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Abstract— This paper presents a general methodology to vectorsw have energy: and lie on an-dimensional sphere
extend Gallager bounds on the maximum-likelihood decoding  of radius./n. We assume that are the BPSK mapping of

error probability to arbitrary binary-input output-symmetric (o~ i ;
memoryless channels. Based on the log-likelihood ratios, a new fgﬁgiﬁie;vrzdd?mer(éliég’ -+ ¢n) Of alinear binary code of

space is constructed in which the signals naturally lie on a . .
sphere, and for which geometric analysis is straightforward. In Let codewordn be sent, and its corresponding BPSK vector

particular, we focus on Poltyrev’s tangential-sphere bound, and be denoted byw (™). The decoder selects the codewaid

we illustrate its connections with the Engdahl-Zigangirov bound.  such that = arg max,, pr(w(m’)|z)_ The error probability

Approximations to these bounds are shown to be very tight. is thenPr.(m) = Pr(1h # m). Finally, for linear codes and

equiprobable codewords, we hake. = Pr.(m).

) . Most efficient bounds oir.(m) are based on a basic tech-
The tightest upper bounds on the error probability undefique devised by Fano and Gallager [3]. The space of possible

maximum likelihood (ML) decoding in the additive white aceived signals is partitioned in two disjoint subsets, named

Gaussian noise (AWGN) channel are based on a techniq(é%odn and “bad”, and denoted b and Zg respectively.
devised by Gallager [3] (we shall refer to these bounds g$en we have that

Gallager bounds in the following) and revisited by Shamai

and Sason [4]. These bounds are often geometric in nature andPre(m) = Pre(z € Zg) + Pre(z € Zg)

exploit that the transmitted codewords lie onradimensional < Pr.(z € Zg) + Pr(z € Zp)

sphere (for binary transmission) and that additive Gaussian /

noise is independently added along each axis. < Pr(z € Zs) + Z Pre(m,m'|z € Zg), (2)
In this paper, we present a new geometric construction e

for arbitrary binary-input output-symmetric (BiOS) memory-where we have applied a union bound to sum ovee &l 1

less channels, such as binary-input fading channels, or t@andidate codewords)’ # m. We also denote the pairwise

interleaved coded modulation (BICM) systems which includegfror probability Pre(m,m’) in the “good” region Zg by

binary transmission over AWGN as a particular case. TH%re(m,m’lz € ZG)-

construction creates an equivalent channel, thehannel,  Recall that for AWGN, and assuming equally likely code-

which verifies that 1) the equivalent received codewasd®) words, the pairwise error probability (dropping the condition-

lie on a sphere, even though they the real received codewoftig z € Zg for simplicity) is obtained by comparing the

may not have the same energy (such as in fading channekjclidean distancefz - w\ between the received signal and

and 2) that the BiOS channel is transformed into an equivalegedewordsn andm/’,

I. INTRODUCTION

channel with additive non-Gaussian noise. We then show n o (m’) (m)
how this construction allows for an immediate extension of Pre(m, m’) = Pr(Pr(W |lz)2> Pr(w |Z))2 (3)
Gallager bounds based on geometric considerations and finally = Pr(\z —wm " < |z —wim™)| ) (4)

resent a very tight approximation to the bounds.
P very g pproximat . A. The Tangential Sphere Bound

Il. IMPROVED BOUNDS FOR THEAWGN CHANNEL 1) Definition of “Good” and “Bad” Regions: We follow
Consider first the following channel model, the original presentation by Poltyrev [1], and add where

. necessary some minor modifications. The regiBg is a

zi=wi+mn, i=1,...,n (1) coneé whose axis is the line connecting the origin Bf",

wherez; € R is the received signal at theth instant,w; € 1Throughout the paper, we ugx(-) to refer to a probability in a general
{—1,+1} is the BPSK transmitted symbol at instanfind sense: it can be event probabilities, the distribution of discrete random
ni€R is the corresponding noise sample assumed to be i_iyarlal_oles, or the density of a (eal-valued ranc_iom vangble. This unifies
. . . hotation, and the context makes it clear the precise meanifity GJ.
Gaussian. We denote the transmitted and received veeters 2Differently from Poltyrev, we consider a single cone, rather than a double

(w1, wa,...,w,) € R™ andz = (z1,22,...,2,) € R™ The cone as he did; this seems more natural and general a choice.



