
CRAMER-RA0 BOUNDS FOR SEMI-BLIND, BLIND AND TRAINING SEQUENCE 
BASED CHANNEL ESTIMATION? 

Elisabeth De Carvalho Dirk T.M. Slock 
Institut EURECOM 

B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE 
{carvalho,slodc} @eurecom.fr 

ABSTRACT 
Two channel estimation techniques are often opposed: 

training sequence based estimation in which a sequence of 
symbols known by the receiver is used and blind equal- 
ization in which the channel and/or the symbols are de- 
termined from the received signal only. The purpose of 
semi-blind techniques would be to adapt blind techniques in 
order to profit from the existence of a training sequence. A 
first approach to assess the performance of semi-blind meth- 
ods is proposed. We study Cramer-Rao Bounds for blind, 
semi-blind and training-sequence based channel estimates 
for a deterministic as well as a Gaussian symbol model, and 
comlpare them theoretically as well as in numerical evalua- 
tions. Furthermore, an example of comparison between the 
corresponding Maximum Likelihood estimation methods is 
given. 

1. INTRODUCTION 
Consider a sequence of symbols a(k) received through m 
channels y ( k )  = CL;' h(i)a(k-i) + ~ ( k )  = H N A N ( ~ )  + 
v(k), ~ ( k )  = [&'(k).-.yE(k)lH, H N  = [h(N-l).-.h(O)], 
 AN(^) = [ a H ( k - N +  1)-.-aH(k)lH, where superscript 
denotes Hermitian transpose. Let H(z) = CL;' h(z)z-' = 
[HF(z). - -Hz(z)J"  be the SIMO channel transfer func- 
tion, and h = [ hH(N-l).--hH(o) 3". Consider addi- 
tive independent white Gaussian circular noise ~ ( k )  with 

= E ~ ( k ) v ( i ) ~  = o~I,,,6kr. Assume we receive 
Z2k$'es: 

Y M ( ~ )  = TM(HN) A M + N - I ( ~ )  + VM(k)  (1) 

whereYM(k) = [yH(k-M+l) - - . y H ( k ) l H  andsimilarly for 
V M ( ~ ) ,  and 7~ HN)  is a block Toepliz matrix with M 
block rows and b N O m x ( M - l ) ]  as first block row. We 
shall simplify the notation in (1) with k = M-1 to 

Y = T A + V .  (2) 

We assume that m M  > M+N-l in which case the channel 
convolution matrix 7 has more rows than columns. If the 
H,(z>, i = 1,. . , , m have no zeros in common, then 7 has 
full column rank (which we will henceforth assume). 

Most of the actual mobile communication standards in- 
clude a training sequence used to estimate the channel, 
or simply some known symbols used for synchronization. 
Blind methods are based on the received signal only: the 
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purpose of semi-blind methods is to incorporate this a pri- 
ori knowlegde of a training sequence, which appears more 
relevant and robust than purely blind equalization. A per- 
formance comparison between blind, semi-blind and train- 
ing sequence techniques is proposed in term of Cramer-Rao 
Bounds CRB). Two models are discussed: the determinis- 

considered as deterministic, and the stochastic model in 
which the symbols are assumed Gaussian, which will prove 
more robust than the deterministic version. We consider 
here U: known to simplify the presentation. 

tic mode \ in which both the channel and the symbols are 

2. REAL AND COMPLEX CRB 
Let 6 be a vector of complex parameters, and OR = 
[ Re($)" Im(6)H] ", the associated real parameters. The 
Fisher Information Matrix (FIM) associated with OR is: 

where f ( Y / B R )  is the conditional probability density func- 
tion of the observations Y. Let B^R be an unbiased estimate, 
6~ = 6R-e^R the estimation error and CgR = EBR@ the er- 
ror covariance matrix. Jgl (OR) is the Cramer-Rao Bound: 

- -  

CgR 2 CRB = J i ' ( 6 ~ )  (4) 

As we work with complex quantities, it may be easier to 
consider complex derivation defined as 6 = $ (& - j $ )  
where 6 = a + jp .  Let Jv$ be defined as: 

and we will consider Jee and .Tee*. We get: 

When Jee* = 0, the real FIM is completely determined 6"' y 
Joe. In that case, Jee can be considered as a complex FIM, 
and Cg = E6sH 2 J-', the complex CRB. If Jee- # 0, JE' 
is also a bound on C$, but not as tight as the CRB. 

