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Abstract— In this paper, we investigate the cooperative diver-
sity concept for use in MIMO multi-cell networks. We show
that, in such networks, cooperative diversity processing must be
optimized to account for the variability of channel conditions
across the cooperative devices. This can be done via distributed
precoding and, in mobile networks, it is based realistically on
channel statistics. The cooperative MIMO correlation matrix
admits a special structure which is used to optimize the precoder.
We investigate algorithms for exact error-rate and low-complexity
approximated optimization. Gains are evaluated in multi-cell
scenarios with collaborating base stations.

I. INTRODUCTION

MIMO systems yield their best in the case of uncorrelated
channel matrix elements. Therefore, interest in MIMO net-
works has recently focused on scenarios that provide additional
dimensions, yielding independent sources of diversity. This
includes setups where some or all of the multiple antenna
elements of the overall MIMO system are distributed over
the network, instead of being localized on a unique device.
Prominent examples of this are given by (i) the so-called
multiuser multi-cell MIMO, where one [1] or more [2], [3],
[4] access points address the data needs of multiple user
terminals simultaneously and in a joint fashion and by (ii) the
so-called cooperative diversity setup, where multiple devices
collaborate to combat the detrimental effects of fading at any
one particular device.

Most cooperative diversity scenarios investigated so far
include single-antenna user terminals relaying data between
a source terminal and the target destination [5], [6], [7]. This
includes the use of Space-Time Block Codes (STBC), where
the spatial elements of the codewords are distributed over the
antennas of the collaborating devices [7], [8], [9].

In this paper, we focus on the cooperative processing using
a distributed orthogonal STBC [10]. We ignore the issues
associated with the relay protocol or consider that such a
protocol is not needed. A practically relevant example is
downlink cooperative diversity in a multi-cell network, where
multiple base stations collaborate to serve one user terminal.

All transmitters and receivers may be equipped with mul-
tiple antennas. Because of the large-scale separation of the
collaborating devices, the channel conditions to the common
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destination (path loss, correlation, etc.) are different. The
cooperative diversity scheme ought to be optimized with
respect to the channel conditions, and we handle this via
distributed precoding, optimized based on channel statistics
only (incurs less overhead than instantaneous channels). We
make the following contributions:

• The collaborative MIMO network is recast as a point-
to-point MIMO system, where the channel second-order
statistics admit a special non-Kronecker form.

• Upon feedback of the statistics to the transmitters, a
distributed linear precoder is optimized and applied prior
to transmission.

• We show that, under realistic conditions, the optimal
precoder takes the form of a diagonal precoder, boiling
down to a power allocation scheme.

• We express the exact average error probability at the re-
ceiver, as function of the precoder and channel statistics.

• We investigate several optimization algorithms for the
precoder, including one intuitive equivalent criterion
coined the ”maximum diversity criterion”, and provide
a justification in the form of a Gaussian approximation
of the combined cooperative transmitter channel gain.

II. SIGNAL AND CHANNEL MODEL

We consider a MIMO-system with L spatially distributed
base stations (BS), engaged in downlink communication with a
single, receiving mobile unit (MU). Each BS has Mtl

antennas,
l ∈ {0, 1, . . . , L − 1}, while the receiver is equipped with an
array of Mr antennas. In total, there are Mt =

∑L−1
l=0 Mtl

transmit antennas. Fig. 1 illustrates the described scenario.
The synchronized BSs are connected to a central unit (CU)

via fast optical links. The CU and BSs only have access
to long-term statistical knowledge of the channel conditions,
whereas the MU knows the full, instantaneous downlink
channel. The channel is assumed to be flat fading, but results
are expected to carry over through an OFDM setting.

Thanks to the more generous antenna spacing at the base
station side as well as the large inter-cell spacing, we assume
that the effect of transmit correlation is negligible, i.e., the
outgoing paths from all the Mt antennas are uncorrelated.
MU antennas, however, will be correlated, and the amount
of correlation is likely to depend on which BS the signal is
coming from. Additionally, different BSs may see different
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Fig. 1. Distributed MIMO-system, with L transmitters and one receiver.

path loss and slow fading coefficients to the same MU. We
consider Rayleigh fading channel conditions.

