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Abstract

This letter studies the effect of signal constellation expansion on the achievable diversity
of pragmatic bit-interleaved space-time codes in quasistatic multiple antenna channels. Signal
constellation expansion can be obtained either by increasing the size of the constellation in
the complex plane or by using multidimensional linear mappings. By means of two simple
constructions, we provide a comparison of the two options with message passing decoding. We
show that multidimensional expansion achieves some performance advantage over complex-
plane expansion at the cost of significantly higher decoding complexity and larger peak-to-
average power ratio of the transmitted signals.

Index terms: Modulation and coding, MIMO systems, iterative detection.

1 Introduction and System model

Multiple antenna transmission has emerged as a key technology to achieve large spectral and power

efficiency in wireless communications. In this work, we consider communication in a multiple

antenna environment with NT transmit and NR receive antennas in quasistatic frequency flat fading.

The complex baseband received signal matrix Y ∈ C
NR×L is given by,

Y =
√

ρHX + Z, (1)

where L is the block length, X = [x1 . . .xNT
]T ∈ CNT ×L is the transmitted signal matrix, H =

[h1 . . .hNT
] ∈ CNR×NT , is the fading channel matrix which stays constant during the whole trans-

mission of X (quasistatic fading), Z ∈ CNR×L is a matrix of noise samples i.i.d. ∼ NC(0, 1), and ρ

is the average signal to noise ratio (SNR) per transmit antenna. The elements of H are assumed to be

i.i.d. circularly symmetric Gaussian random variables ∼ NC(0, 1) (frequency flat Rayleigh fading).

The channel is assumed to be perfectly known at the receiver and not known at the transmitter.
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The multiple-input multiple-output (MIMO) channel defined by (1) has zero capacity. A Space-

Time Code (STC) S ⊆ CNT×L is a coding scheme that exploits both temporal and space dimensions

in order to achieve reliable communication. Consider an ensemble of STCs generated according

to the input distribution PX . We denote the mutual information per channel use (for a fixed H) by

IH(PX). It can be shown that the minimum achievable error probability for the ensemble in the

limit for large block length is given by the information outage probability defined as Pout(R) =

Pr(IH(PX) ≤ R) where R is the transmission rate in bits per channel use. When PX = NC(0, 1)

(Gaussian inputs), IH(PX) = log det(I+ρHHH) The goodness of a given STC is usually measured

by its ability to approach the outage probability limit.

Conventional code design for quasistatic MIMO channels is based on the ML decoding union

bound error probability [1]. The average pairwise error probability, i.e., the probability of deciding

in favor of X′ when X was transmitted assuming that there are no other codewords, for large ρ

behaves as Gcρ
−drNR , where Gc is the coding gain and drNR denotes the diversity gain, where

dr = min
X,X′∈S

rank(X− X′) (2)

is the rank diversity of the STC S ⊆ C
NT×L. Conventional STC design searches for full-diversity

codes S, i.e., dr = NT , with the largest possible coding gain.

In this work, we study two different approaches to construct pragmatic STCs with full-diversity

performance. In particular, we first review a pragmatic construction based on bit-interleaved coded

modulation (BICM) [2], which relies on the underlying binary code to achieve diversity. Secondly,

we consider the concatenation of a coded modulation scheme with an inner code that is linear

in the field of complex numbers (linear dispersion (LD) code [3]). In both cases, STCs showing

full-diversity performance of any desired spectral efficiency are constructed by suitably expanding

the signal constellation. In the first case, we have constellation expansion in the complex plane

(Ungerboeck’s style expansion), while in the second, we have multidimensional expansion induced

by the inner code. The aim of this paper is to provide a comparison of these two approaches

under low-complexity message passing decoding. We show that multidimensional expansion yields
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a small performance advantage over complex-plane expansion, while significantly increasing the

decoding complexity and peak-to-average power ratio.

2 Pragmatic Space-Time Codes

We consider natural STCs (NSTC) coupled with BICM as a pragmatic way to construct good STCs

(see e.g. [4]). We nickname such scheme BICM NSTC. Such codes are formally defined by a binary

block code C ⊆ FN
2 of length N and rate r and a spatial modulation function F : C → S ⊆ X NT×L,

such that F(c) = X, where X ⊆ C is the complex signal constellation. We study the case where

F is obtained as the concatenation of a block/antenna parsing function P : Z+ → Z2
+ such that

P(n) = (t, `), 1 ≤ n ≤ N, 1 ≤ t ≤ NT , 1 ≤ ` ≤ LM partitions a codeword c ∈ C into NT

sub-blocks, and blockwise BICM, where each sub-block is independently bit-interleaved according

to πt, t = 1, . . . , NT , and mapped over the signal set X according to a labeling rule µ : FM
2 → X ,

such that µ(b1, . . . , bM) = x, where M = log2 |X | (see Figure 1(a)) 1. In this case, N = NT LM .

