/r fall back on a sphere
of radius

√
n, and the movements along each coordinate axis

are Gaussian random variables with zero mean and variance
σ2 = 8 SNR /r2 = 1/(2 SNR). We recover thus the original
geometric problem, as in Eq.(1), as expected.

C. Pairwise Error Probability in the Λ-Channel

Consider now the transmission of two codewords,m and
m′, at Hamming distanceh. Let Λ = (Λ1, . . . , Λn) denote
the vector of all realizations ofΛi. The following theorem is
the key that allows us to construct geometric Gallager bounds
in the Λ-channel5

Theorem 1 The pairwise error probability is a function of the
Euclidean distance in the space of Λ,

Pre(m, m′) = Pr
(∣∣Λ− ω(m′)

∣∣2 <
∣∣Λ − ω(m)

∣∣2).
Proof: We start the analysis at Eq. (2), which links

the a posteriori probabilities. The dependence onz ∈ ZG

is irrelevant, so we safely drop it. Taking logarithms, and
exploiting the absence of memory in the channel, we rewrite
the condition for error (3) as

Pre(m, m′) = Pr

(
n∑

i=1

log
Pr
(
w

(m′)
i |zi

)
Pr
(
w

(m)
i |zi

) > 0

)

= Pr

(
n∑

i=1

Λ̃i > 0

)
,

where Λ̃i
∆= log

Pr
(
w

(m′)
i |zi

)
Pr
(
w

(m)
i |zi

) . Note that its value is different

from zero only for theh positions wherew (m)
i and w

(m′)
i

differ. By Proposition 1, the distribution ofΛ is independent
of the actual value ofc. This allows us to ignore the value of
w

(m)
i , and write

Pre(m, m′) = Pr

(
h∑

i=1

Λi > 0

)
. (12)

The difference in Euclidean distances,∆, is

∆ =
∣∣Λ− ω(m′)∣∣2 − ∣∣Λ− ω(m)

∣∣2. (13)

As
∣∣ω(m)

i

∣∣ is constant, common terms cancel out and we have

∆ = −2

(
n∑

i=1

Λi

(
ω

(m′)
i − ω

(m)
i

))

= −2r

(
n∑

i=1

Λi

(
w

(m′)
i − w

(m)
i

))
= −4r

(
h∑

i=1

Λi

)
.

5In generalΛ is real-valued, but it may be discrete. In this case, it is
important to track the probabilityPr(Λ = 0), which may be non-zero, and
account for in Eq. (12).

From Eq. (12) this is equivalent toPre(m, m′) = Pr(∆ < 0).

D. Gallager Bounds for Linear Codes in the Λ-Channel

The previous theorem implies that we can partition the set of
possibleΛ, Rn, into two disjoint, “good” and “bad” regions,
respectively denoted byLG andLB, for arbitrary memoryless
BiOS channels. We obtain then

Theorem 2 The error probability for codeword m is upper
bounded 6 by

Pre(m) ≤ Pr(Λ ∈ LB) +
∑

m′ �=m

Pr

(
h∑

i=1

Λi > 0,Λ ∈ LG

)
.

Following the basic steps of the derivation presented in
section II-A, instead of working along the natural basis of
Rn, we change basis to align it with the cone axis. With
slight abuse of notation, letξi be the noise vector in the
transformed coordinates,ξi =

∑n
j=1 αi,j η̃j . Therefore, the

first two elements are

ξ1 =
1√
n

n∑
j=1

(
Λj − 〈Λ〉) = −√

n 〈Λ〉+
1√
n

n∑
j=1

Λj

ξ2 =
1√
n

(√
n−h

h

h∑
j=1

Λj −
√

h
n−h

n∑
j=h+1

Λj

)
.

For later use, let us define a variableΣ =
∑n

j=2 ξ2. The in-
variance of

∑n
j=1 η̃2

j to changes of coordinates makes it rather
easy to see that its value is also given byΣ =

∑n
j=1 η̃2

j − ξ2
1 .