Although several forms of cooperation schemes are avail-
able, including distributed spatial multiplexing, we limit our-
selves to the cooperative diversity setup where a space-time
code is applied in a distributed manner over the Mt antennas
of the L collaborating BSs. We focus on the use of distributed
Orthogonal Space-Time Block Codes (OSTBC), as they lend
themselves to easier analysis.

To compensate/exploit the effect of unequal path loss and
transmit correlation, we apply linear precoding over the coop-
erating transmit antennas before launching the codeword into
the channel. We represent the linear precoder by the Mt × B
matrix F , so the Mr×N received signal Y at the user terminal
writes as

Y = H F C(x) + V . (1)

Here, H represents the overall Mr × Mt MIMO channel.
The Mr ×N -sized matrix V represents the additive, complex
Gaussian, circularly distributed noise, vij ∼ CN (0, σ2

v) and
x = [x0, x1, . . . , xK−1] is the vector of M -ary modulated
symbols. The B ×N matrix C(x) is the result of applying a
chosen orthogonal design to the vector x, related to the chosen
generalized complex design as C(x) = (GB

c )T [10]. A block
model of the transmit/receive chain is shown in Fig. 2.

MLD DemodulationOSTBCModulation

Mr × Mt

H
Y

V

x̂
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K × 1 K × 1B × N Mt × N Mr × N
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Fig. 2. Block model of a linearly precoded MIMO-system.

The large-scale attenuations associated with each transmit
antenna are collected in

P = diag
([ √

ρ0
√

ρ1 · · · √
ρMt−1

])
: Mt × Mt ,

so that the total channel H = HcP decomposes into

H =
[√

ρ0 hc0

√
ρ1 hc1 · · · √

ρMt−1 hcMt−1

]
: Mr×Mt .

hci
is the Mr × 1 channel from the i-th transmit antenna to

the correlated receiver array. We define Rri
= E[hci

hH
ci

] as
the receive correlation matrix for the i-th transmit path. The
transmit antennas are assumed to be uncorrelated, so we write
the full correlation of the path-loss normalized MIMO matrix
as the MtMr×MtMr-sized R = E[vec(Hc) vecH(Hc)]:

R =




Rr0 0Mr×Mr
. . . 0Mr×Mr

0Mr×Mr
Rr1 . . . 0Mr×Mr

...
...

. . .
...

0Mr×Mr
0Mr×Mr

. . . RrMt−1


 . (2)

Importantly, the different transmit antennas experience dif-
ferent correlation matrices upon reception. That is because the
signals from different base stations may see a very different
angular spread at the terminal. This leads to a practical
instance of the non-Kronecker correlation structure evoked
recently in [11].

The receiver is assumed to know H perfectly, whereas the L
transmitters only have access to long-term statistics in P and
R, consistent with a practical multi-cell signaling overhead.

For all generalized complex orthogonal designs Gc, we
know that [10]

(GMt
c )T (GMt

c )∗ = a (|x0|2 + |x1|2 + · · · + |xK−1|2)IB , (3)

where IB is the identity matrix of size B and the scalar a de-
pends on the choice of orthogonal design. In the following, we
let B = Mt and find that C(x)CH(x) = a

∑K−1
l=0 |xl|2IMt

.
The symbol-per-period rate of the code is R = K/N , and

R < 1 for all Mt > 2.
Now, we define the scalar α � ‖HF ‖2

F , where ‖ · ‖F is the
Frobenius norm. From [12], we know that the OSTBC system
with a full complex-valued precoder F and a full channel
correlation matrix R has an equivalent Single-Input Single-
Output (SISO) formulation where the output y

′
k for an input

xk, k ∈ {0, 1, . . . ,K − 1} is

y
′
k =

√
αxk + v

′
k , (4)

That is, every input symbol xk, k ∈ {0, 1, . . . ,K − 1}
experiences the same channel gain

√
α and independent,

additive noise v
′
k ∼ CN (0, σ2

v/a).

