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ABSTRACT

Among the di�erent attempts to improve recognition
scores and robustness to noise, the recognition of par-
allel streams of data each one representing partial in-
formation on the test signal and the fusion of the deci-
sions have received a great deal of interest. The prob-
lem of training such models taking recombination con-
straints at the level of speech-subunits has not yet been
rigorously addressed. This paper shows how equiva-
lence with an extended meta-HMM solves the problem
and how reestimation formulas have to be applied to
guarantee equivalence between the multistream model
and the meta-HMM.

1. INTRODUCTION

Since speech is a non-stationary signal, it is analyzed
over small time windows where local stationarity is
assumed. A typical width for these windows is 10 ms
and di�erent kinds of analysis can be conducted on
them. The �rst standard approach is a harmonic anal-
ysis that could be obtained using either �lter banks
or FFT transforms. After elimination of the funda-
mental period (pitch), a smoothed spectrum may be
decimated resulting in a feature vector which size of
is several tenths of entries corresponding to the power
in frequency bands. Many other representations of the
speech signal are possible leading all to vectors asso-
ciated with a 10msec time slot such as LPC predic-
tion coe�cients or cepstral coe�cients. Speech units
(phonemes, diphones, syllables, words) are represented
as HMM and to recognize an utterance, it is matched
versus the "best" sequence of HMM. This matching is
achieved by associating each feature vector of this ut-
terance to one state of the HMM according to the best
path. A probability density function gives a measure
of the closeness of a vector and a state and is referred
to as emission probability. Sentence recognition relies
on the global probability which is the product of all
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emission probabilites and transition probabilities met
along the best path in the HMM.

Obviously, such a process imposes that all entries of
a current feature vector are associated with the same
state. A drawback is that any perturbation of an en-
try of a vector increases the distance of this vector
from that state even if all other entries match per-
fectly: this is particularly well observed if the speech
signal is represented with smoothed spectrum vectors
and distorted by a narrow band noise which a�ects
only one entry [1-3].

The idea came to split the feature vectors and to sep-
arately process all entries or group of entries with dif-
ferent HMM's: in this case, the denomination subband
instead of multistream recognizers is used. Allocating
di�erent weights to the streams may enhance scores
by weighting down noisy streams.Multistream termi-
nology generalizes the process to the cases where fea-
ture vectors contain other informations than spectral
information or even informations consistent with the
utterances like visual information on the lip contours.
However, this paper intends neither to compare di�er-
ent techniques for improvement of ASR robustness nor
to describe applications of visual speech but to address
a speci�c training problem of multistream models.

Imposing synchronism of all entries of feature vectors
on states may be questioned. Multistream HMM al-
lows a certain degree of asynchronism inside subunits.
Complete asynchronism at the level of the whole sen-
tence would prevent recognition in words which is
based on the segmentation by the optimal path: for
that reason asynchronism is restricted inside subunits.

As a consequence, in the utterance of a sentence, there
exist some points where the parallel ows of the multi-
stream HMMmust recombine: at these points, we may
ask the question: how must we recombine the scores of
the streams? A second question is: how can we train
a multistream HMM while forcing recombination at
some points (unde�ned before the optimal alignment
of the utterance over the states) as it is necessary at
the end of subunits (at least at the end of words but
also maybe at the end of syllables or phonemes).



These two questions are addressed in the paper. In
particular, it will be shown that making the product
of the probabilities corresponding to the streams yields
a model which �ts with the simple stream model and
leads to a complete equivalence with a meta HMM
model. The meta-model which will be trained must
meet strict contraints on its transition probabilities in
order to have an equivalent multistream model.
Other techniques have been proposed to train mul-
tistream in particular [4] which uses a method de-
rived from HMM decomposition. In section 2, a 2-
stream-HMM model is described each channel being
a 2-state Bakis model.Generalization to multistream
with more sophisticated channel models is straight-
forward. Equivalences between emission probabilities
with those of a meta-HMM enforcing recombination
are derived. Section 3 addresses the equivalence of
transition probabilities and shows that strict restric-
tions apply on the transitions of a meta-HMM in order
to be equivalent to a multistream model. In section 4,
a procedure for training meta-HMM which garantees
the equivalence is proposed. In section 5, report is
made on tests and preliminary conclusions are drawn.