The transmission rate (spectral efficiency) of the resulting STC is R = rNT M bit/s/Hz.

BICM NSTCs are designed assuming a genie aided decoder that produces observables of the

transmitted symbols of one antenna, when the symbols from all other antennas are perfectly re-

moved2 [8]. In this way, the channel is decomposed into a set of NT single-input single-output

non-interfering parallel channels (see [5] and references therein). We define the block diversity of a

STC S as the blockwise Hamming distance,

δβ
∆
= min

X,X′∈S
|{t ∈ [1, . . . , NT ] : xt − x′

t 6= 0}|

i.e., the minimum number of nonzero rows of X − X′. Then, with a genie aided decoder BICM

NSTCs can achieve diversity δβNR [5]. Notice that applying BICM within a block, preserves the

block diversity of the underlying binary code, since the binary labeling rule µ is a bijective corre-

spondence. Thus, the block diversity of S is equal to the block diversity of C after the blockwise

1In the remainder of this letter we shall only consider Gray labeling rules, since they are more efficient in quasistatic channels. This conclusion
may be reversed in fully-interleaved channels [4].

2The reader will notice the analogy with the case of decision feedback equalization for frequency selective channels, where correct feedback is
assumed to design the equalizer filters.
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parsing operated by P . For a binary code C of rate r over F2 mapped over NT independent blocks,

a fundamental upper bound on δβ is provided by the Singleton bound (SB),

δβ ≤ 1 + bNT (1 − r)c (3)

Consequently, we will search for codes maximizing δβ , i.e., achieving the SB for all values of

NT . Equation (3) implies that in order to have full block diversity r ≤ 1/NT . Hence, in order to

transmit a given desired rate R with δβ = NT , we must have M = R. This fixes the size of the

signal constellation X in the BICM scheme.

On the other hand, the evaluation of the rank diversity of BICM NSTCs can be a very involved

task especially for constellations with M > 1. In the binary case, it is however possible to verify

through the stacking construction theorem [6] whether a BICM NSTC is full-rank. The BICM

NSTC has full rank-diversity if and only if for all a1, . . . , aNT
∈ F2 not all zero, the K ×N matrix

Θ =

NT
⊕

t=1

atGtΠt

has rank K (
⊕

indicates addition in the binary field F2), where G1, . . . ,GNT
∈ F

K×N
2 are the

binary generator matrices of the binary code C of rate K/NTN and Π1, . . . ,ΠNT
∈ Z

N×N
+ are the

NT permutation matrices obtained by applying the permutations π1, . . . , πNT
to the columns of the

identity matrix I [6]. Notice also that by definition we have that dr ≤ δβ ≤ NT .

3 LD Concatenated Codes

In this section we consider the case where the codewords X of the STC S are obtained from the

concatenation of an outer coded modulation scheme CO ⊆ X n of rate rO and length n with an inner

LD code. The inner code is formed by a parser P , that partitions the codewords c ∈ CO into sub-

blocks c[j] = [c1[j], . . . , cQ[j]], j = 1, . . . , J of length Q, with J = n/Q and by a LD space-time

modulation function F defined by,

S[j] = F(c[j]) =

Q
∑

q=1

(cq[j]Gq), (4)

where Gq ∈ CNT ×T are the LD code generator matrices. Finally, the overall space-time codeword

is given by X = [S[1] . . .S[J ]]. Equation (1) can be rewritten as a virtual MIMO channel with Q
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inputs and N v
R = NRT outputs as,

y[j] = Hc[j] + z[j], j = 1, . . . , J (5)

where H = [IT ⊗H]G ∈ CNv

R
×Q is the equivalent channel matrix, ⊗ is the Kronecker product, G ∈

CNT T×Q is the suitably reformatted generator matrix of the LD code, y[k] = vec(Y[k]), z[k] =

vec(Z[k]), N v
R = NRT is the number of virtual receive antennas, and vec(A) = [aT

1 . . .aT
l ]T , for a

matrix A = [a1 . . .al]. We will refer to Q as the number of virtual transmit antennas.

