
Enabling Pervasive Execution of Workflows

Frederic Montagut
SAP Labs France, Institut Eurecom

805, Avenue du Docteur Maurice Donat
Font de l’Orme, 06250 Mougins, France

frederic.montagut@sap.com

Refik Molva
Institut Eurecom

2229 Route des Crtes
06904 Sophia-Antipolis, France

refik.molva@eurecom.fr

Abstract

As opposed to existing workflow management systems,
the distributed execution of workflows in pervasive environ-
ments can not rely on centralized control. The dynamic
nature of the pervasive environments on the other hand
does not allow a permanent assignment of roles to devices.
In this paper, we suggest an architecture supporting dis-
tributed execution of workflows in pervasive environments
based on a fully decentralized control and dynamic assign-
ment of roles to devices. The architecture is defined in terms
of data structures associated with the workflow execution
plan and dynamic information, a protocol for the exchange
of the workflow data among devices and a new function
called role discovery dealing with the dynamic assignment
of roles to devices. This architecture is applied in the con-
text of Web services using BPEL as workflow description
language.

1. Introduction

Pervasive environments feature complex computer appli-
cations that allow mobile users to access ambient services.
These services range from residential temperature control to
customer assistance in a shopping centre [14]. In most ex-
isting examples of pervasive services, the mobile end-users
act only as clients of complex business processes executed
by the ambient infrastructure. In this paper, we suggest a
distributed computation paradigm whereby mobile users do
not act merely as clients but can also actively participate
in the execution of the overall services, providing their re-
sources as it has become possible to run more and more
complex applications on mobile devices [8, 5]. Using such a
distributed execution environment, complex interoperations
between mobile devices can therefore be envisioned as an
extension of the classical workflow concept. The execution
of a workflow by a set of devices in the pervasive environ-
ment raises new requirements such as the compliance of the

overall sequence of operations with the pre-defined work-
flow execution plan. As opposed to existing workflow man-
agement systems, the distributed execution of workflows in
pervasive environments can not rely on centralized control.
In addition, the dynamic nature of the pervasive environ-
ments does not allow a permanent assignment of roles to
devices.

In this paper, we suggest an architecture supporting dis-
tributed execution of workflows in pervasive environments
based on a fully decentralized control and dynamic assign-
ment of roles to devices. In section 2 the architecture is de-
fined in terms of data structures associated with the work-
flow execution plan and dynamic information, a protocol
for the exchange of the workflow data among devices and
a new function called role discovery dealing with the dy-
namic assignment of roles to devices. Section 3 depicts a
detailed application of the conceptual model based on Web
services and an extension of the workflow description lan-
guage BPEL. Section 4 discusses the related work and sec-
tion 5 gives some concluding remarks.

2. Pervasive workflow architecture

The challenges raised by pervasive execution of work-
flows are due to the lack of a dedicated infrastructure to
perform workflow management tasks. The main objectives
of our architecture is to cope with the lack of dedicated man-
agement infrastructure through distributed mechanisms. We
first give an overview of the execution environment. The
architecture is then described in terms of the runtime and
cross-organisational specifications. The architecture lifecy-
cle is finally described.

2.1. Problem statement and definitions

The pervasive nature of the execution environment is
characterized by two basic assumptions:

• distributed control: no single device is in charge of
managing the workflow execution and the overall con-

 1, 1R AND-
Split

 2,

 3,

AND-
Join 4,

2R

3R

4R

12r

13r

24r

34r

Figure 1. Process with two branches

trol is assured through the collaboration of the devices
involved in the execution of the workflow.

• dynamic task assignment: the devices that will be exe-
cuting an instance of a given workflow are not known
in advance.

These two assumptions are basically the challenges our ar-
chitecture design will need to cope with.

Our second assumption raises the need of a service to
assure discovery of devices executing a workflow instance.
In this paper, we focus on the workflow execution support,
the main features of this service discovery are therefore de-
tailed but its specification is out of the scope of this paper.
We define two cases: source discovery enabling discovery
of all devices at workflow initialization phase and runtime
discovery enabling devices’ discovery along with a work-
flow instance.

A pervasive workflow W is represented using a directed
graph. In the graphical workflow model, each vertex repre-
sents all workflow actions contiguously performed by a de-
vice, whereas the edges represent the sequence of workflow
steps among devices. We distinguish the following activi-
ties associated with the graph definition:

• tin: task activities consisting of actions performed by
devices participating in the workflow. Each task activ-
ity is locally executed by a given device and a vertex
n represents a set of task activities locally executed on
the same device. As a result, each vertex is linked to a
single device and two neighbour vertices in the graph
are linked to two different devices. Each task activity
is identified by an index i and the index n of the vertex
where it is executed.

• rij : routing activities used to transfer control and data
between devices. These are the graph edges and rep-
resent the data exchanged between the devices linked
to two consecutive vertices during the execution of a
workflow instance. i and j are the indexes of the ver-
tices linked by this edge.

