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Abstract

The content-based indexing task considered in this paper
consists in recognizing from their voice, speakers involved
in a conversation. A new approach for speaker-based seg-
mentation, which is the first necessary step for this indexing
task, is described. Our study is done under the assump-
tions that no prior information on speakers is available,
that the number of speakers is unknown and that people
do not speak simultaneously. Audio data indexing is com-
monly divided in two parts : audio data is first segmented
with respect to speakers utterances and then resulting seg-
ments associated with a given speaker are merged together.
In this work, we focus on the first part and we propose a new
segmentation method based on second order statistics. The
practical significance of this study is illustrated by applying
our new technique to real data to show its efficiency.

1 Introduction

The use of multimedia databases is now common. How-
ever, the question of data accessibility still remains. The
retrieval of an audio document in a database should be easy
and quick. Further, in the case where only a small portion
of signal is of interest, it should be possible toaccess it di-
rectly without listening to the entire document. Therefore,
content-based indexing systems are needed. Several index-
ing/retrieval keys can be considered : word, topic and so on.
In this paper, the indexing/retrieval key we examine is the
identity of the speakers present in the audio document. In
other words, our speaker-based indexing task consists in the
recognition of the sequence of speakers involved in the con-
versation (who speaks and when). In our context, we make
no assumptions about the number of speakers, nor about
prior knowledge of their characteristics (no model, no train-
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ing phase). But we make the constraining assumption of
only one person speaking at a given time.

In addition to applications to audio databases for eas-
ier and quicker retrieval, the speaker-based indexing task is
also used in transcribing systems. Indeed, the recognition
rate of transcribing systems is improved when the speech
models are adapted to speakers. Therefore, our content-
based indexing task can be used as a preprocessing step.
The data corresponding toeach speaker involved in the au-
dio document are then used to adapt the speech models to
each speaker. Finally, the speech recognition step can be
initiated by using the speech models, which best describe
the data and the speaker.

The process of our content-based indexing task is di-
vided in two major parts. The audio data is first segmented
in order to obtain speech segments containing one speaker
only. Resulting segments related to the same speaker are
then merged together by using hierarchical clustering (see
e.g. [1]). These two parts can be considered separately and
studied independently. The segmentation step can be used
as a preliminary step for speaker tracking [2] and the hier-
archical clustering may be used to group the messages be-
longing to a same speaker [3]. In this paper, we focus on
the problem of speaker segmentation, which has received
attention only recently in theliterature. Segmentation algo-
rithms based on a distance between two consecutive parts
of the speech signal have been investigated in [4, 5, 6].
These segmentation algorithms suffer from a lack of sta-
bility since they rely on thresholding distance values. A
segmentation algorithm based on the Bayesian Information
Criterion (BIC) is presented in [7], but proves to require
long speech segments. In this paper, we propose an algo-
rithm which takes advantages of the two latter types of seg-
mentation techniques. A first pass is operated, which essen-
tially consists in a distance-based segmentation to detect the
most likely speaker changing points. Several distances or
similarity measures have been investigated. Then, a second
pass validates or otherwise the previously detected chang-
ing points by using the Bayesian Information Criterion.
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Figure 1. Principle of sliding windows

The paper is organized as follows. Section 2 presents the
new segmentation algorithm based on second order statis-
tics. Section 3 presents results of our segmentation tech-
nique when applied to real data. The quality of results are
evaluated using criteria also presented in section 3. Section
4 details how the segmentation step presented here is em-
bedded into the complete speaker-based indexing task. Fi-
nally, section 5 presents major conclusions and perspectives
as to the use of such a technique in a speaker recognition
process.

2 Speaker-based segmentation

The aim of segmentation is to obtain speech segments
where only one speaker is talking. A distance-based seg-
mentation is applied. First, the general principle of this
procedure is explained: the distance measures we use and
our technique for detecting speaker changing points are de-
tailed. Due to a lack of stability in the detection of speaker
changing points, a second pass using the Bayesian Informa-
tion Criterion (BIC) is sometimes needed (2.2).

2.1 Distance-based segmentation

The principle behind speaker change detection is to mea-
sure a distance (or dissimilarity) value between two consec-
utive parts of the signal (called windows), assuming that
each of these parts is related to one speaker only. A high
value of this distance indicates a change of speakers at
the common boundary of the two windows, whereas a low
value signifies that the two portions of the signal in question
correspond to the same speaker. The process is repeated
along all the audio signal, as shown in figure 1 and, for each
pair of windows, the distance value is stored.