III. SER EXPRESSIONS

From the above SISO formulation of the OSTBC, we find
that the instantaneous received SNR γ is expressed as

γ � a σ2
x α

σ2
v

= δ α = δ‖HF ‖2
F , where δ =

a σ2
x

σ2
v

. (5)

Given that all the symbols xk, where k ∈ {0, 1, . . . ,K − 1},
go through the same channel, the average symbol error rate
(SER) of the MIMO system with OSTBC is [12]

SER � Pr{Error} =
∫ ∞

0

Pr{Error|γ}pγ(γ)dγ

=
∫ ∞

0

SERγpγ(γ)dγ ,

(6)
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where pγ(γ) is the probability density function (pdf) of γ,
while SERγ is the symbol error probability for a chosen bit-
to-symbol mapping, e.g. M -PAM, M -PSK or M -QAM, and
a given SNR-value γ as shown per (5). As an example, the
SNRγ for M -PSK is

SERγ =
1
π

∫ (M−1)π
M

0

e
− gPSK γ

sin2(θ) dθ , gPSK = sin2
( π

M

)
. (7)

IV. OPTIMAL PRECODING

We want to find the matrix F such that the exact SER
is minimized, under a global peak power constraint for the
transmitted block Z � FC(x). Note that this sum power
constraint across multiple base stations makes engineering
sense. Since, in practice, there will be many users and those
are likely to be symmetrically distributed across the cells, each
base station should distribute its total power optimally across
the cell users.

We normalize with a
∑K−1

k=0 σ2
xk

= 1, where σ2
xl

is the
variance of the k-th symbol in the OSTBC. The peak power
constraint is expressed as

Tr{FF H} = P , (8)

where P is a measure of the average power used. Now, the
problem of minimizing the SER can be expressed as

Problem 1:

min
{F∈CMt×Mt | Tr{F F H}=P}

SER (9)

Because the transmit antennas are assumed to be uncorre-
lated (unlike the receive antennas), it can be shown that the
search for the optimal precoder F can be limited to a diagonal
precoder:

Theorem 1: If (2) holds, the optimal F can be chosen
diagonal, with real and non-negative diagonal elements.
Proof: This is an application of the theorem presented in [12].

Note that the authors of that paper did not consider different
path loss specifically, but we observe that by building scaled
correlation matrices such that R

′
ri

= ρiRri
their theorem can

be made to hold here as well. In other words, the problem of
optimal precoding for cooperative diversity is reduced to an
optimal allocation of power between the Mt transmit antennas.
More importantly, the implementation of this precoder is fully
compatible with distributed processing over each cell (rather
than multi-cell joint processing).

We now proceed to find the optimal power allocation, first
by directly exploiting the SER expression, then, alternatively,
by resorting to a modified, simpler criterion.

A. Optimal SER Precoder

A minimization of the SER as it is given in (6) involves the
pdf of the instantaneous received SNR γ. To find this function,
we begin by developing γ for the case of a diagonal precoder
F = diag( [f0, f1, . . . , fMt−1] ). We assume a unit power
constraint, such that

∑Mt−1
i=0 f2

i = 1, i.e., P = 1 in (8).

Now, the combined channel gain α may be written out
as α =

∑Mt−1
i=0 ρif

2
i ‖hcj

‖2. The receive correlation ma-
trices Rri

have the following eigen-decomposition: Rri
=

V ri
Λri

V H
ri

, so that hci
= R1/2

ri
hwi

, where hwi
is an Mr-

sized vector of complex Gaussian distributed independent
variables, hwij

∼ CN (0, 1). Now, α may be further developed
into

α =
Mt−1∑
i=0

ρif
2
i hH

wi
V ri

Λri
V H

ri
hwi

=
Mt−1∑
i=0

ρif
2
i (h

′
wi

)HΛri
h

′
wi

=
Mt−1∑
i=0

ρif
2
i

Mr−1∑
j=0

λij
|h′

wij
|2 ,

(10)
where h

′
wi

= V H
ri

hwi
∼ CN (0, IMr

) and λij
is the j-th

eigenvalue of Rri
. The SNR γ becomes

γ = δ

Mt−1∑
i=0

Mr−1∑
j=0

ρif
2
i λij

|h′
wij

|2 . (11)