• f : process control activities describing execution
schemes and dependencies between routing and task
activities. We consider three types of dependencies as
they are defined in [1]:

– Sequential execution: abstract interpretation of
the directed graph

– AND-Split/AND-JOIN: branches of routing and
task activities executed in parallel

– OR-Split/OR-JOIN: branches based on condi-
tional choice

W is therefore a finite set of tin, rij and f . In addition, we
also consider the notion of role derived from usual work-
flows. A role Ri is defined as a set of attributes necessary
to execute the task activities associated to a vertex. As we
stated before, we assume that the execution of a workflow
instance is not a priori assigned to any devices or users,
they are discovered at runtime. Our workflow model there-
fore relies on the notion of role defining an abstract entity
whereas usual workflows rely on the notion of business part-
ners which are identified persons or organisations. In a first
approach, we consider each role consists of two categories
of attributes:

• Security credentials assuring the right to execute (user
perspective) on the one hand

• Proof of compliance with the workflow task activities
assuring the capability to execute the required tasks
(device perspective) on the other hand

We associate this notion of role with the discovery service
described above. The role discovery service is in charge
of assigning devices/users owning the proper role for the
execution of task activities at a given vertex.

We can for instance model a simple process with two
branches of sequential activities using the graph depicted in
Figure 1. The device executing the task activities of ver-
tex 1 sends data to the devices in charge of vertices 2 and
3 (r12 and r13). Vertices 2 and 3 are executed in parallel
and the device executing vertex 4, which has to verify role
4, gathers the results. In our approach, we consider sim-
ple workflow scenarios where no synchronisation issues are
dealt with, branches are executed in parallel without any
constraints. We also do not focus neither on fault handling
nor compensation mechanisms.

2.2. Runtime specifications

The runtime specifications of our architecture are stud-
ied. We first specify the components of the distributed
workflow management system, the appropriate messaging
protocols ensuring the proper deployment and execution of
the workflow within this Workflow management system are
then examined.

2.2.1. Distributed workflow management system. Con-
sidering a distributed setting which does not rely on any
dedicated workflow management system implies that the
workflow management task is distributed among all in-
volved devices. As a result, a part of the workflow man-
agement infrastructure is also deployed on each device. A

2

workflow engine needs therefore to be implemented on each
device participating to the workflow. A workflow engine is
a software in charge of interpreting the representation of a
workflow using a computational form also called workflow
description language. Each workflow engine is in charge of
managing locally on the devices the execution of the work-
flow. With respect to the representation depicted above it
basically consists in the following sequence of tasks:

• Reception of all incoming routing activities
• Execution on the device the required task activities cor-

responding to the current vertex.
• Sending a routing activity to the next devices

Due to availability issues introduced by the pervasive envi-
ronment, we choose a stateless model. A single vertex can
only be linked with a device at a time, meaning that after
the execution of a given vertex, no residual information are
stored on a device, they are all transferred to the next one.
In the previous section, we defined the notion of pervasive
workflow W which describes the complete workflow exe-
cution pattern. At the workflow engine level, we need to
specify the part Wn of W locally executed on each device
for each vertex n. Wn of a vertex n therefore consists of:
• The task activities tin associated to the vertex n,
• The routing activities rin arriving and rnj leaving the

vertex n,
• The set of process control activities f describing the

dependencies between the considered tin, rin and rnj .
The complete execution of W is therefore composed of the
execution of the different Wn by the devices’ local work-
flow engines. We need now to specify the messaging pro-
tocols used in the communications between the different
workflow engines to allow a coherent execution of the Wn

with respect to the complete workflow description W .

2.2.2. Messaging protocols in the architecture. The com-
munications between the devices are managed at the work-
flow engine level according to the workflow specifications
as depicted in Figure 2. The messaging between the en-
gines refers to the routing activities defined above. Each
routing activities specifies the information required to en-
able a coherent workflow execution. The main objective of
the messaging within the architecture is first to allow a de-
vice which does not have any a priori knowledge about a
running instance of a workflow to be part of it and execute
what it is requested to at a given vertex. This device should
then be able to forward operation requests to the appropriate
recipients which are next in the workflow execution. The
objectives of the information carried by a single message
are therefore as follows:

1. Identify the vertex n of the workflow instance executed
to be able to determine the current step of the execution

2. Retrieve the Wn associated to the considered vertex to
actually know what to execute

Workflow engine

Figure 2. distributed WfMs

3. Identify the workflow instance associated to the mes-
sage received (for convergence point of branches)

4. Retrieve the identity of the devices associated to a role
to keep track of devices involved in the workflow

5. Retrieve the workflow data to modify the state of the
workflow at each execution step

As a result, we consider the following parameters in the
messaging format for the routing activities:

• W : complete workflow definition, which is a represen-
tation of the directed graph defined in 2.1

• Iid: Instance identifier, unique id to represent a given
instance of a workflow. The Id is composed of ran-
dom number plus the workflow initiator identity (IP
address)

• Workflow vertex number n that the message recipient
has to execute

• Map: Mapping table between roles and devices. This
table is updated with respect to the discovery mode
used; it can either be complete at the workflow initial-
isation phase with source discovery or updated at each
workflow vertex with runtime discovery

• Data: This includes the three data types defined in [1]:
control data, relevant data and application data.