Distance measuresThe distance measure should reflect
how similar two segments of a signal are. A segment is a

sequence of acoustic vectorsX = fx1:::xNXg and is as-
sumed to be related to one speaker only and to be gener-
ated by a multi-Gaussian processX � N (�X ;�X) where
�X is the mean vector,�X the covariance matrix andp the
dimension of the acoustic vectors. In the following para-
graphs, the measuring functions are referred as “distances”
although they may not satisfy the three properties for being
a distance function.

TheGeneralized Likelihood Ratio (GLR)was presented
in [8, 9]. The following hypothesis test is considered :
� H0 : both segmentsX andY are generated by the same
speakerZ = X [ Y � N (�Z ;�Z)
�H1 : segmentsX andY are generated by different speak-
ersX � N (�X ;�X) andY � N (�Y ;�Y )
The corresponding likelihood ratio is defined by:

� =
L(Z;N (�Z ;�Z))

L(X ;N (�X ;�X))L(Y;N (�Y ;�Y ))
whereL(X ;N (�X ;�X)) denotes the likelihood of the se-
quence of vectorsX with respect to the Gaussian process
N (�X ;�X). To obtain a distance measure between seg-
ments, the negative of the logarithm is taken:dGLR =
� log�.

The Kullbach-Leibler distanceis defined as follows
KL(X ;Y) = EX hlog(PX) � log(PY )i whereEX < : >

is the expectation operation performed with respect to the
probabilitydistribution functionPX ofX . The symmetriza-
tion given in [4] isKLS(X ;Y) = KL(X ;Y) + KL(Y;X ).

All the similarity measurespresented in this section are
described in more details in [10]. Two segmentsX andY
of a parameterized signal should have similar covariance
matrices, respectively�X and�Y , if they are generated by
the same speaker. More formally, to measure how similar
X andY are, we consider the matrix� = �X�

�1

Y . If both
segments arise from the same speaker then�X = �Y , so
that� is the identity matrix. The first similarity measure is
defined as:
�G(X ;Y) = a� log g +

1

p
(�X � �Y )�

�1

X
(�X � �Y )

T � 1

wherea is the arithmetic mean of the eigenvalues�i of �
andg is the geometric mean. Clearly, if�X = �Y (i.e.
X = Y), then�G = 0, otherwise�G > 0. A second
similarity measure is deduced from the previous one. It is
based on the fact that mean vectors can be affected by the
transmission channel and should not be taken intoaccount
for the second measure:�GC(X ;Y) = a � log g � 1 The
third similarity measure is a sphericity test for the matrix
�: �SC(X ;Y) = log a

g
The last similarity measure�DC

is based on the absolute deviation of the eigen values of�
compared to 1. All these similarity measures do not satisfy
the symmetry property of a distance. Therefore, they are
symmetrized as follows�S(X ;Y) = �(X ;Y) + �(Y;X )
where� is either�G, �GC , �SC or �DC.

Detection of the speaker changing pointsAll the above
distance measures result in similar characteristics: a high
value indicates a speaker changing point. By contrast, a



low value means that both segments are likely to be related
to the same speaker. Therefore, once all distance values
have been calculated, local maxima are searched for to de-
tect speaker changing points. To detect the local maxima,
we first filter the distance values graph with an averaging
filter. The graph on the left in figure 2 shows the distance
graph for the Generalized Likelihood Ratio (GLR) and the
graph on the right illustrates the sameGLR distance graph
after filtering. A local maximum is considered as significant
if the differences between its value and those of the minima
surrounding it are above a certain threshold. For example,
there is a non-significant local maximum inside the circle in
the graph on the right of figure 2. Moreover, if two maxima
are too close from one another, we keep only the one cor-
responding to the highest value, as shown in figure 3 where
the last peak of the�SC distance graph presents two local
maxima and the last one is preferred to the penultimate one.
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Figure 2. Detection of the speaker chang-
ing points : from left to right, GLR distance
graphs before filtering and after filtering

Our detection method was designed to meet the follow-
ing requirements:
� the same type of detection is required regardless of the
distance measure used,
� we would rather have the utterances of a same speaker
split in several segments than a segment containing utter-
ances of several speakers,
thus making this procedure sub-optimal in general. Experi-
ence showed that by fine-tuning the parameters, an accept-
able segmentation was obtained. However, the automation
of this tuning for real data was not possible. In this con-
text, we use a more formal approach. A second pass using
the Bayesian Information Criterion (BIC) is considered to
refine our results.

