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Abstract

Variational Bayesian (VB) methods are relatively new techniques
that allow fully Bayesian learning and fully Bayesian model selec-
tion in an approximated fashion. Fully Bayesian learning is impos-
sible in some models that contain hidden variables (e.g. GMM or
HMM). Variational methods are based on a bound of the intractable
Bayesian integral. Even if those are approximated methods, they
benefits of classical Bayesian properties. Thus VB algorithms allow
simultaneous model learning and model selection. VB approxima-
tion permits the use of an iterative optimization algorithm (the VB
Expectation-Maximization) for model learning.

In this work we study the application of VB methods to two
audio indexing problems: speaker clustering and speaker change de-
tection. Both of them are formulated as a model selection problem
generally solved using the Bayesian Information Criterion (BIC).
The novelty of this thesis consists in reformulating the problem in
a fully Bayesian framework handled using the VB method. The
VBEM is used for model learning and the variational bound over

the Bayesian integral is used for model selection purposes.
Results on Broadcast News data show an interesting improve-
ment respect to classical techniques based on Maximum Likelihood

(ML) or Maximum a Posteriori (MAP) for model learning and BIC

for model selection.
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Chapter 1

Introduction

In the 2004 special edition of the MIT’s magazine of innovation and technology
review ([117]) a large article is dedicated to the “10 emerging technologies that
will change your world”. In between the most important breakthrough in term
of innovation a special chapter is dedicated to Bayesian Machine Learning.

Bayesian methods are based on an intuition from reverend Thomas Bayes,
an 18th century minister. The idea of what is known today as the Bayes law
was described in "Essay Towards Solving a Problem in the Doctrine of Chances”
(1763), published posthumously in the Philosophical Transactions of the Royal
Society of London ([17]). Since than the work based on the initial idea has
significantly progressed and Bayesian methods often combined with graph theory
provides extremely powerful tools for many machine learning problems. Methods
that use graphs together with Bayesian probability theory are also known as
Bayesian Networks (BN) or Graphical Models (GM) and are now a very popular
tool because of their complete generality (for a general review on BN see [72]).

Fields of application for Bayesian methods are now extremely various and het-
erogeneous; in between them it is possible to find language processing, microchip
manufacturing, drug discovery, biology, genetic, robot navigation , data mining
and many others.

Bayesian methods have the appealing property of studying dependence in be-
tween different stochastic variables using the Bayes rule between prior-posterior
distributions and conditional probabilities. Furthermore Bayesian framework
benefits from the interesting property of Occam’s razor useful in model selec-
tion problems.

Occam’s razor is a philosophical principle attributed to the 14th century logi-
cian and Franciscan friar William of Occam. The principle states that ”Entities
should not be multiplied unnecessarily.” Sometimes it is quoted in one of its origi-
nal Latin forms to give it an air of authenticity: ”Pluralitas non est ponenda sine
neccesitate”. William used the principle to justify many conclusions including
the statement that ”God’s existence cannot be deduced by reason alone.” That



one didn’t make him very popular with the Pope.

Occam’s razor principle is a very popular idea in science and it is widely used
in statistic and probabilistic inference as well. In probabilistic model framework
it can be interpreted as the choice of the simplest model in between the different
possible models that can explain a given phenomenon.

The connection with Bayesian methods in model learning is extremely sur-
prising: Bayesian model learning embeds a form of model penalty that penalizes
more complex models versus to simpler models. In other words Bayesian meth-
ods prefer simpler models for explaining a given phenomena. This makes the
Bayesian framework even more appealing in many machine learning problems
that require model selection.

Anyway in many real data applications fully Bayesian inference is impossi-
ble in an exact way. This is sometimes a direct consequence of the extremely
complicated and rich models that Bayesian theory can provide. In those cases
approximated methods must be considered in order to produce a solution as close
as possible to the real one.

In this work we study a family of Bayesian approximated methods known as
Variational Bayestan methods that directly approximate the Bayesian integral.
Final goal of this thesis is studying the applicability of those methods to audio
file processing that needs probabilistic model selection. In the experimental part
we deal with audio indexing problems. The audio indexing problem is currently
formulated as statistical model selection problem. In fact when no a priori infor-
mation is available about the nature of the data, a statistical model is generally
build in order to represent the audio stream. The structure of the audio file is
inferred from the complexity of the model e.g. the speaker number. Here comes
the need for model selection methods that choose the best model. In state-of-art
indexing systems the model selection criterion is generally a extremely rough ap-
proximation of the Bayesian integral. Here we propose for the first time the use
of Variational Bayesian methods for speaker indexing purposes.