Using such a messaging format allows a device upon recep-
tion of a request to cope with the five defined objectives:

• n is included in the message,
• Wn is derived from W with the knowledge of n,
• The workflow instance is uniquely identified by Iid
• The association roles to devices is stored in Map
• Workflow data are transported

2.3. Cross organizational aspects

The mobile devices involved in a workflow instance are
an extension of the organisation they belong to. They pro-
vide their contribution with respect to their available mobile
applications and are also in charge of managing their par-
ticipation to the workflow execution. Each device therefore
consists of two parts: a set of mobile applications supported
by the device and an embedded workflow engine. The mo-
bile applications of each device need to be kept private, they

3

Internal
process

Public
process

int

inr

njr

iit

Device's
applications

Figure 3. Mobile device representation

can only be invoked by the device itself. The workflow en-
gine needs therefore to act like a proxy between these ap-
plications and the other devices of the collaboration. In this
section, we detail how the access to these mobile applica-
tions through the workflow engine is performed.

2.3.1. Device representation. To cope with the require-
ments introduced by cross organisational collaboration
workflows, we adopt the representation of ”private-public”
processes introduced in [15]. As a result, the embedded
workflow engine acquires mainly two roles: managing the
device internal applications and coordinating the execution
of Wn. Thus, two processes corresponding to these roles
are defined within each device:

• The public process is the subset Wn specified in 2.2.1.
This process definition includes the activities the de-
vice is asked to perform during a workflow instance.

• The private process is an internal one developed by the
device user himself with respect to his device’s em-
bedded applications. The internal process of device k
is noted IPk. This process is not considered to be dis-
tributed but coordinated in a centralized manner.

We therefore consider a hierarchical model with two levels
to represent the task activities the devices will have to per-
form in our workflow model. The first level corresponds
to the public definition of the workflow provided by the
global process definition W and the subsets Wn derived
from it. At this first level, these task activities are called tin
and their specifications are known by all involved devices.
We consider that these public task activities are themselves
processes involving different steps to be completed. The
atomic definitions of these public tin are specified within
the private processes implemented on each device; this con-
stitutes the second level. The atomic definition of a given
task activity is thus only known by the device in charge of
executing this specific task. The link between these two lev-
els is realized through communications between public and
private processes.

Device i
inr

Device n Role discovery Device j

njr

Retrieves n

Generates Wn

Deployement of
Wn on WFE n

Request for
Device j ID

Lookup

Request

Ack
Device j ID

Performs
int

Update of Data
and Map

Figure 4. Architecture sequence diagram

2.3.2. Private, public processes link specification. To rep-
resent the internal process of a given device, we adopt the
same notation as the one defined in 2.2. The internal process
of device k IPk is as a result a set of internal activities:

• Internal task activities iti specifying the atomic tasks
performed by the device

• Process control activities f specifying the execution
schemes of the internal task activities.

This process is indeed centralized, routing activities are thus
not defined. Using this notation, we can define a public
task activity tin as a subset Ti of IPk composed of iti and
f . The internal process IPk of a device k is therefore di-
vided into different subsets Ti corresponding to the public
task activities tin defined in Wn. The internal communica-
tions resulting from this description are depicted in Figure
3. Whenever the mobile device needs to perform a task ac-
tivity tin after having received a routing activity rin, the
public process forwards the request to the internal process
which executes the subset Ti corresponding to tin. The lo-
cal applications required to achieve that subset are thus in-
voked. The result is transferred to the other devices via the
public process by the routing activity rnj .

2.4. Complete architecture mechanisms

So far we detailed the behavioural characteristics of the
elements part of our pervasive workflow architecture. In this
section, we present how these elements work together and
the basic mechanisms of this architecture. Figure 4 presents
a sequence diagram depicting the interactions between three
devices in charge of executing three vertices i, n and j and
the ambient role discovery service. We assume a runtime
discovery scenario. Upon reception of routing activity rin,
device n first retrieves n and generates the Wn associated to
the vertex it has to execute. This process is then deployed
on its local workflow engine and executed. In the meantime,
it makes a request to the role discovery service in order to
get the Id of the device that will execute vertex j. Once Wn

is completed and device j’s Id is received, Data and Map
fields are updated, the next routing activity rnj is sent.

4

BPEL
process

Web
service

Web
service

Web
service

Figure 5. BPEL centralized paradigm

3. Web services application

Section 2 presented the characteristics of the pervasive
workflow architecture we designed. We now present its ap-
plication using Web services technology whose composi-
tion properties are appropriate for distributed workflow ap-
plications. Web services technology makes use of BPEL
[3], workflow description language and WSDL [10] stan-
dard to enable the composition of services within work-
flows. This section is organised as follows. In the first part,
we recall the basis of usual BPEL processes. We then give
an overview of the infrastructure components associated to
our architecture in the context of Web services and finally
analyse the deployment of the architectural mechanisms.