0 = (0,...,0) with the pointw (™). The cone has half-angle p(¢;) is the radius of the sphere. The radius is given by
6 and the vertex of the cone is located at a distgmgdrom
w(™) Figure 1 depicts such a cone for the very simple case p(&1) = 0, &1 2 po

n = 2. The all-zero codeword—1,—1) is also depicted, as (po — &) tanf, —oo <& < po.

well as a candidate codeword at Hamming distaice 1. 3) Calculation of Probabilities: In terms of the new coor-

dinates, an error is made whefn sin ¢ < &; sin ¢+ &3 cos ¢,
where¢ is half the angle between the vectev$”™ andw ("),

w(m) o

Y (m) (m”) _ 1/2
cos2¢p = <w(m),w (m)> —_— 2h = tan¢ = ( ﬁh) .

ERROR REGION . BAD (Z5) [wim | fw(m)] n n

Z Defining 6(£1) = (v/n — &) tan ¢, the condition for error

L within the cone corresponds 2y, (1) < & < p(&1).

20 k% We now invoke the union bound Eg. (2) and calculate the

S it mer + maes = 161 + £a6o contribution from the “good” region &s

M po  rp(&1)

; Pre(z € Zg) < Z Ah(e)/ / . )Pr(gl,gg)dfg ¢, (5)

h —0o0 h\Q1

GOOD (Z¢)

Pr(1,&) = Pr (Z &< (P(&) - f%)) Pr(&1) Pr(és).
=3

Fig. 1. Picture of a (single) cone iR?; it separates the space into two\\e have exploited the linearity of the code to define the
regions,Zg and Zg. The error region inZg is also depicted. number of codewords with Hamming weightby A, 1 <

h < n and group the terms with common Hamming distance
in the bound. Of these, we need consider only the terms with

h such thattan¢ = /-2~ < tan#, that is, A,(0) = A,

n—h

1—1 n—a . . .
Instead of using this basis for the analysis, it is convenieffttan¢ < tan®, and zero otherwise. The independence of
to change to a new (orthonormal) basis with some usefthie transformed variable§; allows us to factorize the joint

2) Change of Coordinates: Consider thenatural basis of
R" be the vectors; = (0,...,0,1,0,...,0)fori =1,...,n.
—— =

properties. We denote such rew basis bye;, for i = densities into the product of marginal densities.
1,...,n. Therefore, we have that; = 32" | o, je;, where ~ Similarly we obtain for the "bad” region
the coefficientse; ; define the change-of-basis matrix. The o n
coefficientsa; ; are determined by the following conditions ~ Pr(z € Zg) = / Pr (Z &> p2(€1)) Pr(&) dé
1) The first new basis vectog;, should lie along the axis o 1:50
of the cone, and should point to the origin. Then, we + Pr(¢;) d 6
; ; 1 ) - 1) d&;. (6)
easily obtain thaty; ; = 771 <j <n. Note that it is 00
i !/
independent ofn". 4) Solution of the Optimization Problem: The standard TSB

2) The second new basis vector lies on the plane det%'éts;)o = /n. Then, the optimum value o, is found by

mined by0, w) andw("", and is orthogonal t@:.  setting the partial derivatives to zero. With some algebra, the
An application of the Gram-Schmidt orthogonal|zat|orbptima|ity condition can be expressed as

procedure gives

I(3(n—1)) ©n .
n—h , A 92—/ sing" 3dp =1, where
W VR 1=ish Xh: MO Gm oy,
2,j = 1 n .
——=/=, h+1<j<n.
vy n=h J O}, = arccos iiﬁg—arccos<miaq/nﬁh). @)

whereh is the Hamming distance between("™ andw (™). o o

The basis vectore:, e, andei, e» are depicted in Figure 1 B. Connection with the Engdahl-Zigangirov Bound

once translated onto the transmitted codewerd™. The 1) “Good” and “ Bad” Regions. The general optimization