This thesis is organized as follows:

Chapter 2 describes some very classical concept of Bayesian machine learning like Max-
imum Likelihood (ML) and Maximum a Posteriori (MAP) and applications
to Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM).
Expectation-Maximization (EM) algorithm for ML and MAP learning is
considered as well. Finally Bayesian model selection and prior distribution
problem are discussed and classical approximation like the BIC are consid-
ered. Goal of chapter 2 is basically introducing notation and basic concepts
that will be later compared with Variational Bayesian solution to the same
problems.

Chapter 3 is the theorical heart of the thesis. Variational Bayesian methods are here
introduced. An EM-like algorithm for approximated inference is here de-

4



Chapter 4

Chapter 5

Chapter 6

Chapter 7

scribed and discussed for Conjugate-Exponential models. Approximated
variational learning is also considered for the ML and MAP criterion. In
the last part of the chapter model selection properties of VB framework are
considered. Finally a short description of VB methods in machine learning
and speech processing are considered.

considers application of VB methods to two main models in audio process-
ing: GMM and HMM. For both of them we provide details about derivation
of the variational free energy, model selection, learning using the EM-like
algorithm, inference on unseen data and empirical prior derivation. HMM
with emission probability modeled as GMM are also considered.

is an experimental chapter in which we compare classical ML and MAP
learning with the VB learning in a GMM framework. Three factors are
considered: amount of training data, prior distributions and model com-
plexity (i.e. initial component number). Different experimental scenarii
are considered. The adaptation task starting from a Universal Background
Model using both MAP and VB is studied as well. Basically theorical

intuitions are experimentally verified on synthetic and real data.

deals with speaker detection change problem; a review of current state-
of-the-art solution based on the Bayesian Information Criterion (BIC) or
on the Log-Likelihood Ratio (LLR) is proposed. The VB solution to this
problem is then introduced. Even if VB solution is sensitive to prior distri-
butions, it outperforms the classical BIC framework.

deals with speaker clustering problem. A review of classical BIC based so-
lution is proposed. VB framework is successfully applied to the considered
model. Furthermore an extensive analysis on the impact of prior distribu-
tions is done considering flat, strong and heuristic priors.






Chapter 2

(GGeneralities

The goal of machine learning is the construction of a model that reflects the na-
ture of some experimental data. The model generally is build on an hypothesis
of the natural phenomenon that generated the data. The goal of the modeling
process can be very different; for example the model can be required to discover
some structures in the data or can be used to make prediction on some unseen
data. The model can be a parametric model or a non-parametric. In a para-
metric model, modeling is achieved by using a parameter set that we will refer
to in this work as # while in non-parametric models there is no explicit attempt
to identify any parameter. In this thesis we will focus basically on parametric
models. Algorithms used to determine the best parameter set for a given task
are called training or learning algorithms. Two main classes of training methods
can be considered: the generative learning and the discriminative learning. In
the first case, learning algorithm tries to build a model that reflects as much
as possible data characteristics. Model “capability” to reflect data is generally
measured in term of probability. Mathematically speaking if we denote with Y
the observation set and with  model parameters that define a probability p(Y'|6)
over the model, the goal of generative modeling is finding f such that:

0 = argmazy p(Y10). (2.1)

This criterion is also known as the mazimum likelthood criterion because it max-
imizes the likelihood of the data given parameters i.e. p(Y']0). On the other
hand discriminative learning considers a set of m models with m = {1,... , M}
with respectively their parameter set 6,, and labeled data set Y,,. The goal of
discriminative learning is to train model parameters 6,, in order to classify a test
data set as belonging to one of those models. Clearly the task is very different
from the generative learning because the quality of the inferred models does not
matter but just their discriminative capability is considered. Different hybrid
generative/discriminative techniques have been developed (for review see [62]).
One of the main interests of learning a model is the possibility of making



prediction on an unseen data set i.e. given an unseen data set U computing
p(U|#) where 0 is the estimated parameter set. Prediction quality will be largely
influenced by the simplification assumed in the modeling part.

In many real data problems the assumption that data are generated by some
unobserved variables is done. Those variables are generally referred to as latent
or hidden variables. If we denote with X the hidden variables set, and Z =
{X, Y} the complete data set, it is possible to write the joint hidden and observed
probability given model parameters as:

p(Z]0) = p(Y, X10) = p(Y'|X, 0)p(X|0). (2.2)

where p(X60) is the hidden variable probability conditioned to parameter 6. In
other words observed data probabilities are conditioned on some unseen variables.
In order to find data evidence it is enough to marginalize w.r.t. the hidden
variables for a given parameter set § i.e.

p(Y|0) = Zp (Y]X,0)p(X|0). (2.3)

2.3 is thus known as incomplete-data likelihood.