In order to perform a meaningful comparison with BICM NSTC, we choose CO to be a standard

BICM, i.e, a binary code C ∈ F
N
2 of rate r whose bit-interleaved codewords are mapped onto the

signal set X according to the binary labeling rule µ : FM
2 → X [2]. In this work we are interested in

inner LD codes with full-diversity and full-rate, i.e., transmission of NL = min{NT , NR} symbols

per channel use. Orthogonal and quasi-orthogonal STCs codes cannot achieve more than 1 symbol

per channel use. Therefore, using such codes as inner codes incurs a significant rate loss for NL >

1. As the inner LD code, we use the recently proposed threaded algebraic space-time (TAST)

constellations [7]. We nickname such a transmission scheme as BICM TAST (Figure 1(b)).

The aforementioned algebraic STCs are based on the threaded layering [8], for which a number

of component encoders (or layers) NL and the component codewords c` ∈ C` , ` = 1, . . . , NL onto

the array TNT ,NL,NL
following the (layer, antenna, time) indexing triplet

P(`, n) = (`, |t + ` − 1|NT
, t), 1 ≤ t ≤ T, ` = 1, . . . , NL,

thus having full spatial and temporal spans. Modulo-k operation is denoted by |.|k. The code-

words of C`, ` = 1, . . . , NL are obtained as the set of vectors z = φ`Ms, where M is a rate

one full-diversity linear algebraic rotation, φ`, ` = 1, . . . , NL are scalar complex coefficients cho-

sen to be Diophantine numbers that ensure that TAST constellation achieves full diversity with

maximum-likelihood (ML) decoding (see [7] for details) and s ∈ X NT . In TAST constella-

tions, NL = min(NT , NR), T = NT , Q = NLNT , and φ`, ` = 1, . . . , NL are chosen such

that |φ`| = 1, ` = 1, . . . , NL. The transmission rate of the resulting BICM TAST is therefore

R = rNLM bit/s/Hz. Notice that while the components of s belong to X , the components of
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z, which are sent to the antennas for transmission, belong to a scattered constellation with 2MNT

points since by construction any two different s, s′ are mapped by the rotation M into points z, z′

that differ in all NT components (see [7] and references therein). Therefore, BICM TAST expands

the signal constellation by construction, and achieve full-diversity provided that the dimension of

M is NT and that φ`, ` = 1, . . . , NL are Diophantine numbers.

With this divide and conquer design, full diversity is always guaranteed by the inner code, while

coding gain is left to the outer coded modulation. Furthermore, since full-diversity is ensured by

the inner code, the designer has some degrees of freedom in choosing r and M in order to achieve

the desired transmission rate, as opposed to the BICM NSTC case.

4 Message Passing Decoding

Because of the pseudo-random bit interleaver present in both schemes, ML decoding of BICM

NSTC or BICM TAST has generally unaffordable complexity. We therefore resort to iterative tech-

niques based on a factor graph representation. In analogy to the case of multiuser receivers for

CDMA [9], applying the belief propagation (BP) algorithm to the STC dependency graph, yields

several receivers that approximate the optimal maximum a posteriori (MAP) detection rule. In

particular, exact BP reduces the overall receiver to a MAP soft-input soft-output (SISO) bitwise

demodulator and a MAP SISO decoder of C, that exchange extrinsic information probability mes-

sages through the iterations. The log-likelihood ratio (LLR) message at the i-th iteration by the

MAP SISO bitwise demodulator for the decoder of C for BICM NSTC, corresponding to the m-th

bit of the constellation symbol transmitted over antenna t at discrete time `, is given by

LLR
(i)
ext(ct,`,m|y`,H) = log

∑

x∈X t

m=0

p(y`|x,H)
∏NT

t′=1

∏M
m′=1

m′ 6=m , t=t′
P

(i−1)
ext (ct′,`,m′)

∑

x∈X t

m=1

p(y`|x,H)
∏NT

t′=1

∏M
m′=1

m′ 6=m , t=t′
P

(i−1)
ext (ct′,`,m′)

for 1 ≤ m ≤ M, 1 ≤ t ≤ NT , 1 ≤ ` ≤ L, where X t
m=a is the set of NT -dimensional symbols for

which the m-th bit of the symbol transmitted over antenna t equal to a, P
(i)
ext(c) denotes extrinsic

(EXT) probability (provided by the SISO decoder of C) of the coded binary symbol c at the i-th

iteration with P
(0)
ext(c) = 0.5, and p(y`|x,H) ∝ exp(−|y` −√

ρHx|2).
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The case of BICM TAST is completely analogous, as it suffices to replace NT by Q, L by J and

H by H. Exact BP is of exponential complexity in MNT for BICM NSTC and MNLNT for BICM

TAST and it is usually approximated by soft-output sphere decoding techniques (see e.g. [10] for

recent results on the subject). The complexity of such decoders critically depends on the dimension

of the channel matrix. Since the dimension of H ∈ CNRNT×NLNT is larger than the dimension of

the original channel matrix H, in general the decoding complexity of BICM TAST codes will be

substantially higher than the decoding complexity of BICM NSTCs.

