
When Management Agents Become Autonomous,How to Ensure Their Reliability?Morsy M. Cheikhrouhou and Jacques LabetoulleInstitut Eur�ecom, Corporate Communications Dep.BP 193, Sophia-Antipolis Cedex - Franceemail: fMorsy.Cheikhrouhou, Jacques.Labetoulleg@eurecom.frOctober 21, 1999AbstractWe propose to provide a prototype of an agent-based network management systemin which, unreliable agents can be detected by the other agents. The detectionmethod is based on having the agents testing each other by comparing their respectivebeliefs.The agents are speci�ed using an abstract agent functional model. This modelis based on a BDI (Belief Desire Intention)-like mental cycle and uses KQML as anagent communication language. The result is a high-level speci�cation expressed interms of abstract agent mental attitudes.The implementation uses a BDI agent language called JACK. JACK uses a Javaextension to support agent programming features. The mapping from the abstractagent speci�cation to the concrete JACK implementation is detailed.Keywords: Distributed Network Management, Intelligent Agents, Belief-Desire-Intention.1 IntroductionCentralized Network Management Systems (NMS) are being abandoned by the NM R&Dcommunity. Instead of having a central manager interacting with a large number of un-intelligent agents, the trend is evolving towards having distributed autonomous intelligentagents or middle-levelmanagers performing high-level management tasks. This distributedapproach solves the main problems of centralized NMSs, namely, the bandwidth bottleneckaround the central management console and the processing overload of its CPU. Moreover,deploying autonomous management agents helps providing localized, therefore, prompt re-actions to network problems. Many such autonomous agent architectures have been and

are being proposed. One kind of these architectures, the BDI-like (Belief, Desire, Inten-tion) architectures are being investigated in the Network Management Team in InstitutEur�ecom. BDI-like architectures describe an agent's behavior using a set of mental cate-gories evolving in a mental cycle that allows the agent to take decisions and to act on theenvironment.Such agents, being endowed with enhanced decision-taking capabilities and managerialknowledge, are supposed to be able to perform long term tasks in an independent and au-tonomous way. However, these agents are deployed in the same network they are managing,which is prone to faults and performance degradation problems. Due to such anomalies,the agents may themselves be a�ected and therefore, become unreliable. The unreliabilityof an intelligent agent might have critical e�ects on the managed network, since the agentis supposed to have important management responsibilities and capabilities. Moreover,detecting the unreliability of an agent is not straightforward since it need not interact withthe other agents or with the human administrator to perform its duties.This was not a critical issue in the classical management agents. In the Internet model,SNMP agents do not perform any action unless explicitly solicited, via polling GET queries,and con�rmed SET requests. Therefore, the management station knows the state of theSNMP agent each time it is queried. In the OSI model, the management protocol CMIP isconnection-oriented. This provides su�cient guarantee regarding the limited functionalityof the agent.The purpose of the work presented in this paper is twofold. Firstly, it provides amechanism that distributedly allows to detect the possible unreliability of intelligent agentswhile performing their management tasks. Secondly, it describes an abstract agent modelbuilt using a BDI architecture and how this model is used to specify and develop themechanism of reliability detection.The paper is structured as follows. The problem of intelligent agent reliability in thenetwork management context, as well as the adopted solution, are described in Section 2.We describe in Section 3 an abstract agent functional model based on well-known agentparadigms and languages such as the BDI-oriented architecture and the agent communi-cation language KQML. Next, we detail in Section 4 how our abstract agent model wasused to provide an abstract speci�cation of the adopted solution. The implementation isachieved using a Java-based agent language, JACK, which allows for the development ofBDI agents. JACK concepts are summarized in Section 5. The way JACK was used toimplement our application is described in Section 6 which details how the agent conceptsused in the abstract agent model were mapped into JACK. Finally, we conclude the paperwith an outlook of possible improvements.2 Problem PositionIncreasingly nowadays, networks are managed in a hierarchical, yet evolving to a distributedmanner [1, 2, 3] . The managed network is divided into sub-networks or domains that aremanaged more or less independently by autonomous agents. The distribution is introduced2