Previously we have considered a probability distribution over hidden variables
but in a fully Bayesian framework, a probability distribution over all model el-
ements should be considered. More specifically model parameters too can be
considered as random variables with their probability distributions that we will
designate with p(6). As before they can be marginalized as:

p(¥ ) = [ d0p(01m) 3 p(Y1X.0,m) p(X]0.0). (2.0

X
where m is the considered model and all probabilities are now considered condi-
tioned to the given model. Expression (2.4) is known as marginal likelihood and
it is a key quantity for many important tasks like model selection. Advantages of
fully Bayesian methods is that model parameters are not directly estimated but
the interest is shifted over parameter distributions. This is an extremely suit-
able property because models are often a simplification of the data reality and
training a given model could generate many problems e.g. overfitting and poor
generalization. Bayesian methods do not estimate the model but probabilities
over all possible models with the big advantage of avoiding or at least alleviating

many parameter estimation problems.

In the same fashion as before we could also consider a probability over a
given model m denoted byp(m). In this case, data evidence can be obtained by

marginalizing over all possible models i.e.

Zp p(Y|m). (2.5)



where p(Y'|m) is defined as in (2.4). It is important to notice that we have
started our discussion with a parametric model with explicit parameters and
hidden variables and we ended up to quantity (2.5), where all possible terms
have been integrated out and only data evidence is considered.

2.1 Maximum Likelihood Parameters Learning

In this section we explicitly consider the learning algorithm for generative model-
ing giving some classical examples. The first very simple example we can consider
is the learning in case of a single Gaussian with parameters means p and variance
o in the scalar case. If the observation set is Y = {y;,... ,yn} and observations
are considered independent the maximum likelihood estimation for Gaussian pa-
rameters is trivially g = 3. y;/N and o = 3 .(y; — #)?/N. This solution can be
found simply deriving the data log-likelihood w.r.t. parameters and solving.
Unfortunately things are not always that simple. Let us now consider the
incomplete data case; because of the fact a part of the variables are hidden there
is no close form optimization for parameters § in quantity (2.3) and an iterative
algorithm known as Ezpectation-Mazimization (EM) is generally used.

2.2 The Expectation-Maximization (EM) algo-
rithm

The Expectation-Maximization (EM) algorithm introduced by [39] is an iterative
algorithm used to learn parameters of models that contain hidden variables for
which a closed form optimization cannot be possible. Iterations consist in an
E-step in which given an initial parameter estimation @, hidden variables prob-
abilities p(X = z|f) are estimated (z represent a particular value of X) and an
M-step in which the maximum likelihood solution for 6 is obtained given hidden
variable values estimated in the E-step.
In more details, it is possible to factorize probability of Z = {X, Y} as:

p(Z10) = p(Y, X10) = p(X|Y,0) p(Y'|6) (2.6)

As long as we want to maximize p(Y|f), let us consider expression (2.6) in term
of logarithms:

log p(Y'|0) = log p(Y, X|0) — log p(X|Y,0) (2.7)

Taking now the expectation of both sides of equation (2.7) w.r.t. probability of
hidden variable X computed with parameters § we obtain:

ZOQP(YW) =< lng(X,YW) >X|€ — < lOQp(XD/v g) >X|9: Q(Gvg) - H(gvg)
(2.8)



where we denote with < ¢ > x|y the expectation of function ¢ over hidden variables
X estimated using parameter 6. Let us explicit Q(6,60) and H(0,0) as:

Q(0,0) =< logp(X,Y[0) >xpp= 3 p(X|V,0)log p(X,Y1B)  (29)
X

H(07 é) =< lng(X|Y, é) >X|€: Z p(X|Y, 0) lng(X|Y, é) (210)
X

The key point of the EM algorithm is to choose a # in order to not decrease Q(.)
because

Q6,0) > Q(0,0) = logp(¥16) > log p(¥]6). (2.11)
since from Jensen inequality [66] H(,0) < H(6,0). Function Q(6,0) is also

known as Q-function or auxiliary function. In order to verify condition (2.11), it
is enough to maximize the Q-function; in this way the log-likelihood will mono-
tonically increase and converge in a local maximum of the QQ function.

So given a parameter initialization §, the EM algorithm consists in iteratively
computing the auxiliary function Q(0, 0) (E-step) and then estimating parameters
0 that maximize  (M-step). The M-step is actually a maximum likelihood
estimation with complete data because hidden variables were estimated in the E
step. Then @ is replaced by 6 and the EM steps are iterated until convergence of
the objective function.