In this work we also consider lower-complexity receivers based on iterative interference cancel-

lation (IC) and linear filtering. For BICM NSTC, the LLR message to the decoder of C is given by,

LLR
(i)
ext(ct,`,m|z(i)

t,` ,H) = log

∑

x∈Xm=0
p(z

(i)
t,` |x,H)

∏M
m′=1
m′ 6=m

P
(i−1)
ext (ct,`,m′)

∑

x∈Xm=1
p(z

(i)
t,` |x,H)

∏M
m′=1
m′ 6=m

P
(i−1)
ext (ct,`,m′)

for 1 ≤ m ≤ M, 1 ≤ t ≤ NT , 1 ≤ k ≤ L, where now Xm=a is the set of all constellation points of

X with the m-th bit of the label equal to a, z
(i)
t,` is the output at symbol time ` and i-th iteration of

the front-end linear filter f
(i)
t of antenna t after IC,

z
(i)
t,` = f

(i) H
t

(

y` −
√

ρ

NT
∑

t′ 6=t

ht′ x̂
(i−1)
t′,`

)

,

where (dropping antenna and time indexes for simplicity),

x̂(i) = E[x |EXT] =
∑

x∈X

x

M
∏

m=1

P
(i)
ext(cm)

is the minimum mean-square error estimate (conditional mean) of the symbol x given the extrinsic

information (briefly denoted by EXT) relative to the bits in the label of x.

In particular, we consider minimum mean squared error (MMSE) IC, for which the filter at the

i-th iteration corresponding to the t-th antenna is given by,

f
(i)
t = αt

√
ρR−1ht,

where αt = (ρhH
t R−1ht)

−1 is the normalization constant, R = I +
√

ρ
∑NT

t=1 hth
H
t vt is the covari-

ance matrix of the input signal to the filter, and vt = E[|xt − x̂t|2] is the variance of the residual

interference at virtual antenna t (see [9] and references therein). A practical implementation (and

in our simulations) we estimate vt as vt ≈ 1 − 1
L

∑L

`=1 |x̂t[`]|2. Notice that f
(i)
t has to be computed
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once per virtual transmit antenna and iteration. The proposed algorithm differs from that proposed

in [8] in that the latter has to be computed once per symbol interval, transmit antenna and iteration.

Obviously, the MMSE IC scheme is also applicable to BICM TAST by using H instead of H.

5 Examples

In this section we provide several numerical examples obtained by computer simulation that illus-

trate the effect of the constellation expansion on the achievable diversity of BICM NSTC and BICM

TAST. For the sake of comparison, we include the outage probability curves with Gaussian inputs

(denoted by “GI” in the figures) at the corresponding spectral efficiency.

In the case of Figure 2, clearly, the block diversity of C is δβ = 4. In dashed-dotted line we

show the word-error rate (WER) for the NSTC with ML decoding. Recall that the NSTC array is

constructed using identity permutations [6], and therefore ML decoding is possible using the Viterbi

algorithm. The stacking construction theorem yields that the NSTC code is rank deficient. We have

also applied the theorem to BICM NSTC with a large number of randomly generated interleaver

permutations, and none of them gave a full-rank code. However, as the curves in the figure show,

in the WER region of interest (i.e., 10−3 − 10−4) the performance with two suboptimal iterative

receivers (BP and MMSE-IC) follows the matched filter bound (MFB), i.e., the performance of the

genie aided receiver that has full diversity by definition. Eventually at large SNR and much lower

WER, the rank deficiency of the code will show its effect, and the slope of the curves with iterative

decoding will change, in a way similar to the different behavior of the waterfall and floor regions

in the error curve of turbo-codes. This simple example shows the key role that the block diversity

plays in BICM NSTC. We shall say that a scheme shows full diversity behavior if the slope of

the error curve in a region of interest coincide with the optimal (full-diversity) slope, given by the

information outage probability with Gaussian inputs.

In Figure 3 the block diversity of C is δβ = NT = 2. In fact, BICM NSTC shows full diversity

behavior. On the other hand, BICM TAST achieves full diversity and the coded modulation yields

only some coding gain (horizontal shift of the error curve). Notice that, in such concatenated
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scheme, we may set φ` = 1, ` = 1, . . . , NL without any noticeable difference in performance,

since the outer code removes most of the rank-deficient error events of the inner code. In this

way, it suffices to find a good rotation matrix M in order to construct efficient BICM TAST codes.