3.1. Basis of BPEL

BPEL processes mainly involve two types of entities as
depicted in Figure 5: the central BPEL process and the
Web services part of its execution. The BPEL process is
locally executed on a BPEL engine which is itself a Web
service. BPEL processes are therefore strongly linked to
WSDL standard used to describe Web services functional-
ities and how to communicate with them. In this perspec-
tive, we present the role of WSDL before giving details on
BPEL.

3.1.1. Role of WSDL. WSDL is used to describe how to
communicate with a given Web service. Basically it in-
cludes the definition of available operations, variable for-
mats, service uri and messaging formats. In the context of
BPEL, the following WSDL parameters are used: opera-
tion, portType and partnerLinkType. A WSDL portType
defines a set of operations that can be invoked on the ser-
vice. The partnerlinkType parameter is used to describe
in case of BPEL processes a communication channel be-
tween two Web services. It associates a portType of each
service to form a channel composed of two unidirectional
links. Within it, each service is assigned to a unique role and
can send information to the other using the latter’s specified
portType. BPEL processes are built on top of the WSDL
definitions of all involved Web services.

3.1.2. BPEL processes. BPEL is an XML-based workflow
description language coordinating Web services in a cen-
tralized perspective. As depicted in Figure 5, Web ser-
vices part of a BPEL workflow indeed only have interac-
tions with the BPEL engine in charge of managing and in-
terpreting the whole process execution. The interactions
within the process are described in terms of partnerLink
which associates two Web services in a WSDL partner-
linkType by assigning the partnerlinkType roles to them.
BPEL language uses a set of activities to represent the work-
flow among which are <Invoke> (Web service invocation),
<Receive> (waiting state), <Sequence> (sequential exe-
cution), <Flow> (concurrent execution), <Switch> (condi-
tional scheme), <While> (iterative process), <Pick> (con-
ditional scheme based on external events).

3.2. Infrastructure components

In the architecture definition we analysed the require-
ments on the workflow management system to enable the
execution of our pervasive workflow model. Our conclusion
was the deployment on each device of workflow engines.
In the case of Web services, these workflow engines are
BPEL enabled and communicate via a Web service inter-
face. Each device executing a vertex of a workflow instance
will have to support this infrastructure. Figure 6 identifies
the infrastructure components present on devices taking part
in a pervasive workflow instance execution.

Two BPEL processes are deployed on the BPEL engine,
a BPEL public process Wn and an internal one IPk. Each
BPEL process has its own WSDL description. The pub-
lic process is contacted via routing activities; the public
process WSDL therefore includes the specifications of rout-
ing activities as WSDL operations. Yet routing activities are
the only one used to contact the public BPEL process, we
also need to advertise the device’s functionalities i.e. the
task activities it is able to execute so that it can be identified
as a potential actor of a workflow instance during the dis-
covery process. We choose to represent these functionalities
using the Web service ontology OWL-S [4]. This OWL-S
specification will indeed help a role discovery service to
perform the selection of the devices executing the work-
flow. Part of this selection process will be based on what
is required by a workflow in terms of task activities, and
what available devices advertise in their OWL-S specifica-
tion. The details of the OWL-S discovery system are not in
the scope of this study, [2, 11] are examples of such seman-
tic matching services. Integrating an ontological definition
in our infrastructure assumes that each potential actor of a
workflow shares a common ontology. The private process
only receives requests from the public process via task ac-
tivities. The specification as WSDL operations of these task
activities need thus to be part of the private process WSDL
definition. By definition the private process is kept private

5

BPEL
public process

WSDL
public process

Specification of
the OWL-S

 profile of

BPEL
private process

WSDL
private process

 Specification
 of

Device's
applications

int

inr

njr

Advertisement

Forwards the
result

int iit

result

int

BPEL engine

Figure 6. Web services based device infrastructure

and is only available to his owner. What is here kept private
is the atomic definition of the task activities part of the pub-
lic process, i.e. how they are locally executed by a device.

Now that we have a clear idea of the components part
of the Web services infrastructure, we need to specify the
deployment of runtime mechanisms exposed in our archi-
tecture. This includes first the computational representation
of W to enable a device to retrieve Wn expressed in BPEL
to execute a given vertex n. The specification of W has
also to enable the retrieval of valid WSDL specifications
deployed with the Wn BPEL process itself. We also need
to precise the specification of the link between public and
private process using BPEL.

3.3. Specification of W

The specification of W is a crucial point in the infrastruc-
ture since it is used by all involved devices to know what to
execute. We want to represent pervasive workflows W us-
ing BPEL characteristics. We thus need to define an exten-
sion of both WSDL and BPEL associated to our pervasive
workflow representation. The main ideas of the extension
of BPEL we define are first presented; we then specify the
extension including WSDL and BPEL definitions.

3.3.1. Process representation. Our goal is to use BPEL ac-
tivities to represent a distributed workflow W depicted by a
directed graph. We first translate the tin, rij and f defined
in section 2 into BPEL activities:

• tin: These are <invoke> activities invoking the BPEL
private process of a device.