The instantaneous SNR γ is thus a random variable on the
form γ =

∑N−1
l=0 al|Zl|2. When all the coefficients al, l ∈

{0, 1, . . . , N − 1}, are different1, we can find the exact pdf of
γ, and the SER for this scenario. For details, see [13].

Lemma 1: The pdf of γ is

pγ(γ) =
1
δ

Mt−1∑
i=0

Mr−1∑
j=0

(ρif
2
i λij

)MtMr−2e(−γ/(δρif
2
i λij

)) u(γ)∏
k∈{0,Mt−1}

∏
l∈{0,Mr−1}

(k,l) �=(i,j)

(ρif2
i λij

− ρkf2
kλkl

)

Theorem 2: The exact SER is expressed as

SER=
∫ ∞

0

SERγ

δ

Mt−1∑
i=0

Mr−1∑
j=0

(ρif
2
i λij

)MtMr−2 e(−γ/(δρif
2
i λij

))∏
k∈{0,Mt−1}

∏
l∈{0,Mr−1}

(k,l) �=(i,j)

(ρif2
i λij

−ρkf2
kλkl

)
dγ

(12)
under the sum power constraint

∑Mt−1
i=0 f2

i = 1.
For M -PSK mapping, substitution of SERγ allows for

integration over γ.

SER =
1
π

Mt−1∑
i=0

Mr−1∑
j=0

(ρif
2
i λij

)MtMr−1∏
k∈{0,Mt−1}

∏
l∈{0,Mr−1}

(k,l) �=(i,j)

(ρif2
i λij

− ρkf2
kλkl

)

×
∫ (M−1)π

M

0

1

1 +
gPSKδρif2

i λij

sin2(θ)

dθ

We note that a simple, closed-form expression of the exact
SER is not obtainable and also that minimization of the SER
with respect to the power values f2

i (keeping θ constant), is a
difficult task. Nonetheless, it is possible to optimize using the
iterative algorithm developed in [12].

Note that the SER depends on the SNR-related coefficient
δ = aσ2

x/σ2
v . If we let δ → ∞, with non-zero path-loss ρi and

1This is the general case, if ρif
2
i λij == ρkf2

kλkl
, for (i, j) �= (k, l),

the pdf needs to be modified. However, the case of repeated, equal factors
can be derived from the general case, by the use of the limit operator.
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eigenvalues λij
, ∀(i, j), then it can be shown, using the same

arguments as in [14], that the optimal power allocation will
approach the even distribution f2

i = 1/Mt.
In general, the optimal power allocation depends on both the

receive correlation conditions, the path loss and the average
SNR. We now attempt to find the power allocation via another
optimality criterion.

B. Closed-Form Precoder for Equal Average SNR

We now assume that slow power control is activated at the
transmitters. Then the path loss coefficients are set equal (say
ρi = 1, i ∈ {0, 1, . . . ,Mt − 1}). The correlation matrices
remain possibly different. In this case a closed-form precoder
can be formulated by generalizing the maximum diversity
principle introduced in [12], for the case of Mt = 2 transmit
antennas.

1) The Maximum Diversity Principle: When ρi = 1, i ∈
{0, 1, . . . ,Mt − 1}, the SNR γ in (11) simplifies to

γ = δ

Mt−1∑
i=0

f2
i

Mr−1∑
j=0

λij
|h′

wji
|2 . (13)

The SNR γ is a sum of MtMr uncorrelated diversity
branches, each weighted by f2

i λij
. In accordance with the

proposed maximum diversity principle, we attempt to spread
the sum energy of the signal evenly across all the diversity
branches. This is done by making the weights as equal as
possible under a sum power constraint. The mean m of the
weights, under this constraint, is

m =
δ

MtMr

Mt−1∑
i=0

Mr−1∑
j=0

f2
i λij

=
δ

Mt

Mt−1∑
i=0

f2
i =

δ

Mt
,

where we use that Tr{Rri
} = Mr, i ∈ {0, 1, . . . ,Mt − 1}.