into management systems mainly to overcome the bandwidth bottleneck around the centralmanagement station and to o�er a degree of fault tolerance. As a matter of fact, in a multi-domain managed network, when an agent that manages a particular domain becomesunreliable, the manageability of its domain becomes questionable, but the other domainsremain correctly managed. However, if an agent is allowed to perform critical managementtasks that may for example a�ect the performances, or even worse, compromise the networksecurity, it is necessary to promptly detect when this agent turns unreliable. In addition, ifthe agent is responsible for the management of a sensitive server of which all the networkdomains make use, an erroneous agent action may compromise the overall function orperformances of the whole network. Therefore, it is compulsory, even within a distributedNMS, to be able to detect the failures of the management agents.Once the failure of an agent is detected, it becomes even possible to have a furtherimprovement by re-a�ecting the management tasks of the unreliable agent among theother agents in a way to ensure that the whole network continues to be reliably managed.This provides a property of graceful degradation to the distributed management system.The work presented in this paper provides a �rst step towards this interesting improve-ment. To ensure that the whole network is still managed even if a number of agents becomeunreliable, it is necessary to install a mechanism that continuously checks the reliabilityof the agents. When unreliable agents are detected, the management tasks that they havebeen performing are re-distributed amongst the other still-reliable agents. At some timein the future, the agent with the abnormal behavior might recover, for example followinga human intervention, and the tasks that have been re-distributed on the other agentsshould be assigned back to the recovered agents.To test the reliability of an agent, that we call the testee, another agent, the tester , canbe used. The tester can check a subset of the testee's beliefs against its own beliefs. Forexample, if the testee agent is monitoring some network elements, the tester agent maymonitor a subset of the same network elements, and regularly compares its beliefs on themwith those of the testee. If the beliefs match, then the tester decides the testee is reliable,otherwise, the testee is considered to be unreliable.However, the result tells only the belief of the tester on the reliability of the testee. Butnothing ensures that the tester is itself reliable. SLD (System Level Diagnosis) brings asolution to this problem [4, 5]. SLD allows to deduce the reliable set of entities that aremutually testing each other, each entity having to test a minimumnumber of other entities.Each entity reports whether the entities that it tests are reliable or not. By confrontingthe results with each other, SLD allows to deduce a core of reliable entities. Therefore, bymaking the agents in the management system continuously test the reliability of each other,they can conclude which are the agents that become unreliable. They can consequentlyperform task re-a�ectation to avoid the unreliable agents. The continuous testing and theapplication of SLD allows to detect the agents that might recover.We propose to build agents that are able to perform the reliability testing while per-forming their usual management tasks. When an agent is asked about the reliability of atestee, it has to periodically compare its beliefs with its owns. For prototyping reasons, wechose as a management task for all the agents, the task of monitoring the global statuses3

of the network elements in each agent's domain.3 The Agent ModelOur view of the agent technology as applied to Network Management tends to the useof hybrid agents that are capable of both deliberative and reactive behaviors[6, 7]. Thedeliberative behavior allows the agent to have long term activities and provides it withdecision-taking and reasoning capabilities. The reactive behavior allows the agent to haveprompt responses and to setup appropriate re
ex actions to changes in the managed net-work.In addition, KQML [8] is chosen as an agent communication support. KQML (Knowl-edge Query and Manipulation Language) o�ers the advantage of having standard semanticsof the intention expressed on an exchanged messages. Also, it provides a rich set of messagetypes, allowing to easily express the attitude wanted from the message. Finally, messagesin KQML are written according to a simple syntax that can be easily read and understood.Furthermore, we perceive the agent as composed of two layers, namely the DeliberativeLayer and the Operational Layer . The deliberative layer o�ers facilities and supports thedeliberative behavior of the agent, while the operational layer provides an environment forthe execution and control of the agent actions.According to these three considerations, we de�ned an abstract agent functional model.This model is described in the following sections.3.1 The Deliberative Layer
BeliefsCapabilities Intentions