3. DETERMINISTIC MODEL 
For simplicity reasons, as Jee* = 0,  we will consider 
the complex CRB. The (complex) parameter vector 6 is: 

mailto:eurecom.fr


H 
6 = [ A: . A,, contains the unknown input sym- 
bols to be estimated (all the symbols (blind), part (semi- 
blind) or none (training sequence)), and h the channel co- 
efficients. The complex probability density function is: 

hH ] 

Y s  = 'TA is the signal part of Y. The complex FIM is: 

H H 

. C,(6) is the error co- where: Q = 2 and R = 2 
variance matrix of the channel estimate corresDonding to 

dY ay X 

dA:, ah* 

the joint estimation of the symbols and the &&el: 
- 

(9) 

PQ" = I - PQN and PQH = Q H ( Q Q H ) - ' Q .  Next we 
elaborate this result for our specific cases. 

3.1. Training Sequence based Channel Estimation 

CRBTS = U: [AHA] -' 
A is a structured matrix filled with the input symbols: 
'TA = Ah. The CRB depends on the value of the sym- 
bols present in the training sequence. It is minimized for 
a given training sequence energy when AHA is a multiple 

of identity. The CRB is then equal to - I n N .  This in- 

dicates a condition on the choice of a tramng sequence for 
good channel estimation. When the number of known un- 
correlated symbols becomes large, it is interesting to notice, 
by the law of large numbers, that &AHA tends to uzImiv, 
which corresponds to the minimal value of the CRB already 
found. In this case, the previous optimization condition is 
then verified. 

3.2. Blind Channel  Estimation 
J ( 6 )  is singular: [ -AH hH ] J ( 6 )  = 0. This singularity 
is due to the fact that blind estimation is only possible up 
to a scale factor: the channel cannot be estimated, and the 
CRB is then +co. However, the Moore-Penrose pseudo- 
inverse of J ( 6 ) ,  J + ( 6 ) ,  can be considered: it may be inter- 
preted as the CRB knowing the component of 6 along the 
null space of J ( 6 ) .  Appendix 1 can be adapted to prove it. 

AHP+A is also singular: h is its singular vector. Its 
Moore-Penrose pseudeinverse (which is not the correspond- 
ing submatrix of J + ( 6 ) )  can again be interpreted as the 
CRB knowing the component of h along the null space 
of AHP+A, which is equivalent to knowing the phase and 
module of the channel: see Appendix 1. More precisely, let 
f i  be an unbiased estimate (apart from an arbitrary module 
and phase) of h obtained by blind estimation. The previous 
pseudo-inverse is the CRB for k = a e f V k  where a and cp 
are adjusted so that h H i  = hHh (= VzHh of Appendix 1). 

cT2 

@?? 

We choose then as CRB for blind estimation: 

CRBB = U: [dHP+d]+ (11) 

The real CRB has two singular vectors: 

h$) = h~ and ha"' [ -Im(h)H Re(h)H 1" (12) 

t 

Figure 1. Comparison between semi-blind, training 
sequence and  blind channel estimation 

Appendix 1 holds also for real parameters. The first singu- 
lar vector corresponds to the ambiguity in the module and 
the second one to the ambiguity in the phase. The pseudo- 
inverse corresponds to LR (defined as previously) where the 
module is determined using the equation: h$fi = hzhR, 
and the phase using ha"' h~ = 0. h g h ~  and the 0 corre- 
spond to V g T h ~  of Appendix 1, Yg is now 2-dimensional. 

3.3. Semi-Blind Channel  Estimation 
Part of the input symbols is known. The vector of input 
symbols can be written as: A = P [ 2: ] where Ak are 
the known symbols, A ,  the unknown symbols and P is some 
permutation matrix. Y s  = T A  = TkAk + 7,A, .  Then: 

T 2  

CRBSB = U; [dHP+uA]-' (13) 

3.4. Comparisons 
We compare here the different estimation modes through 
their CRB. These comparisons are illustrated by curves 
showing the trace of the CRBs w.r.t. the number of known 
symbols h f k  in the input burst. The SNR, defined as 9 
(average SNR per subchannel), is lOdB, M=100. The chan- 
nel is the following: 

HN= [ 0.6268+j0.8717 0.3516-jO.7012 1.6961-jO.63901 

In fig. 1 the semi-blind CRB is shown. When very few 
symbols are known, performances are low, which is prob- 
ably due to the difficulty of estimating the scale factor of 
the channel with few known symbols. However, we observe 
that after the introduction of very few more known symbols, 
performance increases dramatically. After this threshold of 
improvement, it is necessary to introduce a large number 
of known symbols to get a significant improvement. These 
numerical evaluations indicate that semi-blind techniques 
could improve performance drastically w.r.t. blind tech- 
niques with only a few known symbols. 

3.4.1. Semi-Blind us Training-Sequence 
In fig. 1 (left), the training sequence used in the train- 

ing sequence based channel estimation is the same (same 
symbols and same length) as the symbols known in the 
semi-blind mode. It can be noticed that semi-blind estima- 
tion represents an important gain w.r.t. training sequence 
mode, especially when few symbols are known. Besides, 
for the same performance, you do not need as many known 
symbols for semi-blind estimation compared to training se- 
quence based estimation. The CRB when all the M + N - 1 
input symbols are known is given as reference. 

