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Abstract— Despite the growing success of WLAN systems,
current spectrum resource allocation algorithms used lack
flexibility to closely follow the traffic variations and adapt the
spectrum allocation in consequence, leading to performance
loss.

In this article we propose a flexible and powerful dis-
tributed spectrum allocation algorithm, called AB-DFSA, able
to learn over time and with the objective to maximize the
system throughput by using multi-user diversity, and able to
quickly adapt the spectrum allocation in consequence. Such
an algorithm finds its application in the scope of WLAN
systems (e.g.: 802.11x).

Keywords— Distributed optimization, flexible spectrum al-
location, opportunistic scheduling, WLAN, agent

I. I NTRODUCTION

Note that even if our study uses Sub-Carriers (SC)s as
a spectrum resource, the presented algorithm is still ap-
plicable (with appropriate caution regarding inter-channel
interference) to other types of systems. Also, we will refer
to (1) "users" as "nodes", and (2) to "sum capacity" as the
sum of the capacity per allocated SC over all the system
SCs. The study presented hereafter finds its application in
the context of spectrum pooling where an unlicensed spec-
trum band is shared by all the infrastructure equipments
(Access Point (AP)s) using a wireless system (Wireless
Local Area Network (WLAN)). Opportunistic methods to
allocate spectrum resource are more than necessary to use,
not to waste the precious spectrum resource and to closely
and quickly adapt to the needs. If the spectrum allocation
method takes into account multi-user diversity, the resultis
an increasing system sum capacity as the number of nodes
increases [1].

In this article, the proposed algorithm called Agent-
Based Distributed Flexible Spectrum Allocation (AB-
DFSA) achieves a dynamic and flexible UpLink (UL) Or-
thogonal Frequency Division Multiple Access (OFDMA)
SC allocation by exploiting multi-user diversity using a
distributed approach with the objective to maximize the
cell sum capacity. In addition, it has another very important
advantage: its global parameters allow an operator to easily
tune its network and change the optimization constraints
to adapt its network Quality of Service (QoS). Such a
multi-purpose algorithm is of particular interest to reduce
the burden and cost associated with spectrum network
planning, maintenance and upgrade.

The remainder of this paper is organized as follows.
The optimization problem is described in SectionII . Sec-
tion III consists in a global overview of our distributed
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optimization algorithm. In SectionIV we more precisely
explain the heuristic used. In SectionV we present some
results obtained with this algorithm. Finally, we conclude
the study in SectionVI .

II. OPTIMIZATION PROBLEM

First of all, let us define as "central node" the infrastruc-
ture equipment (AP), and as "nodes" the user equipments
(Mobile Terminal (MT)).

The optimization problem considered can be described
as follows (indexi refers to the nodes and indexj to the
SCs). GivenN available SCs to allocate amongM nodes,
each nodei having a Signal to Noise Ratio (SNR) value
γi j on SC j, find the best allocation of nodes on SCs that
maximizes the cell sum capacity, subject to the following
constraints: only a single node per SC at the end, and
(ni being the number of used SCs by nodei) ni = 0 (the
current nodei gets no SC) orni ∈ [nmin; nmax] andnmax< N.
The Shannon capacity achievable by nodei on SC j (for
a unit bandwidth) is simply:ci j = log2(1+ γi j ). We are
interested in the continous case of coding and modulation.
The objective is to find the final allocation vector for the
system maximizing the system sum capacity, assuming all
the constraints are respected. The central node broadcasts
the range ofni values. Then, each node internally regularly
controls itsni value to stay within the specified limits.

As this optimization problem is NP-complete, there
exists no algorithm to find the optimal solution in all cases
in a polynomial time. Accordingly, to find a "good" sub-
optimal solution we used an heuristic.

III. D ISTRIBUTED OPTIMIZATION

This work is not a theoretical study on distributed
optimization but rather it presents a flexible algorithm with
an emphasis put on the feasability of its realisation for real
systems.

The scenario envisaged consists of a single cell with a
central node and several geographically distributed nodes
in the cell. We assume a low mobility of the nodes, a
known channel at the receiver, a symmetric channel with
not "too rapid" variations over time, and SNR values do
not change during the negociation part, and a synchronized
UL reception of the messages.