• rij : These are also <invoke> activities, the device ex-
ecuting vertex n invokes the device executing the next

vertex with the required workflow data.
• f : These are <flow>, <sequence>, activities.

We use the concepts of BPEL processes and map them to
the directed graph approach of section 2 in order to define a
workflow description language capable to completely spec-
ify pervasive workflows W . We call this representation dis-
tBEPL standing for distributed BPEL. The goal of this ex-
tension is therefore to represent distributed processes from a
global perspective whereas BPEL is currently limited to de-
pict processes from a centralized perspective. BPEL control
activities are used to represent graph dependencies. For in-
stance, <flow> construct is used to represent AND-Split,
AND-Join; <sequence> construct represents sequential
execution. Figure 1 can therefore be represented by the fol-
lowing XML representation. We assume that each vertex of
this process implements one task activities.

<sequence>
<t11>
<flow>
<sequence>
<r12>
<t21>
<r24>

</sequence>
<sequence>
<r13>
<t31>
<r34>

</sequence>
</flow>
<t41>

</sequence>

The task activity of vertex 1 is first executed; a parallel ex-
ecution of two sequence branches is then performed.

3.3.2. Defining WSDL partnerLinkTypes and OWL-S
profiles. Deploying a BPEL process includes the deploy-
ment of the WSDL definition of the Web services involved
in the process as well as the partnerLinkType definition. In
our architecture, we want to enable execution of pervasive

6

processes whose participants are discovered at runtime. The
WSDL specification of the involved Web services will as a
result only be known when the latter are identified. Yet, our
service discovery procedure includes the verification of the
capability of a device to actually execute all required task
activities for a given vertex n. This capability matching pro-
cedure uses OWL-S ontology as we stated in 2.2.1 and more
specifically the OWL-S service profile. We choose there-
fore to associate each vertex n to a OWL-S profile spec-
ifying the task activities of n. This complete description
will be transported as part of our distBPEL representation of
W . The other crucial point is also to include as part of W
a WSDL representation of the partnerLinkType. Defining
partnerLinkType supposes that portType are already speci-
fied. In our case, the communications between devices are
done with the routing activities. As stated above, routing
activities are simple invocations and we call generically jre-
ceive the operation invoked on the device executing vertex
j, the portType defining jreceive is called jportType. Each
graph edge is associated to a partnerLinkType in a WSDL
file part of W with the form1:

<pLT name="nj">
<role name="ji">
<pT="jportType"/>

</role>
</pLT>

where n and j are the vertices number linked by the graph
edge, i is the role number associated to vertex j. Each link is
mapped to an unidirectional channel since communications
between two vertices are unidirectional. This link states that
vertex n sends information on jportType of vertex j.

3.3.3. DistBPEL representation. Now that the WSDL and
OWL-S details part of W are defined, distBPEL routing and
task activities can be specified. The first parameters we need
to precise are the partnerLink. We use unidirectional links
in partnerLinkTypes, BPEL partnerLink are therefore also
unidirectional and a single role is assigned. We use the fol-
lowing representation for partnerLink:

<pL name="nj" pLT="nj" jRole="ji"/>

where n and j are the vertices number linked by the graph
edge, i is the role number associated to vertex j. In the
distBPEL partnerLink notation, we modify the usual BPEL
my/partnerRole parameter into a jRole. This transforma-
tion expresses the shifting between a centralized to a global
point-of-view. We are now able to specify the representa-
tion of routing and task activities in distBPEL. These two
activities are basic standard BPEL <invoke> activities. A
routing activity rij has the following form:

<invoke pL="nj" pT="jportType" operation="jreceive"/>

1partnerLinkType, partnerLink and portType are respectively denoted
in our code subsets: pLT, pL and pT

with the same notation as defined above. The complete
specification of a task activity tin will be depicted later on
since it is internal to a device. Yet we adopt the following
representation in case of a signature operation for example:

<invoke pL="ninternal" pT="nportType"
operation="signature"/>

This mainly translates the idea of a task executed internally
since the partnerLink and portType associated to the opera-
tion signature are not known by others.

3.3.4. Example of process representation in distBPEL.
We provide a complex example of a process representation
using distBPEL of Figure 7. For the sake of simplicity, we
only focus on the abstract process definition. We consider a
process with parallel execution of two branches between ac-
tivities and dependencies between the branches. The work-
flow proposes two parallel branches of activities executed in
sequence, the process control activities <sequence> and
<flow> are thus used. This example is particular due to
the routing activity r25 which links two vertices from dif-
ferent branches. To have a coherent and consistent process
definition, this activity needs to be specified twice in the
distBPEL process definition. The computational represen-
tation of the directed graph has indeed to take into account
all dependencies between routing and task activities. In that
specific case, r25 has to be executed in parallel with r23 but
has also to be received by vertex 5 before executing t15.
This activity appears as a result twice in the process repre-
sentation.