1.1650+j0.2641 0.0751-j1.4462 -0.6965+j1.2460 

(14) 

130 



3.4.2. Blind US Semi-Blind 
In  this comparison, the input bursts are the same (same 

symbols and same length) but part of the symbols in the 
semi-blind mode is known. The CRB associated with blind 
(M,k = 0) channel estimates is theoretically +00, which 
allows us to trivially conclude that semi-blind (Mk > 0) 
methods have a better performance than blind methods. 

The blind CRB in (11) corresponds to the estimation of 
the channel but with some a priori information. For the 
semi-blind CRB, this a priori knowledge is not used. This 
is why direct comparison of these two CRBs is not possible. 

The projection of the CRB onto the space orthogonal 
to li can be interpreted as the CRB knowing the proper 
scaling factor for the channel (again the proof is similar to 
Appendix 1). P,ICRBBP,I = CRBB which confirms our 
interpretation of CRBB, and P ~ C R B S B P ~  5 CRBSB. 
Fig. 1 (right) shows the different quantities (Mk = 0 cor- 
responds to the blind case). The introduction of very few 
known symbols is sufficient to improve performance signif- 
icantly w.r.t. to blind estimation (more evident on other 
channels we tested). 

4. STOCHASTIC MODEL 
The input symbols are no longer considered as determinis- 
tic, but Gaussian. Y -Af(dkh, R y y ) ,  RYY=uZ~U~,~+Q%I:  

(15) 
where d k h  = 7kAk. Unlike in the deterministic case, the 
input symbols are no longer nuisance parameters in the 
estimation of 0 = h. Since Jee # 0 due to the factor 
det Ryy ,  we consider the real CRB, which is determined 
via (6) thanks to the quantities: 

The Gaussian model is more robust than the deterministic 
one: in the blind case, the module can indeed be estimated, 
but not the phase however, which leads to a singular FIM. 
The singular vector is hg' (12). Again, the pseudo-inverse 
can be interpreted as the CRB knowing the phase of the 
channel. Let &R be a blind estimate; this CRB corresponds 
to f i ,  = ej'+'fiR, where cp is adjusted so that hg)  h~ > 0 

and = 0. 
Fig. 1 (right) shows the Gaussian semi-blind curve for the 

channel in (14). Gaussian and deterministic performance 
seem equivalent when a significant number of symbols is 
known. When few symbols are known, Gaussian semi-blind 
performs better, which other simulations confirmed. 

To compare Gaussian blind and semi-blind mode, we pro- 
jected the different CRBs onto the space orthogonal to the 
singular vector of the Gaussian blind FIM, which can be 
interpreted as the CRBs knowing the phase of the channel 
(see fig. 1 (right)). 

A Gaussian maximum likelihood method for semi-blind 
channel estimation is presented in [l]. 

T I  

5. MAXIMUM LIKELIHOOD METHODS 
CRBs are considered as good performance indicators for 
Maximum Likelihood (ML) estimators. Indeed, under cer- 
tain conditions, ML estimates are asymptotically efficient, 
i.e. unbiased and reaching the CRB. In the semi-blind case, 
although the estimation of the phase is not consistent (for a 
non-asymptotical number of known symbols we conjecture 

blind case, we also conjecture that the CRB (the pseudo- 

inverse) is attained by ~ G G L .  
However, deterministic ML (DML) estimates cannot 

reach the CRB: even asymptotically, the number of obser- 
vations per symbol is finite, this is why the input symbols 
cannot be estimated consistently. Eliminating the symbols 
(as in the SRM method), one iinds that there are essentially 
m - 1 equations per symbol period for the m channel im- 
pulse responses. Hence these can be estimated consistently. 
But the inconsistency of the symbol estimates prevents ef- 
ficiency of the channel estimate. 

We derive the asymptotic DML performance (essentially 
for N = 1) in order to compare it to the corresponding CRB 
and GML. The log-likelihood function is: 

that Gaussian ML (GML) estimates are e ik cient. For the 

1 In f(Y/o) = ct + - II(Y - Z A k )  - 7UA,112 

Solving w.r.t. the unknown symbols A,, we find: 

(19) d 

A ,  = (xHX)-'xH (Y - %Ah) (20) 

which is the output of a MMSEZF equalizer, with feedback 
of Ak. Substituting: 

min II(Y-Crk&) -XA,1I2 = (Y-CrkAk)x PA (Y-CrkAk) 
A" 

(21) 