We propose that the weights be decided according to the
following minimum variance problem.

Problem 2:

min{
fi≥0, i∈{0,1,...,Mt−1}

∣∣∑ Mt−1
i=0 f2

i =1
} Mt−1∑

i=0

Mr−1∑
j=0

(
f2

i λij
− δ

Mt

)2

This problem has a simple closed-form solution, stated in
Lemma 2 below and proved in [13].

Lemma 2: Each power weight fi is found as

fi =

√
β∑Mr−1

j=0 λ2
ij

, i ∈ {0, 1, . . . ,Mt − 1} , (14)

where the constant β can be computed by using the sum power
constraint

∑Mt−1
i=0 f2

i = 1, such that

Mt−1∑
i=0

β∑Mr−1
j=0 λ2

ij

= 1 =⇒ β =
1∑Mt−1

i=0
1∑ Mr−1

j=0 λ2
ij

.

In words, this means that the power is distributed so that
a transmit antenna i for which the receive correlation is
negligible, i.e. uncorrelated, will receive more transmit power

than another antenna that sees a higher level of correlation at
the receiver.

From the results in Lemma 2, we notice that, unlike the
exact SER, the power allocation after the maximum diversity
principle is independent of the SNR. It turns out this criterion
is good for low to moderate values of SNR and shows sub-
optimality at high SNR.

2) Gaussian Approximation Based Precoder: In this sec-
tion, we pursue another approach for the optimization of
the power allocation. Since γ is sum of MtMr weighted,
independent random variables, we are motivated by the central
limit theorem in proposing to approximate γ’s distribution by
a truncated Gaussian, where the truncation follows from the
known positivity of γ.

With this assumption, the symbol-error-rate in (6) is now

SER ≈ C

σγπ
√

2π

∫ (M−1)π
M

0

∫ ∞

0

e
− (γ−mγ )2

2σ2
γ e

− gPSK
sin2(θ)

γ
dγdθ ,

(15)
where C, given as

1
C

=
∫ ∞

0

1
σγ

√
2π

e
− (γ

′−mγ )2

2σ2
γ dγ

′
, (16)

is the correction factor due to truncation.
The moment generating function (mgf) of a real Gaussian-

distributed random variable η ∼ N (mη, σ2
η) is defined as

Mη(t) = E[etη] =
∫ ∞

−∞

1
ση

√
2π

exp
(
− (η−mη)2

2σ2
η

+tη
)
dη ,

(17)
or in an alternative form

Mη(t) = exp
(
mηt + σ2

η

t2

2

)
. (18)

We observe that the inner integral of (15) resembles (17),
with t = −gPSK/ sin2(θ). Using (18), the SER is rewritten as

SER ≈ 1
π

∫ (M−1)π
M

0

exp
(
−mγ

gPSK

sin2(θ)
+

1
2
σ2

γ

( gPSK

sin2(θ)

)2
)

dθ .

(19)
Now, we propose to minimize the integrand
exp

(
−mγ

gPSK
sin 2(θ) + 1

2σ2
γ

(
gPSK

sin2(θ)

)2
)

, for any value of θ.

This problem reduces to minimizing
(
−mγ + 1

2σ2
γ

gPSK

sin2(θ)

)
.

The mean mγ and variance σ2
γ of γ, derived in [13], are

given as

mγ = δMr , and σ2
γ = δ2

Mt−1∑
i=0

(f2
i )2

Mr−1∑
j=0

λ2
ij

.