remainingn — 2 coordinatese; for ¢ > 2, orthogonal to the program that minimizes Eqgs. (5)-(6) includes two variables

first two, are irrelevant for the calculation of the ML errorp, and 6. The standard formulation of the TSB sets and

between codewords: and m’. The noise vector has now optimizesd. An interesting possibility is to fi¥ and optimize

different coordinates in the new basis, denoted&hy and the cone apey,. Setting the anglé = 7/2 makes the cone

given by & = Y7, a; jn;; the distribution of¢; remains

i.i.d. Gaussian [5] 3Although this analysis holds for block error probability, it is very easy
T . . ith fi i to show that the same bounding technique can be applied for bit error
.The pomts of the cone W'F Dy(eal e on an (n - 1)' probabilities, if A;, is given a suitable meaning. Similarly, the bound is also

dimensional sphere and satisfy’"" , ¢ = p?(&1), where applicable to average performance for ensembles of codes.



collapse into a half-space, and the axis of the cone to a singfeoposition 1 For memoryless BiOS channels A ;(c) are i.i.d.
point. This is the “good” region considered by Engdahl andnd, in particular, are identical for both values of the trans-
Zigangirov [2] for their analysis of binary AWGN. If we set mitted bit, i. e, c=0and ¢ = 1.

tan # = +oo, the radius of the cone is )
Proof: Thanks to the absence of memory in the channel

(&) = 0, &1 < po we may safely drop the time indexLet us assume that hit
pist) = +00, —oo0 < & < po. was transmitted. The channel outpus distributed a®r(z|c).
The density of\(c) is given by the theorem of total probability

which implies thatA,,(0) = Ay for everyh. We can now (5] py integrating over all possible channel outputs
rewrite Egs. (5)-(6) as follows:

po  ptoo Pr(A(c) =) = / Pr(z|c) p(dz).
Pl"e(Z S Zg) = ZAh/ / Pl"(fl) Pr(fg) dfg dfl z|A(c)=A
h _;00 on(e) Herey(dz) is the measure of the intervét. Inverting the sign
= ZAh/ Q(M) Pr(&)dsy,  (8) of the outputs and using the definition of output-symmetric
h —o°

o channels Rr(z|c) = Pr(—z|¢)) we have
—+oo
Pr(z € Zg) = / Pr(&) dé;. 9) Pr(A(e)=)) = / Pr(—z|c) u(dz)
PO z|A(c)=A
2) Solution of the Optimization Rroblan: The opti.miz_ation. _ / Pr(z|¢) u(dz) = Pr(A(e) = A).
of Egs. (8), (9) is done by setting the first derivative with 2|A(E) =X
respect topg to zero. We obtain -
Br(po) This result allows us to drop the bit valuén the definition
Z AnQ pn Pr(po) —Pr(po) =0 of A and in its density function, which we denote By(A).
h In the AWGN channel, it is straightforward to show that
— ZA’LQ(M) - 1. A ~ N(—4SNR,8SNR). In the case of BPSK transmission
h g over the fully-interleaved Rayleigh fading channel, we have

This is equivalent to the same optimization equation in [2]that conditioned on the instantaneous fadings C, A ~

a2 2 a2 :
after a change of variable which does not modify the bound" (—4/71” SNR, 87| SNR). If we letx = ||, theny is then

exponentially distributed with densitr, (x) = #e*zc’%

[1l. EXTENSION TOBIOS MEMORYLESSCHANNELS whereo? = 1. This integral takes the closed form
A. A Posteriori Log-Likelihood Ratio 1 A |A] [T+SNR
N . . A= — - Sl el Y el el
For the purpose of estimating the error probability, the direct *() 1VSNR 1 SNR eXp( 2 2 SNR )’

use the received signalin Eq. (3) can be circumvented. We_ ) S
shall show that it is in fact sufficient to consider a different €, @ two-sided exponential with mean) = —4 SNR and

variable, thea posteriori log-likelihood ratio, denoted by varianceVar(A) = 8 SNR+16SNR” = 8 SNR(1 + 2SNR).
Ai(c), and given by For BICM [6], the codewords of are bit-interleaved and