2. THE META-HMM

Let us consider the case of a 2-stream HMM describing
a phoneme and where each channel contains 2 states
(�g 1) denoted respectively s1 and s2 for the upper
stream and s3 and s4 for the lower stream. Transition
loop probabilities on states si are denoted pi while the

state output probabilities are qi
def
= 1�pi. Since train-

ing as well as recognition implies that recombination
occurs at the end of each subunit (here we consider
phonemes) in the optimal path, it is necessary to cre-
ate a meta-HMM described as follows. States of the
meta-HMM are referred to as meta-states (sij). Visit-
ing state s11 means that the upper and lower parts of
a feature vector are emitted respectively on s1 and s3
and similarly for the other states according to table I.

upper vector � lower vector �
s11 s1 s3
s12 s1 s4
s21 s2 s3
s22 s2 s4

Table I: Correspondance between meta-states and
multistream model states.

Self-loops are allowed on all states of the meta-HMM
and transitions exist from s11 to all states (p11�ij) and
from s12 (p12�22) and s21 (p21�22) to s22. There is
only one output transition p22�F from state s22 which
enforces recombination.
Let us try now to �nd the relation between the param-
eters of the multi-stream model and the meta-HMM.

The dimension of vectors in both streams are respec-
tively du and dl while the dimension of analyzed fea-
ture vectors is d = du + dl. For the sake of clarity, we
assume that the probability density functions associ-
ated with each state si are gaussian. The dimensions
of the mean vectors �i and covariance matrices �i as-
sociated with states si depend of course on the stream
which they belong to (du and dl).
In the alignment of a sequence of N vectors xTk =
(�Tk ; �

T
k ) on the multistream model, we may consider

that ni vectors are associated with state si and recom-
bination implies

n1 + n2 = n3 + n4 = N > 2; (1)

N may be equal to 2 only in case of full synchronism.
The total probability of the upper stream is then

n1Y

k=1

p(�kjs1)
NY

k=n1+1

p(�kjs2)p
(n1�1)
1 p

(n2�1)
2 q1q2 (2)

and for the lower stream

n3Y

k=1

p(�kjs3)
NY

k=n3+1

p(�kjs4)p
(n3�1)
3 p

(n4�1)
4 q3q4: (3)

The global probability of the multistreammodels takes
di�erent expressions according to the kind of path in
the model. In case n1 > n3, only states s11; s22; s12 of
the meta-HMM are visited, there is a certain amount
of asynchronism and the cumulated probabilities are
respectively for the emission probabilities and transi-
tion probabilities

n3Y
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while if n1 < n3, only states s11; s22; s21 are visited,
the paths in the streams are still asynchronous and the
cumulated probabilities are
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Synchronism occurs only when n1 = n3 and expres-
sions of cumulated probabilities become:
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Using the product of eqs (2) and (3) as a recombi-
nation rule, we obtain a global probability that we
must compare with the equivalent expression for the
meta-HMM. In particular, taking (1) into account the
contribution of transition probabilities to the global
probability is:

q1q2q3q4(p1p4)
(n1�1)(p2p4)

(n2�1)(p3=p4)
(n3�1):

It is easy to check that products of emission pdf's of
the upper and lower stream states (according to table
I) are equal to the pdf's of the corresponding meta-
state, namely:

p(xjs11) = p(�js1)p(�js3)
p(xjs12) = p(�js1)p(�js4)
p(xjs21) = p(�js2)p(�js3)
p(xjs22) = p(�js2)p(�js4)

Table II: Correspondance between emission pdf's of
meta-states and multistream model states.

Table II shows that the mean vectors of the meta-
states are build by appending mean vectors of the cor-
responding states according to table I. Also covariance
matrices of the meta-states are block-diagonal (du�du
and dl�dl) with blocks corresponding to the states as
in table I. This equivalence implies that upper and
lower vectors are assumed independent since the emis-
sion probabilities of the meta-states factorize. In the
training of the meta-HMM, mean vectors and covari-
ances matrices will be constrained to meet this speci�c
structure in order to preserve equivalence. Equiva-
lence between transition probabilities is discussed in
the next section.