(20)
Because mγ is a constant and sin2(θ) is always non-

negative, the approximate SER in (19) is minimum when the
variance σ2

γ is minimum, so we optimize

min{
fi≥0,i∈{0,Mt−1}

∣∣∑ Mt−1
i=0 f2

i =1
} σ2

γ ,

with the variance σ2
γ as given in (20).
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The solution to this minimum variance problem is developed
in [13]. For i ∈ {0, 1, . . . ,Mt − 1}, we have

fi =

√
β∑Mr−1

j=0 λ2
ij

, β =
1∑Mt−1

i=0
1∑ Mr−1

j=0 λ2
ij

.

Interestingly, this closed-form precoder is identical to that
obtained from the maximum diversity principle and presented
in Lemma 2. This gives insights into the justification of the use
of the maximum diversity principle, beyond simple intuition.

C. Precoder for Unequal Average SNR

In the most general case, the different transmit antennas
may see different average path loss. If these path losses
are substantially different and slow power control is not
activated, the Gaussian approximation above looses credibility
and another approach should be resorted to. We propose to
optimize the PEP-based metric shown in [15]

max
{F∈CMt×B}

det
(
IMtMr

+
ad2

min

4σ2
v

R1/2P̄
[
(F ∗F T )⊗IMr

]
P̄R1/2

)
,

under the constraint Tr{FF H} = 1.
With uncorrelated transmitters, it still holds that the optimal

F can be chosen as diagonal, real and non-negative, hence we
must solve a power allocation problem [15]. We introduce the
substitution k = ad2

min
4σ2

v
. When using the knowledge of F from

Theorem 1, the optimization is reduced to the less complex
problem

max
{f2

i ≥0,i∈{0,1,...,Mt−1}}

Mt−1∏
i=0

Mr−1∏
j=0

(
1+kρif

2
i λij

)
,

Mt−1∑
i=0

f2
i =1 ,

which is equivalent to

max
{f2

i ≥0,i∈{0,1,...,Mt−1}}

Mt−1∑
i=0

Mr−1∑
j=0

log
(
1+kρif

2
i λij

)
,

Mt−1∑
i=0

f2
i =1 .

(21)
Interestingly, the maximization of the above sum of loga-

rithms resembles the well-known capacity maximization prob-
lem, for which the solution is the classical water-filling.
Unfortunately, the above objective function is different in the
fact that each power variable f2

i appears in Mr terms of the
sum, making it a totally different problem to solve in general,
except in special cases.

1) Solution for Uncorrelated Case: Assume as a special
case that there is no correlation on either side, neither trans-
mit nor receive. In this case, Rri

= IMr
for all i ∈

{0, 1, . . . ,Mt − 1}. Then, the optimization problem in (21)
is simplified to

max
{f2

i ≥0,i∈{0,1,...,Mt−1}}
Mr

Mt−1∑
i=0

log
(
1+kρif

2
i

)
,

Mt−1∑
i=0

f2
i = 1 .

We recognize this problem as one for which the solution is
the classical water-filling, such that

f2
i =

(
µ − 1

kρi

)
+

, i ∈ {0, 1, . . . ,Mt − 1} ,

Mt−1∑
i=0

f2
i = 1 .

This special setting of unequal average SNR and no correla-
tion can be seen as an equivalent to the optimization problem
presented by Sampath and Paulraj in [16]. There, the authors
assumed transmit correlation, no receive correlation and equal
average SNR.

2) Modified Waterfilling Solution for Correlated Case: We
now return to the most general case where each transmitter
experiences a different path loss and receive correlation.

To find a solution to the optimization problem in (21),
we differentiate with respect to f2

i i ∈ {0, 1, . . . ,Mt − 1},
introduce a Lagrange multiplier µ with the power constraint
Tr{FF H} = 1, and find Mt equations on the form

Mr−1∑
j=0

kρiλij

1 + kρif2
i λij

+ µ = 0 for i ∈ {0, 1, . . . ,Mt − 1} .