Goals

Planning

Goal Generation

Motivations

Action ExcecutionFigure 1: Agent's Mental Cycle4

We model the agent deliberative behavior using a set of mental categories that evolvewithin a mental cycle. The mental categories we use in our model are motivations, goals,intentions, beliefs and capabilities (Figure 1). They are explained below.� Beliefs: They re
ect the agent's perception of the external world. Typically, theagent's beliefs are stored in a database that holds the management information aboutthe network, and possibly include information about the other agents or the agentitself.We use a simple relational notation of beliefs. Each belief is a relation tuple havinga determined number of parameters or �elds. For example, the belief \host `esteron'is down" can be written as follows:(Host :name esteron :status down).One or more of the belief �elds can be designated as a key that allows to identify thebelief unambiguously. Beliefs can be asserted or retracted from the belief database.Belief updates are assert operations performed on already existing beliefs which areidenti�ed by their key �elds.Belief querying can be done using logical variables. For example, assuming the abovebelief is asserted in the agent belief database, then the statement:(Host :name esteron :status ?s)holds with the value of variable s bound to `down'. To avoid ambiguity when usingvariables, we use ?var to bind the variable to some �eld value, and $var to use thevalue to which variable var is bound.Finally, logical expressions can be combined together using the usual logical opera-tors. For example:(Printer :name ?p) and (OutOfOrder :host $p)holds when variable p is bound to the name of a printer that is out of order.� Capabilities: They describe the actions that the agent can perform, mainly tointeract with the external world. In some way, the execution of an agent action couldbe seen as an instantiation of a certain capability. The actions that the agent canperform can be either primitive actions, or composite actions organized in plans.There are four types of primitive actions.1. Sensors. They are actions that the agent performs to perceive the externalworld. Part of the agent's beliefs are provided and maintained through the ac-tivation of its sensors. Therefore, a sensor provides a mapping from the changesand events that occur in the network to structured beliefs.5

2. E�ectors. They are actions that a�ect the external world, for example by chang-ing the con�guration parameters in the case of a managed network.3. Reactors. They allow the agent to perform de�ned actions when speci�ed sit-uations occur on the network. The agent can use reactors to have promptreactions to events that may occur. Precisely, a reactor links a plan of actionsto a situation expressed on the agent beliefs.4. Calculators. These are a particular kind of actions that allow to compute ordeduce new beliefs from others. For example, suppose that the printing systemstatus is Ok only if the statuses of all the printers in the network are Ok. A cal-culator can be used to maintain the printing system status belief by continuouslychecking the statuses of all the printers in the system.� Motivations: Motivations are the main essence of actions in the agent. A motiva-tion lets the agent have preferences towards certain states of its environment. It canbe viewed as an expression that the agent continuously tries to satisfy. When a mo-tivation is violated, the agent tries to �gure out the reason behind it, then generatesgoals that are believed to help satisfying the motivation when achieved (Figure 1).At this stage, abstraction is made on which goal generation mechanism is better suitedfor the agent. This deliberation process should be chosen at a later stage in the agentdevelopment according to the application needs. For example, goal generation canbe done by comparing the motivation expression to the current beliefs. By analyzingthe resulting di�erences, the agent can determine what goal is to be generated.� Goals: A goal denotes a state that the agent wants to achieve through the executionof a certain plan of actions [9]. A sequence of actions among the agent capabilitiesare identi�ed in order to be executed.Similarly to the goal generation process, abstraction is made on which planningmethod should be used. At a later stage in the agent development process, it will bedecided to whether an embedded planning system or a simple search in the agent'splans is better suited for the application requirements.We identify two kinds of goals: achievement goals and maintenance goals. The actionplan generated for an achievement goal should only achieve the goal at some momentin time, whereas the plan generated for a maintenance goal should ensure that thegoal expression is hold continuously.Finally, negative expressions can be used in goal expressions. This can be used forexample to cause a preceding achieved goal to be cancelled (or unachieved). Ofcourse, the planning process that is to be chosen has to take into account whetherclosed world assumption is assumed or not.� Intentions: An intention is an action or a plan of actions that the agent decides toexecute in order to achieve a certain goal. Therefore, the intentions corresponding toa goal are a description of how to invoke a set of agent capabilities. This description6