<sequence>
<invoke pL="1internal" pT="1portType" operation="11"/>

<flow>
<sequence>
<invoke pL="12" pT="2portType" operation="2receive"/>
<invoke pL="2internal" pT="2portType" operation="12"/>

<flow>
<invoke pL="23" pT="3portType" operation="3receive"/>
<invoke pL="25" pT="5portType" operation="5receive"/>

</flow>
<invoke pL="3internal" pT="3portType" operation="13"/>
<invoke pL="36" pT="6portType" operation="6receive"/>

</sequence>
<sequence>
<invoke pL="14" pT="4portType" operation="4receive"/>
<invoke pL="4internal" pT="4portType" operation="14"/>

<flow>
<invoke pL="45" pT="5portType" operation="5receive"/>
<invoke pL="25" pT="5portType" operation="5receive"/>

</flow>
<invoke pL="5internal" pT="5portType" operation="15"/>
<invoke pL="56" pT="6portType" operation="6receive"/>

</sequence>
</flow>
<invoke pL="6internal" pT="6portType" operation="16"/>

</sequence>

3.3.5. Components of W . We finally sum up what we de-
tail above. The specification of W in our Web services in-
frastructure is composed of:

• The representation of the workflow directed graph in
distBPEL

• The OWL-S specification the task activities executed
for each workflow vertex n

• The WSDL specification of the partnerLinkType rep-
resenting the rij

7

1, 1R AND
-Split

4, 4R

12r

14r

2, 2R 23r
3, 3R

5, 5R

AND
-Join

AND
-Split

AND
-Join

25r

45r

36r

56r

6, 6R

Figure 7. Complex Business process

3.4. Deriving Wn

As we stated in our architecture, the execution of a ver-
tex n described in W is linked to its local description Wn.
We depicted in the last section a way to represent W using
an extension of BPEL, distBPEL. Based on this represen-
tation, we now present an algorithm enabling the retrieval
of Wn associated to a vertex n with the only knowledge of
n. The deployment of Wn includes both WSDL and BPEL
specifications. The WSDL definitions to be deployed are
the ones from the device’s public and private processes, the
WSDL representation of the next devices executing the next
nodes and the WSDL specification of the partnerLinkTypes.
The involved devices provide their WSDL representations,
here we therefore only focus on the BPEL definition of Wn.
The procedure consists of five steps which are now detailed.
We consider the generation of local BPEL specification for
vertex 5 in the workflow depicted in Figure 7.
Step 1: Specification of coherent partnerLinks. In dis-
tBPEL, we specify the partnerLink section from a global
point-of-view, when considering Wn, we focus on a vertex
n. The distBPEL partnerLinks are therefore modified ac-
cordingly. Here we consider two cases: either the distBPEL
partnerLink represents an incoming link in which case, the
”nRole” becomes ”myRole”, or it represents an out coming
link and the ”nRole” becomes ”partnerRole”. For instance
in the case of vertex 5 we get (only partnerLinks involving
vertex 5 are kept in the declaration):

<partnerLinks>
<pL name="45" pLT="45" myRole="55"/>
<pL name="25" pLT="25" myRole="55"/>
<pL name="56" pLT="56" partnerRole="66"/>
</partnerLinks>

Step 2: Focus on the considered vertex. The input of this
procedure is the global process description specified in sec-
tion 3.3.4. We want to derive from this input the local vision
of vertex 5 and only consider the incoming and out coming
routing activities as well as the task activities performed at
vertex 5. The first step of our procedure is therefore to focus
on those specific activities and delete the activities in which
vertex 5 is not involved. The other aspect is also to keep
the dependencies specified by the process control activities.
According to our procedure, r25, r45, t15, r56 are only kept:

<sequence>
<flow>
<sequence>
<flow>
<invoke pL="25" pT="5portType" operation="5receive"/>
</flow>
</sequence>
<sequence>
<flow>
<invoke pL="45" pT="5portType" operation="5receive"/>
<invoke pL="25" pT="5portType" operation="5receive"/>
</flow>
<invoke pL="5internal" pT="5portType" operation="15"/>
<invoke pL="56" pT="6portType" operation="6receive"/>
</sequence>
</flow>
</sequence>

Step 3: Simplification of redundant routing activities.
As we stated in the description of distBPEL, all dependen-
cies between activities need to be specified in a distBPEL
process description. As a result, in case of dependencies
between concurrent branches, activities creating these de-
pendencies are specified twice. When focusing on a single
vertex, we only keep the instance of a redundant activity
that creates dependencies on the activities concerning the
vertex. In our example, the second instance of r25 intro-
duces dependencies (sequential dependency) with the other
activities of vertex 5. The first instance is thus erased:
<sequence>
<flow>
<sequence>
<flow>
</flow>
</sequence>
<sequence>
<flow>
<invoke pL="45" pT="5portType" operation="5receive"/>
<invoke pL="25" pT="5portType" operation="5receive"/>
</flow>
<invoke pL="5internal" pT="5portType" operation="15"/>
<invoke pL="56" pT="6portType" operation="6receive"/>
</sequence>
</flow>
</sequence>