EM algorithm can be applied to a huge set of different models that use hidden
variables like Gaussian Mixture models or Hidden Markov Models. Anyway the
possibility of applying the EM algorithm is sometimes limited by the possibility
of computing the Q-function i.e. the possibility of an estimation of the hidden
variable set; we will see later that in some cases of EM inapplicability, an approx-
imated objective function can be obtained for bounding the objective function
and obtaining a tractable algorithm. In the next two sections we will detail two
cases of EM/ML estimation very frequently used in speech processing: GMM
and HMM.

2.2.1 Maximum Likelihood Gaussian Mixture Models

Gaussian mixture model can be seen as a generalization of Vector Quantization
([88]). GMM makes the hypothesis that data Y can be modeled by a mixture of
Gaussian density function of the form:

p(Y) =Y e N(Yilui, Xi) (2.12)

=1

where model parameter set § is constituted by weights ¢;, means u; and covariance
2, with 0 < ¢ <1 and Zf\io ¢; = 1 where M is the mixture number. Mixture

10



density is a typical case of EM estimation [58]. Observed data are constituted
by Y = {yi1,...,y:} and missing variables X = {zy,...,2;} assume a value
in {1,..., M} that designates which Gaussian component out of the M has
generated the observed data. It is useful to observe that the number of missing
variables is equal to the number of data ¢. Supposing that elements of Y are
independent sample, it is straightforward to write the auxiliary Q-function:

Z > plaily:, 0) log ply, 2.10) = Z Sy B yt’rtw log p(y, =:|6)

t=1 z¢=1 t=1 z¢=1
(2.13)

Using 2.12 and manipulating 2.13, it is possible to obtain:

M M -
=Y viloga+ Y Qi(0,0) (2.14)
=1 =1

where

: cip(yelpi, Xi) .
g = GRVEL 2 2.15
p(l0) (2.15)
T

Vo= Z’Yf (2.16)
t

T
Q:i(0,0) = > ~llogp(y|mi, X:) (2.17)

t=1

Now that the auxiliary function is computed, it is enough to maximize it w.r.t.
parameters 6 in order to find a parameter estimate. Deriving w.r.t. ¢;, y;, 2; and
solving we obtain (for details see [21]):

& = Z’Y-i’y' :% (2.18)
_ Yy :

t=1 Iz

T t(o 7N, — 5\
Si — Et:l 72 (yt /’Ll)(yt IU’Z) (220)

T
Et:l F)/'f

It must pointed out that parameter optimization is a constrained optimiza-
tion that must satisfy the condition Zj\io ¢; = 1; constrained optimization can
be achieved using Lagrange multipliers method. Iteratively applying equations
(2.15) (for the E-step) and (2.18), (2.19) and (2.20) (for the M-step) parameters

converge into a local maxima of the objective function.
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Two issues must be pointed out. First, all EM methods converge to a local
maxima that depends on the initialization i.e. given the same training data set
and the same model topology two different initializations may yield two different
estimations.

On the other side GMM/ML learning may yield a singular solution. In fact
let us consider the case in which a single vector is “assigned” to a given Gaussian
component, the covariance matrix becomes singular. This is a very unsuitable
problem that take place when the initial model is not well chosen or not well
initialized (e.g. very few data and too many components). Generally during
EM learning the covariance matrix determinant is checked at each iteration and
different strategies are possible when a singularity occurs (see [98]). Again a way
to avoid this kind of problem is to carefully select the model. We will see later
that singular solutions are not a problem in Bayesian learning.

2.2.2 Maximum Likelihood for Hidden Markov Models

In this section we consider the most popular model used in many speech pro-
cessing applications: Hidden Markov Model (HMM). HMM was first introduced
in speech processing independently by [64] and [65]. It consists in a probabilis-
tic model for a collection of observed data Y = {y;,... ,vs, ... ,yr} and hidden
variables S = {sy,... .8, ...,sr} that are discrete variables that designate the
“state” of the HMM and can take N values where N is the state space dimension.

Two hypothesis define an HMM:

e The hidden variable s; is dependent only on s;_; i.e. p(s¢|si—1,...,81,Y) =
p(5t|3t—1)

e The observation y; dependent only on the hidden variable s; i.e.
PYelye—1s o Y1, 811y 5 8t) = p(yelse)

Another assumption typically used is that the transition probability p(s:|s:—1)
is time-homogeneous i.e. independent of time; in this way transition probability
can be represented as a time-independent transition matrix A = a;; = p(s; =
Jlsi—1 = i). The case of ¢ = 1 is represented in the initial state distribution
mi = p(s1 = 1). Emission probability of a vector p(y:|s; = i) = bi(y:) can
be discrete or continuous (generally a Gaussian distribution or a GMM). To
summarize the HMM parameter set 6 is represented by 7, A, B. The classical
approach to HMM consider three main problems (see [109]):

e Given an observation sequence Y and a parameter set 6 find p(Y'[6).

e Given an observation sequence Y and a parameter set § find the best state
sequence S that generated observation sequence.