is used by the operational layer to perform and control the execution of the generatedplan (Figure 1).3.2 The Operational LayerThe agent Operational Layer is an integrated environment within which the actions in-tended by the agent are executed. It is delivered with intentions decided at the planningprocess to ensure their execution control. Therefore, the operational layer uses the capa-bilities description to correctly instantiate and launch the action execution. In addition,the operational layer ensures the proper update of agent beliefs following the execution orthe completion of an action.In the case of a sensor, the agent intentions can specify its activation by executing theprimitive startSensor with the sensor parameters. For example, if the agent wants toactivate BandwidthUsageSensor between two adjacent points, it has to execute:(startSensor BandwidthUsageSensor :source host1 :dest host2).This will cause the corresponding belief to be created and maintained in the agent beliefdatabase. To stop a sensor, the agent should execute(stopSensor BandwidthUsageSensor :source host1 :dest host2).This causes the corresponding belief to be removed from the agent belief database.Similarly, calculators and reactors can be started and stopped using the respectiveprimitives startCalculator, stopCalculator, startReactor and stopReactor. For exam-ple, an emergency reactor can be used to kill user processes that are excessively using amachine resources. It can be launched on host `dahlia' using:(startReactor KillConsumingProcesses :host dahlia).Of course, there should exist beliefs in the agent telling which are the resource consum-ing processes on the target host.Finally, e�ectors can only be executed in a one-shot way. For example, the kill processe�ector can be invoked as follows:(effector KillProcess :host dahlia :pid 4585).3.3 Agent CommunicationCommunication means are viewed as particular agent e�ectors and sensors. To send aKQML message, the e�ector KqmlSend is used, with the message text as parameter. Simi-larly, KQML messages sent by other agents are received using the KqmlRecv sensor.7

4 Abstract Agent DesignAccording to the problem description in Section 2, an agent has two types of activities.The �rst type of activity is related to the usual management tasks that the domain forwhich the agent is responsible requires. For the need of this prototype, we chose the samplemanagement task of monitoring the network elements in the agent's domain, for exampleto detect the global status of each network element. Hence, the �rst role that an agent hasto ensure is that of domain monitoring.The second type of activity is related to the detection of unreliable agents within themanagement agent system. This activity requires two roles, the role of being a tester , andthat of being a testee.The speci�cation of these roles using the abstract agent model is described in thefollowing sections.4.1 The Domain Monitoring RoleGoal Generation To have an agent ensure the role of domain monitoring, it can bemotivated to have the status of each of the network elements in its domain. If we supposethat beliefs that express that a network element is included in the agent's domain areexpressed as follows:(InMyDomain :ne hub101) // ne: Network Elementand that beliefs telling of the monitored status of a network element are of the form:(NetworkElementStatus :ne hub101 :status OPERATING),then the domain monitoring motivation can be expressed like the following:(InMyDomain :ne ?e) , (NetworkElementStatus :ne $e) (M1).This motivation makes the agent try to have the status of a network element as soon asit is or becomes part of its domain. The motivation is violated when a network element ebelongs to the agent's domain, but the agent does not have its status in its belief database.This causes the agent to create a goal of the form:(achieve (NetworkElementStatus :ne $e)) (G1).(M1) can also be violated when a network element is removed from the agent's domain,in the case of domain re-assignment for example. This situation also leads to the violationof the domain monitoring motivation since the statement (NetworkElementStatus :ne $e)holds while (InMyDomain :ne $e) does not. For this situation, the generated goal wouldbe:(achieve (not (NetworkElementStatus :ne $e))) (G2).Intentions To achieve goal (G1), the agent needs a sensor to perceive the status ofthe network element. The StatusMonitoringSensor is de�ned for this reason. To start it8

on a network element, the agent must execute:(startSensor StatusMonitoringSensor :ne $e)which will create and maintain the missing NetworkElementStatus belief, thus leading tothe satisfaction of the motivation.Goal (G2) can also be easily achieved, assuming a closed world assumption for theNetworkElementStatus beliefs, by executing:(stopSensor StatusMonitoringSensor :ne $e).4.2 The Tester RoleGoal Generation An agent A ensures the tester role regarding an agent B when ithas a belief on the reliability of agent B. Such a belief can be written as (AgentSldStatus:agent B :status reliable). Therefore, to make agent A ensure the tester role, it shouldsimply be motivated to having(AgentSldStatus :agent B) (M2).Satisfying this motivation requires the generation of multiple successive goals. Firstly,the tester should have a belief containing a set of, let us say, three representative elementsin agent B's domain. Therefore, the following goal has to be generated:(achieve (AgentThreeImportantElements :agent B :element1 ?elt1 :element2 ?elt2:element3 ?elt3)) (G3)Once this goal is achieved, or if it is already achieved, the next step is to have agentB's belief on elt1, elt2 and elt3. For each of these elements, a goal(achieve (BelievedNetworkElementStatus :agent B :ne $elt)) (G4)is generated, where the belief (BelievedNetworkElementStatus :agent B :ne $elt:status DOWN) tells that agent B believes that the status of elt is down.Afterwards, agent A has to start monitoring the same three elements. This is doneexactly in the same way as for the domain monitoring role, i.e. by generating goal (G1).Finally, if all the above goals are achieved, then all the beliefs required to deduce agentB's reliability status are available. The goal:(achieve (AgentSldStatus :agent B)) (G5)can be generated and successfully achieved.Later in time, the domain of agent B might change. One (or more) of the three elements,let us say elt1, that have been chosen in the (AgentThreeImportantElements) may bereplaced by another element, e.g. elt4. When agent A get informed of the change, themotivation becomes violated since the status belief on elt4 is missing and, hence, theSLDstatus of agent B cannot be maintained. Consequently, agent A will successively generatethe following goals: 9