Step 4: Process control activities simplification. So far,
we restricted the global process description to the activities
involving a given vertex. This created inconsistency with
the process control activities. A process control activity
indeed specifies an execution scheme between at least two
routing or task activities. Process control activities which do
not verify this property are deleted from the specification.
To do so, we perform an iterative procedure till all process
control activities properly specify an execution scheme of
at least two activities:
<sequence>
<flow>
<invoke pL="45" pT="5portType" operation="5receive"/>
<invoke pL="25" pT="5portType" operation="5receive"/>
</flow>
<invoke pL="5internal" pT="5portType" operation="15"/>
<invoke pL="56" pT="6portType" operation="6receive"/>
</sequence>

Step 5: Translation into standard BPEL. The last step
now consists in retrieving a standard BPEL specification
of the vertex local code. In distBPEL we only specified
<invoke> type activities to model the process steps. In the
code resulting of the third step, only remain either incoming
or out coming routing activities and the vertex task activi-
ties. The task activities are let here untouched since they are
internal tasks and has to be specified by the device executing
the vertex. The incoming routing activities have to be mod-
ified. From the vertex point-of-view, these activities corre-
spond to a waiting state. This is expressed in BPEL by the

8

Device i

inr

Device n Role discovery Device j

njr

<invoke> activity

Generates
BPEL Wn

BPEL, WSDL
deployment

Request for
Device j ID

OWL-S based
lookup

Request

Ack
Device j ID

Invocation of
internal

applications

Update of Data
and Map

Retrieves n

<invoke> activity

Figure 8. Infrastructure sequence diagram

activity <receive>. Incoming routing activities are there-
fore transformed into <receive> activities with the same
partnerLink, portType and operation. Out coming routing
activities are on the contrary let untouched. We finally get
this BPEL code:
<sequence>
<flow>
<receive pL="45" pT="5portType" operation="5receive"/>
<receive pL="25" pT="5portType" operation="5receive">
</flow>
<invoke pL="5internal" pT="5portType" operation="15">
<invoke pL="56" pT="6portType" operation="6receive">
</sequence>

The BPEL specification obtained at step 5 is still an abstract
representation. Prior to the final deployment on the BPEL
engine, still remains the specification for the different in-
puts and outputs of the operations invoked on the internal
process. These are added using the WSDL specification
provided by the latter.

3.5. Cross-organisational aspects in BPEL

As we defined in the architecture definition, the execu-
tion of the task activities associated to a workflow vertex is
performed by a device on which are deployed two BPEL
processes, a public one and a private one. In this section,
we detail the communications between the private and pub-
lic in the case of BPEL. The public process manages the
participation of a device in the global workflow while the
internal process manages the execution of the task activi-
ties assigned to the device. We first provide a template for
the internal process specification and then specify the task
activity which is the link between the two processes.

3.5.1. Internal process specification in BPEL. As part of
our architecture each device owns an internal process man-
aging its embedded applications. This process is defined
by the device user and describes the operations the device
is able to perform. It is only invoked inside the device by
the public process. Hence, the internal process definition is
organised to assure this role and divided into subsets Ti as
we defined them in section 2.3.1. The process control func-
tion <pick> of BPEL enabling to make choices based on

external events is therefore used to represent this division.
In that case the external events are the incoming task activ-
ities tin made by the public process and asking to perform
specific operations. The BPEL code is organized in differ-
ent sections delimited by <onMessage> tags. Each section
corresponds to a specific subset Ti and is activated based on
incoming task activities.

<process name="internalprocess">
<pick createInstance="yes">
<onMessage pL="publicprivateLink" pT="IPport"
operation="signature192" variable="input">

<invoke.../>
</onMessage>
<onMessage pL="publicprivateLink" pT="IPport"
operation="encryption192" variable="input">

<invoke.../>
</onMessage>
...
</pick>
...
</process>

3.5.2. Task activity specification. The specification of W
provides a general description on what a task activity con-
sists in, its atomic definition has to be specified at runtime
when a device asked to perform vertex n generates Wn. It
is indeed the link between this general description and its
associated subset Ti of the internal process. The task activ-
ity is an <invoke> activity including portType, partnerLink
and operation proper to the internal process of a device. We
provide an example of task activity definition linked to the
internal process we depict above. Upon reception of r12,
the device is asked to perform a signature. The signature192
operation is invoked on the internal process with t12 defined
in the public process. Internally, the private process then ex-
ecutes the section corresponding to the <onMessage> part
where operation signature192 is mentioned.