o mapped onto constellation symbalse C. After symmetriz-
M (10) ing the bit labeling (if required) [6], BICM is another example
Pr(¢; = c[Vi(c)) of BiOS channel. In this casd does not have a simple
where¢; is thei-th bit, ¢ is the sent bit (assumed known fordistribution but its moments can be easily evaluated [7].
decoding error estimationg,its complementV;(c) is a vector B. A-Sphere and A-Channel

containing all the random elements in the channel whem bit ) . . ]
is sent at timei. Note that this definition is slightly different [N this section, we introduce another set of variables based

from that of the standard log-likelihood ratio, as the bit aPn A which gives the same result for the AWGN channel and
denominator is the trasmitted bit rather than0. We shall €nables a formulation of Gallager bounds for general BiOS

see later that this convention brings about new clarity in tH8€moryless channels.
geometric analysis. The first step is to define the channel codeword . To every

Itis an easy consequence of the definition of BiOS channé&l@deword, sayn, we associate a poine ™) € R,
that the distribution ofA(c) is actually independent of the w(m) A (m) (11)
transmitted bit (be it 0 or 1), as shown by ’

Ai(c) =log

. . A
. . . o __wherew(™ is the BPSK mapping of the codeword= |(A) |
In the case of AWGN it is only the noise realization. In the binary-input

A .
Rayleigh fading channely includes both, fading (in the form of channeland (A) = E[A] < 0. Eq. (11) constitutes the core of our
state information) and noise realizations. In the case of BIGMincludes eometric approach: the pointzs(m) all lie now on then-

the noise, fading (if any), the signal constellation and the binary label [6], [7]. . o . .
It may also include the effects of incoherent detection, or imperfect chan ér|nen5|0nal sphere iIR" with center at the origin and radius

estimation. rv/n. Along each axis oR"™ we define an equivalent additive



zero-mean nois@; of value; 2N - (A) which results in  From Eq. (12) this is equivalent ®re(m, m’) = Pr(A < 0).
the following A-channel, [ |

Ay = —r + ). D. Gallager Bounds for Linear Codes in the A-Channel

For AWGN, the noise distribution i§; ~ A/(0,8 SNR) and The previous theorem implies that we can partition the set of
r = 4SNR. After dividing all variables\; by a common factor possibleA, R, into two disjoint, “good” and “bad” regions,
r, the normalized variables points™) /r fall back on a sphere respectively denoted bgs and Lg, for arbitrary memoryless
of radius/n, and the movements along each coordinate ax8OS channels. We obtain then
are Gaussian random variables with zero mean and variance
02 = 8SNR /r? = 1/(2SNR). We recover thus the original Theorem 2 The error probability for codeword m is upper
geometric problem, as in Eq.(1), as expected. bounded © by

C. Pairwise Error Probability in the A-Channel

h
Consider now the transmission of two codewordsand Pre(m) < Pr(A € Lg) + Z Pr (Z Ai>0,A € ﬁG)'

m/, at Hamming distancé. Let A = (A1,...,A,) denote migEm A=l

the vector of all realizations of;. The following theorem is  Following the basic steps of the derivation presented in

the key that allows us to construct geometric Gallager boungsction II-A, instead of working along the natural basis of

in the A-channe? R™, we change basis to align it with the cone axis. With
slight abuse of notation, lef; be the noise vector in the

Theorem 1 The pairwise error probability isafunctionof the  transformed coordinateg; = 3.7, o, ;i;. Therefore, the

Euclidean distance in the space of A, first two elements are
Pr.(m,m’) = Pr(|A — w™)]* < |A — w™]?). 1 <& 1 <
(m,m') = Pa| "< ) azﬁzmj—m»:—ﬁmwﬁZAj
Proof: We start the analysis at Eqg. (2), which links j j
the a posteriori probabilities. The dependencezor Z
is irrelevant, so we safely drop it. Taking logarithms, and &2 = (\/ ZA \ n=nh Z A; )
exploiting the absence of memory in the channel, we rewrite g=h+1
the condition for error (3) as For later use, let us define a varialile= "7, £2. The in-
Pr(w m' |Z1) variance ofy 7, 77 to changes of coordlnates makes it rather
Pre(m,m’) = Pr Zlog Pr (m) >0 easy to see that its value is also givendy= > 7?7 — 7.
12:) Applying Theorem 2 and the linearity of the code we can
~ re-write (5)-(6) to obtain the desired expression for the TSB
=Pr Z A >0 )
P(S1