12



e Given an observation sequence Y find the maximum likelihood estimate for

6.

In this section we will review in a synthetic way those three problems in order to
compare them with the variational solution to the same questions.

Concerning the first problem the brute force solution is marginalizing over all
possible path S i.e.

P(Y|0) =Y P(Y|0,5)P(S|0) (2.21)

but when the state space is large, marginalization may be impracticable. A
practical solution is using the forward algorithm that benefits from the Markov
hypothesis i.e. computation of p(s¢|si—1)p(yz|ss, d) involves only s, s:—1, y; so that
it is possible to write the likelihood as a recursion over t. Let us define the forward
probability as:

(i) = p(Y}, ¢ = il6) (2.22)

The forward algorithm can be represented as a 3 step algorithm with an initial-
ization:

ai(2) = mbi(yr) withl <i < N (2.23)

Then, an induction step in which the recursion is computed:
N
a(j) =D ara(i)ailbj(ye) with 2 <t <T; 1 <j<N (2.24)
i=1

and finally the termination step gives the likelihood:

N

P(Y|0) =) ar(i) (2.25)

=1

It is easy to check that the complexity of the forward algorithm is simply O(N*T)
instead of exponential with V.

Solution to second problem i.e. finding the best path or state sequence can
be solved using the Viterbi algorithm [136]. The Viterbi algorithm is a greedy
solution to an exhaustive search on the state space S and is based on the same
principle of the forward algorithm. Instead of summing all possible contributions
as in (2.24), the algorithm chooses the highest contribution to a; and “remem-
bers” the best path. At the end of the recursion the best path is computed
backtracking the optimal local choices. The Viterbi algorithm complexity is sim-
ilar to the forward algorithm complexity i.e. O(N*T).

13



The problem of parameter learning (i.e. the third problem) is another applica-
tion of the EM algorithm that in the case of HMM take the name of Baum-Welch
algorithm ([16] and [15]). It is based on the use of a forward-backward recursion
as a trick for estimating the HMM sufficient statistics. It is possible to define a
backward algorithm analogous to the forward, that starts the recursion from the
end of the sequence. Let us define the backward probability:

Bi(i) = p(Yiiulse = i,0) (2.26)
the backward algorithm compute recursively 3; in this way:
Br(t) = 1/N with 1 <i< N (2.27)

Bi(1) = [Z ;b (Y1) B t=T —1,..,1; 1 <i <N (2.28)

The interest of the backward-forward recursion is in the possibility of estimating
HMM key quantity v:(z,7) (actually the HMM sufficient statistics) defined as:

o (St 1 = St—]vyTe)
, — = =YL, 0
Ye(1,7) p(si—r = 1,8, = j|Yy ,0) = p(YF10)
_ at_laijbj(yt)ﬂt(j) (2.29)
Zi\;l OéT(k)

The importance of quantities v;(7,j) can be understood considering the EM in

terms of auxiliary function Q):

p(Y, s]0) 5
Z o T0) 2 log p(Y, s|0) (2.30)

Let us explicit elements in 2.30, it is possible to write:

Q(ev 9) = Qm‘(ev ﬁ-i) + Qaz‘(07 ai) + Qb] (97 B]) (231)
P(Y, s =70 B
Qn(0,7) = Z %wg T (2.32)
(Y, 8021 = 1,8 = j|0 B
Qa;(0,a;) = Z Z Z rl oV ]0) i10) log a;; (2.33)

Qb (60,b;) = ZZ 3 YS;/WJ'g)ngj(k) (2.34)

i teyr=og

Optimization of () can now be done separately for the two independent term
according to constraints on a;; and b;(k). Constrained optimization is generally

14



achieved by using the Lagrange multipliers:

™= Z%(‘iaj) (2.35)

_— Tzlegt(i,j) (2.36)
Doim1 Dok=1 Vt(lf k)
bilk) = Ztegg::ok 2 %.(‘l?J) (2.37)
Et:l Zz %(Z’])

Instead of a discrete distribution a continuous distribution for the emission

probability can be considered.

A Gaussian mixture model can be also used. Assuming that the emission
probability of state j is modeled with a M component GMM with parameters
Ciky ljk, Ojk estimation formula becomes:

= Xim &R

! 23:1 224:1 ft(ja k)
- Ethl §e(2, 7)Y g ¢
S ZtT:1 224:1 ft(jv k) (2.39)
S i) (e — i) (ye — fin)”

POD SR AN

(2.38)

gl
?r:
|

(2.40)

where

(i k) = Py, St;&a|f;t) =kl0) _ Xis Oét—l(;):%jﬁ;z;b(ﬁik)(yt)ﬂt(j) (2.41)

We have considered here the case of learning with just one observation se-
quence but the algorithm can be easily extended to the case of multiple observa-
tions.