� (achieve (not (BelievedNetworkElementStatus :agent B :element $elt1)))(G6).� (achieve (not (NetworkElementStatus :ne $elt1))), which makes the agent stopthe StatusMonitoringSensor on $elt1.� (achieve (BelievedNetworkElementStatus :agent B :ne $elt4)).� (achieve (NetworkElementStatus :ne $elt4)).Intentions There can be two possible plans to achieve goal (G3). The �rst planconsists in sending a subscription KQML message to agent B, asking it for all the elementsin its domain. By collecting this information, agent A can chose three network elementsaccording for example to their degree of importance in agent B's domain. Therefore, agentA generates and maintains itself the required belief of which three elements to monitor inagent B's domain.The second plan consists in delegating the same goal (G3) to agent B, and then sendinga KQML subscription message asking for belief (AgentThreeImportantElements :agent B).Therefore, the actual determination of the three elements is performed by the testee agentitself.Both plans lead to the achievement of generated goal (G3). However, the sec-ond plan performs better, since in the case of multiple testers for agent B, theAgentThreeImportantElements belief is computed only once. Also, communications over-head are less that in the �rst plan, since the �rst plan requires to send a KQML tellmessage for each element in the domain of agent B.Concerning goal (G4), it can be achieved by sending a subscription message to agentB, asking it for the status of the required network element. Each time agent B sends backa tell message stating a change in its belief on the status of elt, agent A converts it to a(BelievedNetworkElementStatus :agent B) belief.Finally, goal (G6) is achieved in the opposite way. The agent will unsubscribeon the (NetworkElementStatus :ne $elt1) belief in agent B, and the correspondingBelievedNetworkElementStatus will be retracted.4.3 The Testee RoleThe testee role is a passive role, in the sense that there is no need to motivate the tes-tee agent to make it ensure the role. In fact, the testee agent only replies to the queriessent by the tester agent, and achieves what it is asked to do. For example, when thetester receives the message containing goal (G3), it integrates the goal in its mentalcycle and tries to achieve it. The achievement of this goal is simply done by activat-ing the corresponding calculator TopThreeImportantElements which will create the belief10

(AgentThreeImportantElements :agent B) and update it whenever the domain of agent Bevolves.In addition, the testee agent must be able to manage multiple subscriptions originatingfrom di�erent testers. For example, suppose that there is another agent, agent C, that isalso testing agent B. If later in time, agent C is no longer motivated to test agent B, thenagent C should unsubscribe on agent B's belief (AgentThreeImportantElement :agent B),and then tells that agent B no longer needs to have this belief achieved. However, agentB should be aware that agent A still needs the belief and therefore, it should not stopmaintaining it.Though this problem frequently occurs in distributed agent design, we still do notprovide a high-level solution to tackling it. Instead, we postpone its resolution to theimplementation phase.5 Agent-Oriented Programming with JACK5.1 JACK ConceptsJACK [10, 11] is an agent programming language based on Java. It extends the Javaobject-oriented language by providing agent concepts such as beliefs and plans. Agentswritten in JACK language are �rst compiled into Java, and then they can be compiled andexecuted like any other Java program.The concepts that JACK includes to support agent programming are plans, events,belief databases and agents.Belief Databases Beliefs in JACK are stored in relational databases. JACK allows toeasily de�ne belief relations and o�ers facilities to make them generate the necessary eventsfor example when a new belief is added, updated or removed.Also, it is possible to de�ne database queries that can be used either to retrieve theagent beliefs or can be used in the logical expressions of goal statements.Events JACK de�nes several types of events. The simple Event is a general-purposeevent that can be used for several reasons, mainly to signal database changes which arerelevant for the agent operation. For short, we call the events that are generated due to abelief change, database events.The MessageEvents are used for the inter-agent communications. They are themechanism that enables agents to communicate in JACK. To send a message eventSampleMessageEvent, @send can be used as follows:@send (receiverAgent, sampleMessageEventInstance)where receiverAgent is the name of the agent to receive the message, andsampleMessageEventInstance is a created instance of SampleMessageEvent. The receiveragent should have a plan that can handle events of type SampleMessageEvent.11