Pro(A < £6) = 3 Au( /p/ﬁ Pr(61, €2) déa de,

Pr(w('" >|21) h(€1)
Pr(wim)\ ,L)

from zero only for theh positions wherew ™ and w{™’ Pr(&1, &) PY(Z &< - &), 51,52)
differ. By Proposition 1, the distribution of is independent

. . Po n
of(}rtl)e :I;:(tju\?vln\:zlue of. This allows us to ignore the value of Pr(A € Lg) = / Pr (Z €2 > p2(€1),§1) dé,

where A; 2 log Note that its value is different

e =2
h oo
Pre(m,m') = Pr <Z Ay > 0). (12) + / Pr(&1) dé:.
i—1 Po
The difference in Euclidean distances, is Recalling Egs. (8) and (9), the EZB takes the fofm
m')|2 m) |2 PO
A=A -] — A -] (13) Pr.(A € Lg) = ZAh/ Pr(& > Bu(61), &) dé,

As |w§m)\ is constant, common terms cancel out and we have

+oo
n , PI‘(A S £B) = / Pr(fl) dgl
A =-2 (Z Az (wgm ) _ wfm))) Po
i=1 Note that, differently from the Gaussian case, the joint
n (m") (m) densities cannot be separated here. Fortunately, even though
= —2r ZAi (w;™ = w; = —4r ZA
i1 60nce again we keep implicit the term linked Ra(A = 0).
“It is worthwhile noting that Sason [9] reached an identical generalization
5In general A is real-valued, but it may be discrete. In this case, it i®r the EZB in the binary fully-interleaved fading channel. However, his

important to track the probabilitfPr(A = 0), which may be non-zero, and reasoning was based on correlations between sequenessl w, thus of
account for in Eq. (12). more difficult generalization for arbitrary channels.
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Fig. 2.  Density Pr(A) for 16-QAM/8-PSK with Gray mapping over Gray mapping over AWGN/Rayleigh fading channels with optimal $afe2
AWGN/Rayleigh fading and corresponding Gaussian approximations. convolutional codes respectively.

the variables are not independent, they are uncorrelated, 48t the purpose of error probability estimation and without
furthermore their dependence is extremely weak, due to thgormation loss, the BiOS channel can be transformed into
large number of variables involved in the transformations. an equivalent channel with additive non-Gaussian noise. In
For the general case, there are no closed-form expressién#ell-defined sense, the a posteriori log-likelihood ratios of
for the tail probabilities we wish to calculate. In the AWGNthe received signals lie on a sphere, and furthermore, the
case, they were normal, or chi-square distributed, with knovatlditivity property of AWGN remains valid. This implies
formulas for the tail probabilities. In our case we must resothat geometric analysis is possible, and the equations for
to saddlepoint approximations [8], which are very accurate aft¢neralized tangential sphere bound and Engdahl-Zigangirov
not difficult to compute. bounds are provided. Finally, tight approximations to these

As example of the accuracy achievable by this geometd®unds are presented and computed.
approach combined with saddlepoint approximations, in [7],
[10], a Gaussian approximation to TSB on the error probabilit

; ; ; ; 1] G. Poltyrev, “Bounds on the decoding error probability of linear codes via
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was presented and computed. Independence beté/eesy, Jul. 1994,
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tends towards a Gaussian variable for large values. afhis no. 12, pp. 3029-3051, Dec. 2002.
observation holds only partially f@r,, for which the Hamming [5] W. Feller, An Introduction to Probability Theory and Its Applications,

; o ; 2nd ed. John Wiley & Sons, 1971, vol. 2.
distance among codewords is important. Fma"y’ even thou G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”

a x* approximation toX is reasonable, it must be applied " |EEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927946, May 1998.
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IV. CONCLUSIONS

A careful examination of the proof of Poltyrev’s tangential
sphere bound shows that it can be extended to arbitrary
binary-input output-symmetric channels. It is shown that,