We will see later problems that come from the use of a fully Bayesian frame-
work.

2.3 Bayesian Learning

One of the most popular probability law is Bayes law that given two stochastic
variables a, b states:

(b]a)p(a)

Calpy = P o 4
p(alb) o00) (2.42)
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A possible interpretation of equation (2.42) is that variable p(a) can be seen as the
prior information about variable a, p(a|b) can be seen as the posterior information
on a once b is known and p(bla) can be seen the “amount” of information that
the knowledge of b gives to a. In Bayesian learning each parameter is considered
as a stochastic variable with its own distribution. So considering again notation
of previous sections, we designate with Y observations and with § parameters, in
this case the Bayes rule gives:

p(Y10)p(0)
p(Y)
so that p(6) is parameter prior, p(f]Y) is parameter posterior after considering

data Y and p(Y|0) is additional knowledge brought to 6 by Y. In the same

fashion, considering a probability over the model m gives:

p(0lY) = (2.43)

p(Y|m)p(m)
p(m|Y) = ——F———= 2.44
(mly) = P (2.41)
where p(Y|m) can be computed marginalizing over all parameters i.e.
p(¥ ) = [ a0 (Y 10, 0)p(0}m) (2.45)

Expression (2.45) is again a marginal likelihood as in expression (2.4) (without
considering any hidden variable this time).

It is clear that the key of any Bayesian approach is the use of the prior
distribution i.e. for instance p(6|m) in expression (2.45). Actually many kind of
solutions for setting prior distributions are possible. We will consider them in
the same four main class as in [18],[147]: objective, subjective, hierarchical, and
empirical.

2.3.1 Objective priors

Objective priors try to incorporate as few a priori information as possible into
the model. This is a useful property when there is no knowledge at all con-
cerning the current task. Anyway it turns out that this modeling is extremely
difficult and often objective priors result into extremely complicated form or un-
normalized function as improper priors. Those kinds of priors are also known
as non-informative priors in contrast with the informative priors that add some
knowledge about the models.

For example translation invariant prior can be written as p(6) = const and
const

scale invariant prior p(#) = “z*. Both priors are improper i.e.

/M@M:+m (2.46)
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As long as improper priors are not used in this work and we will limit our
discussion to proper prior into the conjugate-exponential family and those kinds
of priors will not be consider more here.

2.3.2 Subjective priors

Subjective priors contain previous knowledge or previous hypothesis on a certain
model. Generally subjective priors are chosen of a form that gives a tractable
analytical form for the problem. A serious drawback is that generally subjective
priors are far away from the real prior distribution of data. The most popular class
of subjective priors is the conjugate prior in the exponential family (e.g. see [40]).
The main advantage of this class of distribution is the tractability; in fact the
posterior distribution will have the same analytical form as the prior distribution
but with “updated” parameters. Mathematically speaking, if we consider a prior
distribution over parameters p(6|A) where 6 are model parameters and A are
distribution parameters (a.k.a. hyperparameters), then we will have:

p(OIX) = p(0]Y) o< p(Y']0) x p(0]A) (2.47)

where X are posterior distribution hyperparameters. The general form for a
function belonging to the exponential family is :

p(yl0) = g(0) f(y) ?"" ) (2.48)

where ¢(#) is a normalizing constant. ¢(6) is a vector of natural parameters and
u(y) and f(y) are functions that define the family. The conjugate prior has the
following form:

p(0ln.v) = h(n,v) g(0)" O (2.49)

where v and 7 are prior parameters (hyperparameters as before) and h(n,v) is
a normalization constant. The trick is considering the same functions ¢(#) and
¢(0) in (2.48) and (2.49) in this way it is possible for a data set Y = {y1,... ,yn}
to write the posterior distribution as:

pOY') o< p(Bln, v) = p(fln, v)p(Y']0) (2.50)

where 7 =+ nand v = v+ > u(y;) are “updated” hyperparameters. This
is a very suitable property in term of tractability: to compute parameter poste-
rior distributions, only hyperparameters must be modified and the distribution
will keep the same form. A very intuitive explanation can be found to this phe-
nomenon: prior hyperparameters v, n are the information that comes from the
initial knowledge and they are updated using contribution from data. If the data
contribution is void, then the posterior will coincide with the prior.
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Another extremely interesting point is that posterior distribution can be used
again as prior distributions for another model still keeping the conjugate form.