We have assumed nodes have full responsibility in
choosing their set of SCs to use for transmission, and our
algorithm does not require the nodes to transmit all their
information to the central node, but only the necessary
information. We tried to reduce as much as possible the
coordination overhead. Such a distributed approach is of
particular interest when the number of attached nodes
becomes large. Distributed optimization methods possess



many advantages such as: scalability, robustness, adaptabil-
ity to varying conditions. Also, distributed agents can be
equiped with learning capabilites such as Reinforcement
Learning (RL). Each agent runs the algorithm separately
and by interacting with the other agents, they all contribute
to create a globally optimal solution. As such, the number
of tasks performed per node is reduced.

We used a distributed approach for UL allocation, with
a feedback broadcasted by the central node. All nodes
willing to participate in the SC allocation, simultaneously
transmit an UL message to the central node. Thus, colli-
sions are encouraged and handled during the negociation
phase, in order not to have one during the data transmis-
sion. This way, the problem of hidden nodes is completely
removed and there is no risk of performance degradation
due to collisions during the data transmission phase. Our
algorithm is scalable with the number of nodes and able,
without any prior knowledge of the number of nodes, to
dynamically adapt to the following 3 scenarios:N = M,
N < M and N > M, as well as to any values ofnmin and
nmax.

We propose a method consisting in a succession of
short UL and DownLink (DL) messages to coordinate
the distributed allocation. Nodes do not communicate with
each other, but only require to exchange information with
the central node to coordinate their allocation. Then, they
receive the result by central node broadcast. The central
node only acts as a filter extracting the maximum and the
minimum values out of all the received values, and sending
it back to the nodes for information sharing. To reduce the
coordination overhead between all the nodes, we used a
parallel exchange of information.

The technique we used consists in an UL simultaneous
exchange of information by all active nodes towards the
central node. By forcing all contenders (even hidden nodes)
to express their desire at the same time and by broadcasting
a result (the maximum value and the minimum value per
SC) we were able to completely remove the hidden node
problem! The capacity valueci j is time-coded. Practically,
each node will code its capacity value and transform it into
a message duration such that the shorter the message, the
greater the capacity.

In practice, it is very easy for the central node to
detect the maximum capacity value: by detecting the first
drop (simple gap detection rule) in the aggregation of
the received messages. Duration between the start and
the first drop gives the corresponding transmitted value.
By detecting the total duration of the longer message the
central node knows the minimum capacity value. As the
optimization progresses, only the best values will be kept.
The DL message will be sent only after the end of the
longest SC message. An advantage of this method is the
simplicity of the coding and decoding, robustness against
interference and collisions, and it does not require an
orthogonal coding for each node or each capacity value.

At the end of the optimization phase, a given SC is allo-
cated to only a single node, but a node can be specialized
in several SCs. During the optimization process there is
both an inter-node negociation (to respect the unicity of
node allocation per SC) and intra-node negociation (due
to the ni constraints). Indeed, each node would want to

use all thenmax SCs, but this resource must be optimally
shared among all the nodes to globally maximize the cell
UL sum capacity, by means of local interactions.

After the end of the SC allocation phase, the allocated
nodes all simultaneously transmit their data frame (same
and fixed duration over all nodes), followed by an acknowl-
edgment frame broadcasted by the central node. Then, a
new SC allocation phase takes place, and so on.

IV. M ODELLING AND DESCRIPTION OF THE HEURISTIC

To solve the considered optimization problem we used
a general heuristic inspired from a model of division of
labor used by social insects such as ants, wasps, etc. This
heuristic comes from the domain of biology (studies of
social insects) then modeled by the domain of artificial
intelligence, improved and successfully applied to solve
real world optimization problems, using a set of cooperat-
ing agents. This heurisitic was proven to be very efficient
to optimize real life problems of dynamic and distributed
tasks allocation in the industry [2], [3].

Agents use the same finite set of simple rules to interact
with each other. The result of this cooperation is an auto-
organization at the system level. The modelling challenge
is to find the appropriate set of local rules that will globally
create the desired behavior. We managed to successfully
adapt and use this heuristic to our problem with good
results, thus showing its great potential for optimization
and control of cooperating agents.