An important type of events for the agent BDI behavior is the BDIGoalEvent. Thistype of events are handled by the agent not as simple events, but rather as goals that theagent has to achieve. Such events are raised using goal statements. Goal statements takea database query expression and a BDIGoalEvent instance as arguments. JACK o�ers thefollowing goal statements:� @achieve which �rst checks whether the belief query holds on the current belief stateor not. If it holds, then the statement successfully returns. If it does not hold, theinstance of the BDI goal is posted. The goal that handles such a BDIGoalEvent hasto execute a sequence of actions that brings the agent beliefs into a state where thebelief query succeeds.� @insist which is similar to the @achieve statement, except that the agent checksagain the query against its belief state after the plan is executed.� @test posts the BDI goal only if the query could not be evaluated to true or falsein the current beliefs. The handling plan should then provide actions that allow todetermine whether the query holds or not.� @determine is used to �nd a uni�cation of the belief query for which the plan thatis executed when the BDI goal is posted succeeds. This means that the agent triesall the possible query uni�cation, until the executed plan succeeds for a particularuni�cation.Plans Plans are pre-established action procedures that the agent can use to perform acertain task or to respond to events that raise during its execution. Each plan handles aunique event type. When an event is posted, the agent �rst checks the plan pre-conditions,and if they match the current status of its belief, the plan is included within the possibleplans that can be executed. If there are many possible plans only one plan is selected.The plan can contain many kinds of actions. Database actions allow to manipulate thebeliefs of the agent by asserting and retracting beliefs. Also, it is possible to query thedatabases to search for a particular belief, or a set of beliefs.The plan may also contain goal statements. When a goal statement is encounteredduring the plan execution, the agent �rst tries to achieve the goal before continuing theexecution of the plan.A plan can also post events locally in the same agent, or can send message events toother agents. Synchronization is also supported through the use of the @waitfor statementwhich waits until a certain condition becomes true.Finally, a plan can contain raw Java expressions and can call methods in the agentclass.The Agent An agent is de�ned as containing a set of plans that handles the events thatcan be posted or received from the other agents. It also has a set of database instances thatcontain its beliefs during its execution. When the agent is running, it continuously performs12

a loop in which it waits for an event to occur, search for a suitable plan that processesthe event or achieves the goal and then executes that plan. The plan execution may leadto the generation of new events that are processed either synchronously or asynchronouslydepending on how the event was generated.5.2 Advantages of JACKIn our application, JACK was chosen mainly for two reasons. The �rst reason is that itprovides direct support of BDI concepts. For example, the belief database uses the samerelational model we use in our abstract agent model. Also, it allows for the de�nition ofgoal-oriented behavior. Also, JACK is an open agent framework, since it does not imposea particular way of goal generation or goal achievement mechanisms. Instead, these issuescan be fully taken under control with Java programming. For example, database queriesare de�ned at the same time the database itself is de�ned. Therefore, a database can beendowed with arbitrary complex queries if necessary. Similarly, one can de�ne as manygoal events as needed, and associate these goals to any expression that can be formulatedusing the database queries.The second reason is that JACK is a light-weight framework compared to other agentlanguages that o�er heavy-weight reasoning capabilities for example. The use of plans isparticularly advantageous in a domain such as network management where most of theperformed tasks mainly have a procedural nature.Another reason that contributed to chosing JACK, was that JACK has its originsback to PRS (Procedural Reasoning System) which provides a reliable proof-of-conceptbecause PRS was used for several concrete applications [12, 13] including applications inthe network management �eld.Finally, JACK has the advantage of being fully implemented in Java and JACK agentscan be easily integrated with other Java classes or components, since they are themselvescompiled into Java.6 Implementation with JACK Agents6.1 General ConsiderationsWhile mapping our agent speci�cations detailed in Section 4, some aspects are translatedin a general way, while others are translated in a case-by-case basis. This section presentsthe generally-used translations.6.1.1 Agent CommunicationsThe only means of communication in JACK are MessageEvents. However, MessageEventsdo not o�er built-in facilities to handle subscriptions and goal integration into the agent'smental cycle. Therefore, to map KQML messages in JACK, our implementation usednormal MessageEvents that are handled with plans that take into account the KQML13