3. TRANSITIONS

Equivalence between transition probabilities is less
straightforward. Of course, it is of common practice
to neglect transition probabilities in standard HMM
models since their role has been shown of second or-
der compared with emission probabilities. However, if
equivalence between models is studied, the relations
between transition probabilities is crucial since ne-
glecting them could lead to a meaningless equivalent
model.
We will show that there is no possible equivalence
when enforcing equivalence together with the consti-
tutive contraint of HMM which requires that the out-
going transitions of a state sum up to unity. This con-
straint will be neglected since the equivalent model is
nothing else but a computational tool referred to as
meta-HMM for that reason. However, constraints on
the multistream model apply and must be replicated
in this meta-HMM as shown below.
Comparing of (2) and (3) with the global probability
of the meta-HMM yields successively in cases n1 > n3,

n1 < n3 and n1 = n3 since the equivalence must hold
for any ni:

Case p12�12 = p1p4
n1 > n3 p22�22 = p2p4

p11�11=p12�12 = p3=p4
p11�12p12�22p22�F=p12�12 = q1q2q3q4

Case p11�11p22�22=p21�21 = p1p4
n1 < n3 p22�22 = p2p4

p21�21=p22�22 = p3=p4
p11�21p21�22p22�F=p21�21 = q1q2q3q4

Case p11�11 = p1p3
n1 = n3 p22�22 = p2p4

p11�22p22�F = q1q2q3q4

Table III: Set of equivalence constraints.

From these equations, it is easy to observe that the
following equivalences can be derived for the self-loop
transitions:

p11�11 = p1p3
p22�22 = p2p4
p12�12 = p1p4
p21�21 = p2p3

Table IV: Equivalence relations between self-loop
transition probabilities.

For the inter-state transitions, the following relations
must be satis�ed:

p11�12p12�22 = q1q3p1p4(q2q4=p22�F )

p11�21p21�22 = q1q3p2p3(q2q4=p22�F )

p11�22 = q1q3(q2q4=p22�F )

A possible solution (not the only one) is

p11�22 = q1q3
p11�12 = p1q3
p12�22 = q1p4
p11�21 = q1p3
p21�22 = p2q3
p22�F = q2q4

Table V: A possible set of equivalence relations
between inter-state transition probabilities.

The solution is unique for the �rst four equations
(Table IV) while several solutions are possible for
the inter-state transition probabilities. For the one
described in Table V, the physical interpretation is
straightforward by considering the multistreammodel:
p11�11 is the self-loop transition on s11 i.e the upper
and lower parts of the feature vectors loop respectively
on s1 and s3 while p11�12 is the combined transition
of the upper part keeping looping on s1 and the lower
part moving from s3 to s4.



There is no solution which could simultaneously guar-
antee that all outgoing probabilities of a meta-state
are summing up to 1 but this is not really required.
On the other hand, it is mandatory that pi + qi = 1
for i 2 [1; :::;4] in the multistream model.

4. TRAINING META-HMM'S

Any utterance has a corresponding meta-model built
by concatenating all the meta-models of sub-units
(here phonemes). Now any alignment of the corre-
sponding feature vector sequences yields a global prob-
ability which is the product of all upper and lower
stream emission probabilities and all transition prob-
abilities to the a power equal to the number of uses
of this transition. This means that the contribution of
the transitions has the generic form

: : : pa11�11p
b
11�22p

c
11�21p

d
12�12p

e
11�12p

f
12�22 : : :

Using the equivalence relations of Tables IV-V, this
product can be rewritten in terms of multi-stream
model transition probabilities pi and qi with the ap-
propriate exponents: for instance, the exponents of p1
and q1 are respectively m1 = a + d + e and for q1 it
is r1 = b + c + f . Maximizing the logarithm of the
global probability under the constraints pi + qi = 1
(Lagrange multipliers) yields p1 = m1=(m1 + r1) and
q1 = r1=(m1 + r1). Using the same approach for each
state and converting the results back to the meta-
HMM (using Tables IV-V again) yields update of the
models and allows iteration of the Viterbi algorithm.
Of course neglecting the meta-HMM transitions (i.e.
assuming them all equal) corresponds to no multi-
stream model.

5. CONCLUSIONS

The advantages of the multistream models have been
demonstrated by others mainly for recognition of
speech corrupted by band limited noise [1-3].
The goal of this paper is to describe an algorithm tak-
ing rigorously account of the equivalence between two
models: multistream HMM and meta-HMM. Prelimi-
nary tests on a small database have demonstrated the
importance of transition probabilities. Indeed, if train-
ing and recognition are conducted without transition
probabilities, the recognition score at the phoneme
level was for a baseline 1-stream model 72.5% against
73% for 1-stream with transition probabilities as ex-
pected. However, in 2-stream models we observed a
degradation down to 40% without transition probabil-
ities. The role of transitions is also enphasized if recog-
nition uses probabilities updated during the training
process but not used in the forced alignment. However,
the size of the data base was not fully representative

and systematic tests are conducted on TIMIT and will
be reported at the conference.
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