<sequence name="processsequence">
<receive name= "r12" pL="12"pT="2portType"
operation="2receive" variable="input"/>
<invoke name="t12" pL="publicprivateLink" pT="IPport"
operation="signature192" inputVariable="input"
outputVariable="output"/>
<invoke name="r23" pL="23" pT="3portType"
operation="3receive" inputVariable="input"/>

...
</sequence>

3.5.3. Execution scheme of a distributed workflow in the
infrastructure. In section 2.4 we provide a sequence dia-
gram of the conceptual architecture, we detail in this sec-
tion the mapping with the concepts we have just presented.
Figure 8 depicts the sequence diagram associated to the in-
frastructure:

• Routing activities are specified as BPEL invocations,

• The generation of the Wn is performed with the proce-
dure of section 3.4

• The discovery procedure is based on the comparison
between the OWL-S definition of W and the one pro-
vided by the devices

9

4. Related work

The areas of research tackled by this work include work-
flow execution in pervasive environments, semantic com-
position of Web services and distributed execution of work-
flows.

Most of the research in the area of workflow execution
in pervasive environments concerns the interaction between
end-users and the process. In [14] a workflow-based ar-
chitecture to help mobile users of unfamiliar pervasive en-
vironments is proposed. Human interactions within BPEL
processes are studied in [9] where an architecture adapting
to workflow users’ mobility is introduced. These architec-
tures still consider workflow end-users with a low level of
implication within the workflow execution managed by the
ambient infrastructure. In comparison, we propose a self-
managing architecture enabling a completely distributed
workflow execution. Our architecture allows running more
complex pervasive collaborations between mobile workers.

Despite quite extensive work on semantic composition of
Web services falls in one of two approaches: assignment of
Web services instances at process design time [6] or at run-
time [12]. Our architecture addresses the runtime approach
and adds to existing solutions a stateless distributed envi-
ronment which allows more flexibility for the execution.

Several pieces of work provide an architecture for dis-
tributed execution of workflows yet they all suffer from
a static design and far from meeting the requirements of
pervasive environments. In [13] a decentralized orchestra-
tion scheme for Web services is proposed. Starting from a
centralized BPEL process specification, a distributed one is
produced and deployed on already designated Web services.
Self-Serv [7] implements a distributed orchestration plat-
form for composite Web services. Both of these solutions
propose distributed composition of Web services chosen at
the process designing phase. Our solution on the contrary
introduces an extension of BPEL language interpreting dis-
tributed processes to allow a runtime discovery of involved
Web services.

5. Conclusion

We presented an architecture and its associated Web ser-
vices infrastructure to support the execution of workflows
in pervasive environments. Our solution allows the exe-
cution of completely distributed business processes where
business partners can be discovered at runtime. We be-
lieve that thanks to the fully decentralized control that is
the underpinnings of the execution model, this architecture
will foster the development of new business cases suited to
pervasive environments. Lack of centralized control on the
other hand raises serious concerns about security and fault
recovery. Our future work will thus be twofold. On the one

hand, it will focus on security requirements brought up by
this architecture and the design of solutions. On the other
hand, fault handling mechanisms will be examined.

6. Acknowledgements

This work has been partially sponsored by EU IST-
Directorate General as a part of FP6 IST project MOS-
QUITO and by SAP Labs France S.A.S.

References

[1] The workflow reference model. Technical Report WFMC-
TC-1003, Workflow Management Coalition, 1995.

[2] Parameterized semantic matching for workflow composi-
tion. Technical Report RC23133, IBM, 2004.

[3] Business process execution language for web sevices,
http://www.ibm.com/developerworks/library/ws-bpel/.

[4] Owl-s specifications, http://www.daml.org/services 2003.
[5] Web services tool kit for mobile devices,

http://www.alphaworks.ibm.com/tech/wstkmd 2002.
[6] V. Agarwal, K. Dasgupta, N.Karnik, A. Kumar, A. Kundu,

S. Mittal, and B. Srivastava. A service creation environment
based on end to end composition of web services. In Pro-
ceedings of the WWW conference, 2005.

[7] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the
rapid development and scalable orchestration of composite
web services. Distributed and Parallel Databases, 17(1):5–
37, 2005.

[8] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghu-
nath. Web services on mobile devices - implementation and
experience. In Fifth IEEE Workshop on Mobile Computing
Systems and Applications, 2003.

[9] D. Chakraborty and H. Lei. Pervasive enablement of busi-
ness processes. In Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications
2004. PerCom 2004, pages 87– 97, March 2004.

[10] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (wsdl) 1.1,
http://www.w3.org/TR/wsdl 2001.

[11] M. Laukkanen and H. Helin. Composing workflows of se-
mantic web services. In Workshop on Web Services and
Agent-based Engineering, 2003.

[12] D. J. Mandell and S. A. McIlraith. Adapting bpel4ws for the
semantic web: The bottom-up approach to web service in-
teroperation. In Proceedings of International Semantic Web
Conference, October 2003.

[13] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing
composite web services. In Proceedings of Workshop on
Compilers for Parallel Computing, January 2003.

[14] A. Ranganathan and S. McFaddin. Using workflows to co-
ordinate web services in pervasive computing environments.
In Proceedings of the IEEE International Conference on
Web Services 2004, pages 288–295, July 2004.

[15] K. A. Schulz and M. E. Orlowska. Architectural issues for
cross-organisational b2b interactions. In 21st International
Conference on Distributed Computing Systems Workshops
(ICDCSW ’01), pages 79–87, 2001.

10