semantics of the corresponding message. For example, the KQML message that issent to an agent to subscribe for the status of a network element is mapped into aSubscribeNetworkElementStatusMessage. This message is handled by a plan that �rstchecks whether the required belief exists or not, and then by adding the subscriber to alist of subscribers which is stored as a private member in the agent Java class. The sub-scribers list is indexed according to the network element. When a change occurs in theNetworkElementStatus database, the subscribers list is checked to �nd if there are sub-scribers on the changed network element, and if so, an appropriate message is sent to allthe network element subscribers.6.1.2 Motivations HandlingIn our implementation, we simulated the motivational behavior using goal events anddatabase events. Each motivation is simulated using a goal event that launches the moti-vation, and another goal event to discard it from the agent's mental cycle. Theses goalsare handled by plans that allow to lead to the motivation satisfaction, or respectively, toits removal. To make the agent detect that the motivation is violated, special databaseevents are de�ned and triggered when violation situations occur. These events are alsohandled by dedicated plans that are able to resolve the problem. Obviously, the plans thathandle a motivation violation are relevant only when the motivation is active in the agent'smental cycle.6.1.3 Operational LayerJACK does not support the de�nition of agent capabilities neither. Instead, we usedJACK concepts to have the same function as that of the operational layer. In that,the di�erent calculators are replaced by database-event driven plans. For example, theTopThreeImportantElements calculator is replaced by a plan that handles an event cor-responding to the addition or removal of a network element in the agent's domain, andre-computes the three representative elements and update the corresponding belief accord-ingly. Reactors could be implemented in a similar way.The StatusMonitoringSensor was implemented in a separate class and runs in its ownexecution thread. To start or stop a sensor within a plan de�nition, it is necessary to usecorresponding methods that have been previously de�ned in the agent class. Similarly, inorder for a sensor to update a belief, it has to use a special dedicated method in the agentclass. E�ectors could be implemented in a similar way, by using dedicated methods thatcan be invoked from plans.6.2 Implementation Example: The Domain Monitoring RoleThe motivation (M1) that makes the agent ensure the domain monitoring role is replacedby two goal events: StartDomainMonitoringGoal and StopDomainMonitoringGoal.14

In JACK, it is not possible to specify a composite expressions, such as (M1), in an@achieve statement. For this reason, a new belief (DomainMonitoring :is enabled) iscreated when the domain monitoring is enabled. Therefore, motivating the agent to ensurethe domain monitoring is equivalent to the following statement:@achieve ((DomainMonitoring :is enabled), StartDomainMonitoringGoal).The plan that handles this goal simply loops on all the elements listed in InMyDomainbeliefs and start the monitoring sensor upon them. Similarly, the plan that handlesStopDomainMonitoringGoal does the same loop and stops the monitoring sensor on allthe network elements in the agent's domain. This plan is invoked as a response to suchstatement:@achieve ((not (DomainMonitoring :is enabled)), StopDomainMonitoringGoal).To ensure that new elements added to the domain are included in the domain monitor-ing, and that the monitoring stops on the elements that are removed from the domain, theInMyDomain database generates an InMyDomainUpdate event whenever an element is addedor removed from the agent's domain. This event is handled by a plan that accordinglystarts or stops the monitoring sensor on that element.7 ConclusionSummary The purpose of this paper was two fold. From a Network Management pointof view, we addressed the problem of the reliability of a distributed NMS based on au-tonomous Intelligent Agents. Autonomous management agents are capable of performingcritical management tasks, and therefore, it is essential to ensure their reliability. Weproposed a mechanism by which, the di�erent agents are mutually testing each other bycomparing subsets of their respective beliefs. The SLD algorithm applied on their mutualresults allowed to detect the unreliable agents. This by itself allows to further improvethe reliability of the NMS by having the other reliable agents undertake the managementtasks that were performed by the unreliable agent. The result is a higher degree of faulttolerance and graceful degradation of the distributed NMS.From an Intelligent Agent architectural view, the work described in this paper allowedto experiment a BDI architecture in a concrete case study from the NM domain. Theproposed abstract agent model allowed to specify the application in a straightforward wayby using the metaphor of mental categories. The implementation using an agent frameworklike JACK lead to a robust application.Outlook Though this case study was developed for an academic purpose to experimentthe BDI agent architecture potentials, it still can be applied in practice within a NMSbased on intelligent agents. Some issues have to be further studied however:� A decision should be taken regarding which are the beliefs that have to be usedto test the agents. These representative beliefs should be chosen in order to most15