Unfortunately when hidden variables are used, it is impossible to find a conju-
gate form for prior distributions, in those cases approximated methods are used.

2.3.3 Empirical Bayes priors

In previous sections we have seen that prior distributions have their own param-
eters generally known as hyperparameters. The empirical Bayesian approach
considers hyperparameters as another kind of parameters to be optimized from
the data. Mathematically speaking model parameters are marginalized obtaining:

mwm=/wmwmwm (2.51)

and now evidence p(Y'|\) can be used to give a maximum likelihood estimation
for hyperparameters A. The main advantage of this approach is that it overcomes
problem given by the mis-setting of A but on the other hand is subject to the
same overfitting problem of maximum likelihood estimation or other frequentist
approaches. For example this is the approach followed in [93].

2.3.4 Hierarchical priors

In hierarchical priors, hyperparameters themselves have their own prior distribu-
tions regulated by their hyperparameters and so on. So prior distributions on
parameters 6 are p(0|6;), prior distribution on hyperparameters are p(6,]6;) and
more generally p(6,,_1|6,,). It can be shown that it is equivalent to using a proper
distribution p(@) given by:

p0) = [ pO00MO0) . (6,416,) 01 ... 00, (2.52)

Even if it seems that in theory nothing is gained using such a type of posterior in
practice, it is a useful tool for building robust priors. Theorically the hierarchy
can continue up to an infinite number of levels: this kind of models have been

studied in [19] and [110].

2.4 Tractable approximation and MAP

In previous sections we have shown that fully Bayesian inference must consider all
contributions to the Bayesian integral i.e. we have to consider quantities (2.45) or
(2.4) in the case of hidden variables. Anyway in real data problems with hidden
variables, fully Bayesian inference is an extremely difficult problem. Generally a
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closed form solution is not possible and two possibilities are open: computing the
integral with some numerical methods as Monte Carlo methods or using some
approximation of the integral.

In this section we will consider the simplest approximation: ignoring the
integral and reducing the estimation to a point estimation i.e. find parameters 8
such that:

0 = argmazyp(0)p(Y|0) (2.53)

This criterion is also known as the Maximum a Posteriori criterion. Using a
metaphor coming from physics, MAP considers just probability density instead
of the mass. In other words all the mass of the distribution is concentrated in a
point (the MAP solution).

The advantage of using a criterion like (2.53) is in the tractability; in fact
when optimization involves hidden variables the EM algorithm ([39]) can also
be applied to the MAP parameter estimation with a simple modification of the
auxiliary function (see section 2.4.1). On the other hand a serious problem is
given by the non-unicity of the solution. In fact MAP approach is not param-
eterization invariant; two models with identical priors and likelihood functions
will give different MAP estimates depending on their parameterization. In the
next section we will discuss EM for MAP while in section 2.5 we will consider
into detail the reparameterization problem.

2.4.1 EM for MAP estimation

A simple modification of the ) function can be used to give the MAP param-
eter estimation. In fact adding the contribution from prior distributions to the
auxiliary function still gives an auxiliary function (see [46]):

Qurap(0,0) = log(p(0)) + Q(0,0) (2.54)

EM algorithm can be directly applied to the auxiliary function (2.54) for obtaining
the MAP parameter estimate. The Expectation step will have a form similar to
the one for the ML estimate because log(p(0)) in (2.54) does not contain hidden
variables; the M-step will have to deal with prior distributions. In next section

we will consider the case of the GMM and HMM with MAP learning.

2.4.2 MAP estimate for GMM

In this section we will derive the MAP estimation formulae for a Gaussian mixture
model with same parameters as in section 2.2.1.

The very first important point is defining prior distribution for the model pa-
rameters. According to the discussion hold in section 2.3.2 a strong tractability
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gain can be obtained using prior belonging to the exponential conjugate family.
In GMM the choice is a very classical one and consists in using a Dirichlet distri-
bution as prior distribution over weights, a Normal-Wishart distribution as joint
distribution over means and covariance matrix assumed independent of {¢;} i.e.:

p({ci}) = Dir(}) (2.55)
plpil%i) = N(p:i, &%) (2.56)
p(E) = W(a, B) (2.57)
p(0) (2.58)

= pe) [T ptud=op(z)

where Dir(), N() and W() designate a Dirichlet, Normal and Wishart distribu-
tion and \;, p;, &, a;, B; are distribution hyperparameters. Imposing such prior
distributions we are sure that posterior distributions have the same form as prior
with augmented hyperparameters.

The E-step will have the same form as the E-step for the ML estimate i.e.
equations 2.15.