The ability of an agent to perform a task depends on its
ability for this task, as well as the number of other agents
willing to perform this task. Thus, agents "specialize" over
time in the tasks where they are best fitted for, by means
of a variable threshold as well as by inter-agent conflicts
(dominance contests).

The variable threshold with time of use model [4] is
able to appropriately adapt to very dynamic environments.
The more an agent becomes specialized in a given type of
task, the greater the probability to engage in performing it
in the future. Each agent maintains and update over time
a threshold per type of job to be done.

In our model, a node contains (1) a constraint controller
and (2) a set ofN cooperating agents (one by SC). The
constraint controller ensures that the contraints in number
of active SCs per node are always ensured. The main
objective of an agent is to stay active (ON) at the end of
the optimization process. Agents interact internally (with
other SC-agents within the same node) and externally
(with agents representing the same SC index but from
other nodes). The rules of interactions of agents between
them, are build to reach a global optimum by using local
interactions, as in auto-organisation. While they interact,
agents exchange information about capacity values.

To become stronger and have better chances to stay
active, agents organize in groups (within each node) and try
to find the best other members of their group for them to be
ON at the end. The weakest agents are left apart and groups
are reconstructed until the end of the optimization process.
Groups are organized and re-organized dynamically and
autonomously to reach the best final configuration for the
system.



We assume that a node is able to simultaneously perform
nmax tasks out of a total ofN tasks. An agent is able to
perform only a single task, and it can either perform it
(ON status for that SC) or not.

In our model, an agent’s threshold value changes over
time and its value depends on (1) its previous history, and
(2) its ability to perform its task better than the agents
from other nodes for that same task (i.e. SC). The threshold
value will modify the probability of that agent to perform
its task in the future, such that: a low threshold leads to
a high probability to perform this task, whereas a high
threshold means a low probability to perform this task.

In optimization, there is an important trade-off which is
to equilibrate between exploitation of the current solution
and exploration of new solutions. The chosen heurisitic,
owing to its variable threshold model, adapts well to a
dynamic environment and leads to faster convergence (but
not premature) than many other heuristics. It is also very
efficient in avoiding local optima. It uses a simple RL
algorithm described hereafter. In addition, our model is
able to adapt to a large set of constraints. The result is that,
with the same algorithm, we are able to solve the problem
of SC allocation for a range of SCs per node from 1 up
to N. The particular case where a single node can capture
all N available SCs can be interpreted as a new allocation
method for a single channel system.

The first time, each node starts with itsnmax best SCs
ON, before transmitting in UL. Then, the following steps
(1) to (4) are repeated until all constraints are ensured : (1)
the amplitude of the threshold variation∆θi j is determined
(according to a given function) per SC and per node, (2)
each node updates all its threshold valuesθi j , (3) then each
agenti updates its status per SC (ON or OFF) by evaluating
the probabilitypi j (function of its thresholdθi j ) to perform
task j using a Fermi-Dirac distribution. Finally, (4) each
node’s constraint controller must control ifni is within the
acceptable values.

Our algorithm contains several global and easy to con-
trol parameters, allowing to tune the quality of the solution
and the speed of convergence as needed.

V. SOME RESULTS

The numerical values used in the following scenario
is modified values taken from an IEEE 802.11a system.
However, other values could be taken without altering the
conclusions.

Taking as an example an 802.11a system [5] in the band
[5.25−5.35] GHz, we calculated the maximum range of
SNR values for any cell node. The maximum range of
capacity values per SC was deduced. After calculations
and taking into account the maximum transmit power reg-
ulations, the SC bandwidth and the set of possible transmit
modes, we obtain that all SNR valuesγi j (∀i, j) are within:
[γmin;γmax] = [13.5;78.07] dB . In our study, only the con-
tinuous capacity case is considered. We can now transform
these SNR values to find out the maximum capacity range
ci j (∀i, j) are within:[cmin;cmax] = [4.54;25.9] b/s/Hz (for
a SC bandwidth of 1 Hz).ci j values are uniformly drawn
within [cmin;cmax]. Note, that the aim of this study was not
to focus on the channel model, but rather to demonstrate
the benefit of the proposed algorithm.