2.2 Refinement withBIC

We saw in the last section that our preliminary detec-
tion technique showed to be sub-optimal in general. It re-
sults in an over-segmentation and hence, short segments.
A second pass is therefore introduced, which aims at refin-
ing this segmentation before performing hierarchical clus-
tering. Consecutive segments will be merged if they satisfy

the Bayesian Information Criterion (BIC) detailed in [7].
The BIC is a likelihood criterion penalized by the model
complexity. GivenZ = fz1; :::; zNZg a sequence ofNZ
cepstral acoustic vectors andL(Z;M ) the likelihood ofZ
for the modelM . The BIC for the modelM is given by:
BIC(M ) = logL(Z;M ) � �m

2
logNZ wherem is the

number of parameters of the modelM and� is the penal-
ization factor. We assumed thatZ is generated by a multi-
Gaussian process. We consider the following hypothesis
test for a speaker change point at timei:
�H0: z1:::zNZ � N (�Z ;�Z)
� H1: z1:::zi � N (�Z1 ;�Z1) and zi+1:::zNZ �
N (�Z2 ;�Z2)
The maximum likelihood ratio betweenH0 andH1 is then:

R(i) =
NZ

2
log j�Zj �

NZ1

2
log j�Z1j �

NZ2

2
log j�Z2j (1)

where �Z, �Z1 and �Z2 are respectively the covari-
ance matrices of the complete data, offz1:::zig and of
fzi+1:::zNZg and NZ , NZ1 and NZ2 are respectively
the number of acoustic vectors of the complete data, of
fz1:::zig and offzi+1:::zNZg. This hypothesis test can be
seen as the comparison of two models : one models the data
with two multi-Gaussian and the second with one multi-
Gaussian only. The variations of the BIC value between
the two modelizations is given by�BIC(i) = �R(i)+�P ,
where the penalty is given byP = 1

2
(p+ 1

2
p(p+1)) logNZ

and � is the penalization factor. A negative value of
�BIC(i) indicates that the two multi-Gaussian modeliza-
tion fits best the dataZ. In this case, a speaker changing
point is detected at timei. In our application, the value ofi
represents the location of a changing point detected by the
method presented in section 2.1. By this mean, we can dif-
ferentiate between false and correct segmentation points.

3 Experimentations

A correct segmentation should provide the correct
speaker changes and therefore segments containing one
speaker only. We distinguish two types of errors related
to speaker change detection. Adeletion erroroccurs when
the process does not detect an existing speaker change. The
effect is that the resulting segment will contain two or more
speakers and therefore will alter the validity of the hierar-
chical clustering. Thedeletion errorrate is defined as the
ratio of the number of missed detections versus the expected
number of detections. Aninsertion error occurs when a
speaker change is detected although it does not exist. The
result is an over-segmentation : the utterances of a same
speaker are split into several parts. Hierarchical clustering
may not be affected if the length of the segments thus ob-
tained remains above an acceptable value. Theinsertion er-
ror rate is defined as the ratio of the number of false detec-
tions versus the expected number of detections. For evalu-
ating our technique, we will therefore give the rates of these



errors during the segmentation of our test data (see 3.2).

3.1 Data and parameterization

We use four conversations to test our approach. Two
of them, referred to asconv1 and conv2 , were arti-
ficially created by concatenating sentences of about 2s
from the TIMIT database. The other conversations are ex-
tracted from a database provided by Institut National de
l’Audiovisuel. This database contains French TV news
broadcasts and we chose two of them, referred to as
extrait1 andextrait3 .

We use three sets of acoustics vectors : set I contains vec-
tors with 12 lpcc coefficients (cepstral coefficients derivated
from the linear predictive coding coefficients), set II con-
tains vectors with mel-cepstral coefficients and set III con-
tains acoustic vectors of dimension 2, the first coefficient is
the energy of the signal and the second is the pitch. See [11]
for more details.

3.2 Results and discussions

Evaluation of the sets of acoustic vectorsThe lpcc-
coefficients and the mel-cepstral coefficients produce the
best results for the distance-based segmentation (see table
1). However, the mel-cepstral coefficients give better results
than lpcc-coefficients for synthetic data for the BIC pass
(see table 2). The mel-cepstral should be preferred because
the BIC values of a real and of a false speaker changing
points computed with mel-cepstral coefficients show more
contrast than those computed with lpcc coefficients. Thus,
it is easier to fine-tune automatically the parameter� to dis-
tinguish real from false changing points. The set III (signal
energy and pitch) is not suitable to detect the speaker chang-
ing points. This probably comes from our cepstral coeffi-
cient pitch detection method, which is not rather reliable.
We have also experimented using the same sets of acoustic
vectors completed with the�-coefficients (first derivatives).
The use of�-coefficients deteriorates the performances of
both passes: the peaks of the distance graph are smoothed
away thus making the detection of the speaker changing
points more difficult and the BIC seems to be very sensi-
tive to the dimension of the acoustic vectors.