re
ect the reliability status of the agent. In addition, a threshold must be �xed toallow the tester to decide at which point two compared beliefs can be considered ascontradictory.� The task re-distribution amongst the reliable agents is also an issue that is worthstudying. For example, the reliable agents must have a detailed view of the tasks thatwere performed by the unreliable agent. Also, they should have criteria to determinehow these tasks can be re-distributed amongst the other agents.The implementation of the application allowed to experiment a BDI agent design andprogramming. We are moving forward to improve the abstract agent model and to enrich itwith more agent concepts such as cooperation mechanisms. The choice is still not yet takento whether JACK will be improved to support our agent concepts in a more straightforwardway, or to develop a new agent framework.On the other side, research is continuing within the Network Management Team at Eu-r�ecom to better exploit SLD potentials, mainly to perform a kind of stereo-monitoring thatallows to deduce advanced diagnostics of network problems using multiple agent visions ofthe same problem.References[1] Germ�an Goldszmidt and Yechiam Yemini. Distributed Management by Delegation.In The 15th International Conference on Distributed Computing Systems. IEEE Com-puter Society, June 1995.[2] Simon Znaty, Michel Lion, and Jean-Pierre Hubaux. Deal: A delegated agent languagefor developing network management functions. In First International Conference andExhibition on the Practical Application of Intelligent Agents and Multi-Agent Tech-nology, 1996.[3] Fergal Somers. Hybrid: Unifying centralised and distributed management for largehigh-speed networks. In Networks Operation and Maintenance Symposium (NOMS96),Kyoto, 1996. Available from http://www.broadcom.ie/~fs.[4] Morsy Cheikhrouhou, Pierre Conti, Jacques Labetoulle, and Karina Marcus. Intelli-gent agents for network management: Fault detection experiment. In Morris Sloman,Subrata Mazumdar, and Emil Lupu, editors, Distributed Management for the Net-worked Millennium, number VI in Integrated Network Management, pages 595{610,Boston, MA, May 1999. IFIP/IEEE.[5] Guy Berthet. Extension and Application of System-level Diagnosis Theory for Dis-tributed Fault Management in Communication Networks. PhD thesis, �Ecole Polytech-nique F�ed�erale de Lausanne, Lausanne, CH, 1996.16

[6] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and Prac-tice. Knowledge Engineering Review, 10(2):115{152, 1995.[7] Hyacinth S. Nwana. Software agents: An overview. Knowledge En-gineering Review, 11(3):205{244, October/November 1996. Available athttp://www.cs.umbc.edu/agents/introduction/ao/.[8] Yannis Labrou and Tim Finin. A proposal for a new KQML speci�ca-tion. Computer Science and Electrical Engineering Department, Universityof Maryland Baltimore County, Baltimore, Maryland, USA, February 1997.http://www.cs.umbc.edu/kqml/papers/.[9] Timothy J., Norman, and Derek Long. Goal creation in motivated agents. In MichaelWooldridge and N. R. Jennings, editors, Proceedings of the 1994 Workshop on AgentTheories, Architectures, and Languages. Springer, 1995.[10] Paolo Busetta, Ralph R�onnquist, Andrew Hodgson, and Andrew Lucas. Jack intel-ligent agents - components for intelligent agents in java. AgentLink News Letter,January 1999. White paper, http://www.agent-software.com.au.[11] Agent Oriented Software Pty. Ltd., Carlton, Victoria, Australia. JACK IntelligentAgents User Guide, 1998. http://www.agent-software.com.au.[12] M. P. George� and F. F. Ingrand. Real-time reasoning: The monitoring and control ofspacecraft systems. In Sixth IEEE conference on Arti�cial Intelligence Applications,Santa Brabra, CA, USA, March 1990.[13] Arti�cial Intelligence Center, SRI International, Menlo Park, CA, USA. ProceduralReasoning System User's Guide.
17