The results presented were obtained for the following
range of values:N = 10 : 10 : 50,M = 10 : 10 : 100,nmin = 1
andnmax= 0.1×N. In other words, each node is allowed
to be allocated up to 10% of the total spectrum resource.
Thenmin andnmax constraints can be interpreted as setting
limits of total capacity per node, assuming we know the
distribution of capacity values per SC. Setting such limits
for nodes allow to control that not a single node will be
allocated the entire spectrum resource, as well as that there
is at least a minimum bandwidth per node to run a given
service.

Each point in the following figures corresponds to a
mean over 10 different and randomly selected new set of
values.

The maximum total sum capacity corresponds to the
allocation ofN values atcmax, which is where the system
tends for an infinite number of nodes when using multi-
user diversity. As seen in Figure1, the total sum capacity
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Fig. 1. Total sum capacity per SC for varying N and M, nmin = 1 and
nmax = 10% of N

per SC increases with the number of nodesM and tends
towards the maximum total sum capacity per SC, due
to the multi-user diversity (nodes with better capacities
can be chosen). Note that asnmin = 1, the resulting cell
allocation contains no idle SC, they are all allocated. Also,
the system sum capacity increases withN but slower than
theN factor, which explains why the sum capacity per SC
is reduced while the numberN of available SCs increases.
The reason is that asnmax = 0.1×N, the SC block size
increases, leading to less and less exploitation of the multi-
user diversity.

After discussing the quality of the obtained solution,
Figure2 presents the speed of convergence to it, in terms
of mean number of iterations per SC. As seen in Figure
2, the mean number of iterations per SC to reach the final
cell allocation is reduced asM increases. In other words,
for a given N, it does not take longer to converge with
an additional number of nodes in the cell. This proves the
scalability in terms of nodes of the algorithm. In addition,
there is an increase in the total mean number of iterations
but which is smaller than theN factor, for the same reasons
than before.

Accordingly, for an increasing problem size (N in-
creases), the smaller the convergence time per SC, the
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Fig. 2. Mean number of iterations per SC for varying N and M, nmin
= 1 and nmax = 10% of N

smaller the capacity per SC. Note that theni constraints
have an impact on the quality of the solution and the
number of iterations. In other words, there is a tradeoff to
consider between speed of convergence towards the final
solution and its quality.

As each node is allowed to be allocatedni SCs with
ni ∈ [1 : 0.1×N], we also investigated the resulting mean
number of SC per allocated node (refer to Figure3). The
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Fig. 3. Mean number of SC per allocated node for varying N and M,
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mean number of SC per allocated node quickly stabilizes
as M increases. We can verify on Figure3 that the mean
number of SC per allocated node is approximately equal
to nmax+nmin

2 . Some nodes will be allocated more SCs
than other nodes. In other words, each node is able to
autonomously adapt its number of contending SCs within
the authorized limits, in order to reach no overlap at the
cell level at the end of the optimization phase, while trying
to maximize its own total capacity.

The ni contraints can be tuned to allow the coexistence
of various services in the same cell, each with its ownni

limits. The algorithm would be able, without the need to
know the penetration rate of each service, to autonomously
accomodate the best set of spectrum resource to each node,
given its service requirements.

VI. CONCLUSIONS

The distributed algorithm presented in this article is very
promising in the context of flexible spectrum allocation.
The obtained results are very good and the algorithm
can be easily controlled by an operator to change the
optimization constraints according to its proposed services,
and its network characteristics. In addition, the algorithm
is applicable for a large range of optimization constraints
even though the problem in itself is very complex. The
operator is able to control all the algorithm parameters
in order to choose between number of iterations to reach
the cell allocation or quality of the cell sum capacity.
This can be motivated to adapt to several conditions of
channel speed and amplitude of variation. We believe this
algorithm will be very efficient for next generations of
WLAN systems, to opportunistically use the appropriate
part of the spectrum according to the nodes’ needs.
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