For each transmit antenna i ∈ {0, 1, . . . ,Mt − 1}, we
optimize with respect to the leading term in the sum. We
assume that the eigenvalues are ordered, so that λik

≥ λil
,

for all k ≤ l. The other Mr − 1 terms in the sum, we fix in a
constant ci.

ci =
Mr−1∑
j=1

kρiλij

1 + kρif2
i λij

for i ∈ {0, 1, . . . ,Mt − 1} .

Now, the Mt independent equations can be rewritten as

kρiλi0

1 + kρif2
i λi0

= −(µ + ci) for i ∈ {0, 1, . . . ,Mt − 1} .

By imposing the power constraint
∑Mt−1

i=0 f2
i = 1, we

attempt to find µ. This approach means solving an equation
of degree Mt, analytically feasible for Mt ≤ 4. We get the
expression

Mt−1∑
i=0

f2
i = −

Mt−1∑
i=0

( 1
µ + ci

+
1

kρ1λi0

)
= 1 .

Of the possible values found for µ, use the one that minimizes

Mt−1∑
i=0

|f2
i | =

Mt−1∑
i=0

∣∣∣ 1
µ + ci

+
1

kρiλi0

∣∣∣ ,

and finally, we update the power values

f2
i =

1
µ + ci

+
1

kρiλi0

for i ∈ {0, 1, . . . ,Mt − 1} .

The above described procedure is repeated until conver-
gence in a fixed-point is reached. No formal proof for the
conditions of convergence is available yet, and from the theory
on fixed-point iterations [17], we know that non-convergence
may occur. However, using a slightly modified approach,
detailed in [13], a fixed-point is still obtainable.
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V. RESULTS

We present simulation results for selected scenarios, assum-
ing both equal and unequal average received SNR. In the first
case, we show the BER vs SNR for the PEP-based modified
water-filling and the maximum diversity principle. For the case
of unequal average SNR, we show the modified water-filling
results. In both cases, comparisons are made against the trivial
equal power allocation to evaluate the gain of precoding, and
also against results using the minimum, exact SER precoding
from [12].

Two single-antenna BSs transmit cooperatively to one MU
with Mr = 4 antennas. The Monte Carlo simulations transmit
1.5 · 106 bits, over 1500 channel realizations. The receive
correlation matrices are Rr0 = 1Mt

and Rr1 = IMt
, where

1Mt
is an Mt × Mt matrix of all ones. This corresponds to

the extreme situation of one BS seeing a fully correlated link,
while the other sees a fully decorrelated link.

The results for the equal average SNR case are shown in
Fig. 3. For unequal SNR values, we use [ρ0, ρ1] = [0.75, 1],
obtaining the results of Fig. 4. The results show that the
iterative algorithm minimizing the PEP gives the same per-
formance as the maximum diversity-based algorithm, for the
equal SNR case. In both figures, we observe that the equal
power allocation is outperformed by almost 1 dB at BER 10−3.
Also, the Gaussian and PEP-based approaches obtain the same
results as the iterative, minimum, exact SER precoding from
[12].

VI. CONCLUSIONS

We address the problem of distributed space-time coding
for the cooperative downlink cellular network. The channel
correlation structure is highly non-Kronecker and can be
compensated by a distributed power allocation.

Several approaches are presented to find the optimal pre-
coder, including a closed form precoder based on the max-
imum diversity principle and iterative solutions based on
modified waterfilling.
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Fig. 3. Comparison of BER-performance versus SNR for Mt = 2, Mr = 4,
in the case where Rr0 = 1Mt and Rr1 = IMt and for equal average SNR,
[ρ0, ρ1] = [1, 1]. The power allocations based on the Gaussian approximation
of γ and the PEP-measure have almost equal BER-results, outperforming the
equal power allocation by close to 1 dB at BER 10−3.
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Fig. 4. Comparison of BER-performance versus SNR for Mt = 2, Mr = 4,
in the case where Rr0 = 1Mt and Rr1 = IMt and for non-equal average
SNR, realized by setting the path losses as [ρ0, ρ1] = [0.75, 1]. The power
allocation based on the PEP-measure outperforms the equal power allocation
by close to 1 dB at BER 10−3.
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