Applying Theorem 2 and the linearity of the code we can
re-write (5)-(6) to obtain the desired expression for the TSB

Pre(Λ ∈ LG) =
∑

h

Ah(θ)
∫ ρ0

−∞

∫ ρ(ξ1)

βh(ξ1)

Pr(ξ1, ξ2) dξ2 dξ1

Pr(ξ1, ξ2) = Pr
( n∑

i=3

ξ2
i ≤ (ρ2(ξ1) − ξ2

2

)
, ξ1, ξ2

)

Pr(Λ ∈ LB) =
∫ ρ0

−∞
Pr
( n∑

i=2

ξ2
i > ρ2(ξ1), ξ1

)
dξ1

+
∫ +∞

ρ0

Pr(ξ1) dξ1.

Recalling Eqs. (8) and (9), the EZB takes the form7

Pre(Λ ∈ LG) =
∑

h

Ah

∫ ρ0

−∞
Pr
(
ξ2 > βh(ξ1), ξ1) dξ1,

Pr(Λ ∈ LB) =
∫ +∞

ρ0

Pr(ξ1) dξ1.

Note that, differently from the Gaussian case, the joint
densities cannot be separated here. Fortunately, even though

6Once again we keep implicit the term linked toPr(Λ = 0).
7It is worthwhile noting that Sason [9] reached an identical generalization

for the EZB in the binary fully-interleaved fading channel. However, his
reasoning was based on correlations between sequencesz and w, thus of
more difficult generalization for arbitrary channels.



−20 −15 −10 −5 0 5
10

−4

10
−3

10
−2

10
−1

10
0

A Posteriori Log−Likelihood Ratio (Λ)

D
e

n
sit

y 
Fu

n
c

tio
n

16−QAM AWGN 

8−PSK Rayleigh 

Fig. 2. Density Pr(Λ) for 16-QAM/8-PSK with Gray mapping over
AWGN/Rayleigh fading and corresponding Gaussian approximations.

the variables are not independent, they are uncorrelated, and
furthermore their dependence is extremely weak, due to the
large number of variables involved in the transformations.

For the general case, there are no closed-form expressions
for the tail probabilities we wish to calculate. In the AWGN
case, they were normal, or chi-square distributed, with known
formulas for the tail probabilities. In our case we must resort
to saddlepoint approximations [8], which are very accurate and
not difficult to compute.

As example of the accuracy achievable by this geometric
approach combined with saddlepoint approximations, in [7],
[10], a Gaussian approximation to TSB on the error probability
of BICM (in AWGN and fully interleaved Rayleigh fading)
was presented and computed. Independence betweenξ 1, ξ2,
andΣ was assumed, as well as a Gaussian density to the first
two and aχ2 density of the latter. Fig. 2 shows the density
Pr(Λ) for BICM in AWGN and Rayleigh fading, with the
corresponding Gaussian approximations. A simple application
to the central limit theorem [5] toξ1 shows that its distribution
tends towards a Gaussian variable for large values ofn. This
observation holds only partially forξ2, for which the Hamming
distance among codewords is important. Finally, even though
a χ2 approximation toΣ is reasonable, it must be applied
with care, especially if the higher order moments of theΛ i

are nonzero.
Fig. 3 shows the bit-error probability Bhattacharrya bound

(B-UB), the saddlepoint approximation union bound (SP-UB)
[7], [10], the TSB with the Gaussian approximation (GA-
TSB) and simulation for BICM in AWGN and Rayleigh fading
with convolutional codes. While in AWGN the Gaussian
approximation is very accurate, in the case of fading it is
slightly optimistic.

IV. CONCLUSIONS

A careful examination of the proof of Poltyrev’s tangential
sphere bound shows that it can be extended to arbitrary
binary-input output-symmetric channels. It is shown that,
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Gray mapping over AWGN/Rayleigh fading channels with optimal rate1

2
/ 2

3
convolutional codes respectively.

for the purpose of error probability estimation and without
information loss, the BiOS channel can be transformed into
an equivalent channel with additive non-Gaussian noise. In
a well-defined sense, the a posteriori log-likelihood ratios of
the received signals lie on a sphere, and furthermore, the
additivity property of AWGN remains valid. This implies
that geometric analysis is possible, and the equations for
generalized tangential sphere bound and Engdahl-Zigangirov
bounds are provided. Finally, tight approximations to these
bounds are presented and computed.
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