deletion insertion deletion insertion
error (I) error (I) error (II) error (II)

conv1 0 0 0 0
conv2 0 0 12.5% 0
extrait1 0 52.6% 0 52.6%
extrait3 5.9% 158% 5.9% 158%

Table 1. Errors with the GLR distance mea-
sure for set I and set II

Evaluation of the distance measuresThe distance
graphs obtained with the different distance measures are
shown in figure 3. The vertical lines indicate the localiza-
tion of the real speaker changing points and the stars (�)
represent the speaker changing points resulting from the
distance-based segmentation. We first point out the abil-
ity of our segmentation technique to detect speaker chang-
ing points, even when they are close to one another. Al-
though the Kullbach-Leibler (KL) distance and the Gener-
alized Likelihood Ratio (GLR) are the most computation-
ally costly, they produce the best results: one can distin-
guish easily the peaks corresponding to the speaker chang-
ing points. The�G measure seems to be a good compromise
since its computational cost is lower than with theKL and
theGLR distances and it provides almost similar results.
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Figure 3. Distance-based segmentation with
several distances

Discussion about parameter� Concerning the param-
eter�, its value should be equal to 1 in theory (see [7]).
Besides, equation (1) implies that the number of changing
points detected should decrease as the value of� increases.
In practice, we have better results by setting it empirically
to 1,25. We can deduce from tables 1 and 2 that the sec-
ond pass is not necessary for the synthetic data (conv1 and
conv2 ). Indeed, the BIC procedure tends to deteriorate the
results from the distance-based segmentation. By contrast,



the evolution of deletion and insertion error rates between
the first pass (table 1) and the second pass (table 2) clearly
demonstrates that the second pass improves results from the
first pass for the real data (extrait1 and extrait3 ).
It should be noticed that a substantial part of the insertion
errors inextrait1 andextrait3 is due to significant
pauses within single-speaker utterances.

deletion insertion deletion insertion
error (I) error (I) error (II) error (II)

conv1 0 0 0 0
conv2 12.5% 0 25% 0
extrait1 5.3% 26.3% 5.3% 26.3%
extrait3 5.9% 117% 5.9% 117%

Table 2. Errors with BIC

4 The complete indexing task

Before concluding, we recall the complete procedure of
our indexing task and explicit where the segmentation step
takes place. Asillustrated in figure 4, the audio signal is first
parameterized (i.e. the acoustic vectors are computed on
small analysis windows called frames). Then, the distance-
based segmentation is operated, as detailed in section 2.1.
This typically results in an over-segmentation : the utter-
ances of a same speaker are split in several parts. A refine-
ment is performed by applying the BIC: short consecutive
segments related to a same speaker are merged. The final in-
dexing results consist in the sequence of speaker utterances
which constitutes the conversation. A hierarchical cluster-
ing step is therefore required to locate all the segments cor-
responding to a given speaker (see [7]).

5 Conclusion and future work

In this paper, we proposed a new segmentation algo-
rithm, which combines advantages of metric-based and
BIC-based techniques. A first pass locates accurately
changing points even close one to another. The second pass
improves the results by reducing the insertion error rate.
Our experimentations show encouraging results. Our efforts
will now concentrate on improving our technique of speaker
changing points for distance-based segmentation and on au-
tomating the choice of parameter�. At this point, it will be
necessary to fully validate our approach on larger databases,
such as HUB4 or SWITCHBOARD. The final step will be
to combine our technique with hierarchical clustering to
form a complete indexing procedure.
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[5] C. Montacié and M.-J. Caraty, “Sound channel video index-
ing,” in Eurospeech, pp. 2359–2362, 1997.

[6] H. Beigi and S. Maes, “Speaker, channel and environment
change detection,” inWorld congress of automation, 1998.

[7] S. Chen and P. Gopalakrishnan, “Speaker, environment and
channel change detection and clustering via the bayesian
information criterion,” inDARPA speech recognition work-
shop, 1998.

[8] H. Gish, M.-H. Siu, and R. Rohlicek, “Segregation of speak-
ers for speech recognition and speaker identification,” in
ICASSP, pp. 873–876, 1991.

[9] H. Gish and N. Schmidt, “Text-independent speaker identifi-
cation,” IEEE signal processing magazine, oct. 1994.

[10] F. Bimbot and al., “Second order statistical measures for text-
independant speaker identification,”Speech communication,
vol. 17, Aug 1995.

[11] L. Rabiner and R. Schafer,Digital processinf of speech sig-
nals. Prentince-Hall, 1978.