However, in this case the BICM TAST scheme does not probably achieve full diversity, and shows

just the full diversity behavior in the range of WER we have simulated.

Figure 4 clearly illustrates the effect of constellation expansion to achieve full diversity. In order

to achieve R = 3 bit/s/Hz with QPSK, we need the rate of C be r = 3/4. As we observe, under such

configuration BICM TAST achieves full diversity due to its inherent multidimensional constellation

expansion. If M = I no multidimensional expansion occurs (the transmitted signal constellation

at each antenna is QPSK), and full-diversity is obviously not achieved. On the other hand, the

diversity of BICM NSTC is governed by the Singleton bound (which in this case yields δβ = 1) and

therefore under this configuration it does not achieve full-diversity. However, R = 3 bit/s/Hz can

also be achieved by using a rate r = 1/2 code (which has δβ = NT = 2) and expanding the signal

constellation in the complex plane, i.e., using 8-PSK instead of QPSK. In this case, BICM NSTC

achieves a full diversity behavior but it pays about 0.8 dB penalty in SNR for the expansion with

respect to the BICM TAST. The curves for R = 4 bit/s/Hz have a similar behavior (for the sake of

clarity we omit the curves for BICM NSTC with r = 2/3 8-PSK and BICM TAST with M = I for

which full diversity is not achieved). In this case, BICM NSTC and BICM TAST are very close.

Figure 5 reports again the NT = 4 and NR = 4 case with higher spectral efficiencies. We also

plot the simulated matched filter bound. In this example we observe that a new effect arises, namely,

for too large spectral efficiency, even if the transmission schemes ensure full diversity, the MMSE-

IC decoder is not able to remove the interference and achieve the correct slope. The characterization

of the thresholds of the spectral efficiency for which the MMSE-IC is able to perform close to ML

or BP appears to be a difficult problem and at present there is no satisfactory explanation. In [11] we

have derived a semi-analytical method based on density evolution and bounding techniques, which

however is as complex as simulation due to the outer expectation over the quasi-static fading.

9



6 Conclusions

In this letter we have illustrated the effect of signal constellation expansion on the achievable di-

versity in quasistatic MIMO channels. In particular we have compared complex plane expansion

and expansion due to multidimensional full-diversity rotations. We have shown that under mes-

sage passing decoding, concatenated LD STCs enjoy higher design flexibility in the choice of the

outer binary coding rate and of the underlying constellation size, but yield only small performance

advantage with respect to the simpler BICM NSTCs, while considerably increasing the decod-

ing complexity and the peak-to-average power ratio. Therefore, in practical applications such as

IEEE802.11n, considering BICM NSTC (with very powerful binary outer codes) is fully justified.
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Figure 1: Block diagrams of the two families of space-time codes.
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Figure 2: WER as a function of Eb/N0 in a MIMO channel with NT = 4, NR = 4 and R = 1
bit/s/Hz, with the (5, 7, 7, 7)8 convolutional code, 128 information bits per frame, BPSK modulation
and several iterative receivers with 5 decoding iterations.
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Figure 3: (a) WER performance in a NT = 2 and NR = 2 MIMO channel with the 4 states (5, 7)8

convolutional code of r = 1/2 with 128 information bits per frame, QPSK, 16-QAM modulations
with Gray mapping and 5 iterations of BP decoding. The spectral efficiencies are R = 2 bit/s/Hz
(solid lines) and R = 4 bit/s/Hz (dashed lines) respectively. Scatter diagrams of the transmitted
TAST constellations for QPSK (b) and 16-QAM (c) with the optimal 2×2 complex rotation [7, Eq.
(15)].
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Figure 4: WER performance in a NT = 2 and NR = 2 MIMO channel with the 4 states convolu-
tional codes and QPSK, 8-PSK and 16-QAM modulations with Gray mapping and 5 iterations of
BP decoding for overall spectral efficiencies of R = 3 bit/s/Hz (solid lines, with 132 information
bits per frame) and R = 4 bit/s/Hz (dashed lines, with 128 information bits per frame).
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Figure 5: WER performance of BICM NSTC and BICM TAST in a MIMO channel with NT =
4 and NR = 4, with the 4 states (5, 7, 7, 7)8 convolutional code of r = 1/4, using 16 and 64
QAM modulations with Gray mapping and 5 iterations of MMSE-IC decoding. The corresponding
spectral efficiencies are R = 4 bit/s/Hz (128 information bits per frame) and R = 6 bit/s/Hz (120
information bits per frame).
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