5.1. Purely Blind Case 
The minimization criterion is: 

min h Y P+Y. (22) 
This criterion is insensitive to the module and phase of the 
channel: those quantities cannot be determined. Consider 
putting h = aeJVh, where cy is the module and cp the phase 
of the channel. For N = l ,  criterion (22) leads to: 

max hHFyyh (23) 
h 

A 

ryy = & xEl y i y y  is the sample covariance matrix, which 
converges to the true received signal covariance matrix: 
ryy = a:hhH + ut1. is the maximal eigenvector of FYY 
which is asymptotically M = Mu + CO) normally dis 

ryy i.e. &, and covariance matrix: 
tributed with mean equ $1 to the maximal eigenvector of 

The asymptotic blind CRB is (k = h - A): 

The blind DML estimate reaches asymptotically the CRB 
only when the SNR tends to 00. 
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Figure 2. CRBs and DML and GML performance 
for N = l  
5.2. Semi-blind Case 
The minimization criterion is: 

Using the decomposition h = a e J 9 h  and, for N = 1, 
x H X  = 0, the criterion is: 

min { Y HY - 2cyRe(Y HAkhe3') + cy211Ak112 - LHGyh}  
b , 9  

min(Y h - Z A ~ ) ~ P ~ ( Y  - Z A ~ )  (26) 

We h d :  (27) 

,. I Y H d k h ' ,  resulting in: (28)  @ = -arg { Y H d k h }  , cy = 
llAk 112 

m+xEH h { M ~ < ~  + vu"}  il (29) 

where cy = & y , y a  (the sum is taken over the y,  
containing unknown symbols only), v = z (k)a :~ , / l lAkl l  
(the sum is taken over the y, containing known symbols 
only). The problem decomposes into a blind part and a 
training sequence part (this is also true for N > 1)- It can 
be shown that asymptotically (Mu + CO and Mk -+ KJ)  the 
error covariance matrix of 71 is a linear combination of the 
error covariance matrices of both parts: We will not give 
the expression here for lack of space. 

Fig. 2 shows an example with SNR=OdB, M=100 and the 
channel H1 = [ 0.4005 -1.3414 0.3750 3". The trace of 
the covariance matrices and the CRB is plotted. Mk vanes 
from 1 to 99 and M ,  = M+N-l-Mk: although the CG- 
variance expression is only asymptotically valid, it seems 
to make sense for small values of Mk or Mu also. The 
curve showing the results for GML is in fact the Gaussian 
CRB, which should be asymptotically attained. As pre- 
dicted, DML does not reach its CRB asymptotically and 
its performance is below that of GML especially when few 
symbols are known. The performance of DML for h is also 
shown: in the case N=l ,  it is quite insensitive to variations 
in Mk. This number of known symbols is rather important 
though in the determination of the phase. 

From this study, we can conclude the following asymp 
totical relationships: 

CRBG,,,, = CGML I C D M L  (30) 

(31 1 ~ ~ ( C R B G ~ , , , )  5 t r ( C R B d e t )  5 t T ( C D M L ) ,  (for Mk small 

After the submission of this paper, we became aware of 
[Z] in which a semiblind GML method and corresponding 
Cramer-Rao Bound have also been pursued; see [l] for some 
comments. 

APPENDIX 1 

Consider the vector of parameters 8 = [ A H  hH ] 
true value 0" = [ AoH h o H ]  

mate. 

with 
and d an unbiased esti- 

The eigendecomposition of J k ~ ( 0 )  = 5 d " P . A  A 

is V(8)A(Q)V(8)H = & ( Q ) A l & ( 0 ) H  with V(8)  = 
[ %(e) %(e) ] where h ( 0 )  spans the null space of J ~ k ( 0 ) .  

Let's consider the following change of variables: cp = 

pose that we know hio = KoHho, so that the channel 
parameter of interest becomes: hi = V p H h .  The over- 

I O  
all parameter of interest is then: cp1 = [ 0 vpH 1 8 =  
vpHe. vo = [ vp U; T: cpz = cp; = = hl;; 
( P H =  [ c p f  cpZH 1- 

A 
Let ~ L , k , ( c p )  = ((JG:yl)hlhl)-'(P), since J~~~~ is non 

singular. From: 

(33) 

(34) 
OH 

we get: Ji;i;(e) = VpJh;L;(cp)Vl . 

Let's get back to the initial parameter 0 = Yfcpl + V;&. 
This is our initial parameter but knowing cp;. The CRB for 
a transformation of parameters [3] gives: 

c, 2 vPJ-'((Pl)Yp" 
I O  

r +  1 

(37) 
J 

Using (35), we get: C,,(S0) 2 J&(8").  
Note that this is the CRB for any unbiased estimator that 

satisfies VZHh = cp; and hence can be written as & = Vf&+ 
Vtcp; with $1 = YfHh. Any arbitrary unbiased estimate 
h = Vf+ +Vi& can be transformed into an estimate a by 
forcing h such that V,oHh = cpz in which case & = V:$, + 
vZocp20. 
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