. cip(ye|pi, Xi) .
oGPl 2i) 2.59
p(y:0) ( )
T
o= ) A (2.60)
1
T t,
o = 2),5:;77?,5 (2.61)
Zt:lfyi
T
reo= > A (e — ) (v — )" (2.62)
t=1

On the other side for the M-step optimal posterior distributions must be derived.
Posterior distributions will have the same form as priors i.e.

p({a}) = Dir({\}) (2.63)
plp:lS:) = N(pi, &%) (2.64)
p(%) = Wia;, By) (2.65)

with augmented hyperparameters i.e.

& = Gt (2.67)

EZZ' = da; + Yi (268)

_ pi&i + wivi

pi = >t T e 2.69
&+ v ( )

B B SV NN :

B, = Bi+~vynri+ (Pz - wz)(pz - wl) (2'70)

&+ i
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MAP parameter estimation directly follows maximizing posterior distributions:

A —1
2 di—1
pi = pi (2.72)
S = &__id (2.73)

where d is the observation vector dimension. The idea of the MAP parameter
estimation is evident in those formulae: parameter are estimated starting from
prior that get modified by data.

2.4.3 MAP estimate for HMM

In this section we will focus on the MAP parameter estimation for HMM. Let
us designate as before HMM parameters with § = {m, A, B} where we consider
here the discrete emission probability case. Let use define the following prior
probabilities over the parameters as Dirichlet distributions i.e.:

p(0) = p(m) Hp(au') Hp(bik) (2.74)

p(r) = Dir(A;) (2.75)
plai;) = Dir(Xa,;) (2.76)

EM algorithm can be used again optimizing expression 2.54. The E-step will
have a form similar to the ML E-step. The forward-backward algorithm can be
used in order to compute (7, j) defined as in 2.29.

Concerning the M-step, the maximization will consider also the prior data

term in 2.54 i.e. log(p(f)). Assuming a prior distribution over parameters as in
2.74, we can rewrite log(p(0)) as:

log(p(0)) = log(p(w)) + log(p(ai;)) + log(p(bix)) (2.78)

It means that prior over parameters factories as other terms in the auxiliary func-
tion 2.31 and can be optimized independently. Again taking advantage from the
fact that prior are chosen in the conjugate exponential family, posterior distribu-
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tions have the same form of priors with augmented hyperparameters.

N
p(ﬁ') = D”a(j‘ﬂz)7 5‘7&‘ = )\7r0 + Z’Yo(%]) (279)
J
B B T
p(&ij) = Dir()‘ai])7 )‘az‘] = )\a” + Z’Yt(%]) (280)
i=1

T
p(Bik) = Dir(j\bik)7 j\bik = Ay, + Z Z%‘(ivj) (2'81)
t 7

MAP parameter estimation directly follows from parameter posterior.

A — 1

Ao — 1
Q;p = — 2.83
a J Z )\ai] _ 1 ( )
_ N —1
by = —en (2.84)

E Aby — 1
As before, probability emission in a HMM can be modeled using a GMM,
the extension is straightforward combining results from this section and previous
section. Using GMM parameters as in section 2.4.2 we obtain:

v = Y &(ik) (2.85)

Og = ;fT:l i, ke (2.86)
D=t 2k 6100, K)
L D Gl ) — @) e — i) (2.87)

Yot i &5 K)

That results in hyperparameters for posterior distributions:

A = Acy T ik (2.88)
_ pirki + Wik Yir
ik = 2.89
Pk & + vir ( )
oo - §i Vik - - T ‘
Bix = B+ yieTin + (pir — @ir)(pix — Wir) (2.90)
& + ik
Finally MAP parameters can be estimated as:
Aeyp — 1
Ck = —=m~ T (2.91)
Eik )\Cik -1
ik = Pik (2.92)
S B;
Yig = : (2.93)
Qi — P



2.5 MAP is not invariant to reparameterization

A serious problem with Maximum a Posteriori parameter estimation is that it is
not invariant to different parameterization. Let us consider a simple example as
in [91] given some data Y and a parameter § the MAP estimation is given by
argmazgp(Y |0)p(6) while the ML estimation is given by argmazgp(Y'|6). Let us
consider another parameterization now as v = log(f) and in order to make the
prior over u invariant to translation let us fix it as an improper prior p(u) = ¢
with ¢ = constant. Considering that i—z = %, prior distribution for § becomes
p(0) = i—g X c= 3.

The function log() is a monotonal function that means that if u = argmax,p(Y |u)
and 0 = argmazep(Y|0) then u = log(#) i.e. maximum likelihood parameter es-
timation is invariant to different parameterization.

On the other side let us consider the MAP estimator § = argmaz[p(Y0) §]
and u = argmaz,[p(Y|u)c]. It is evident that in general we will have u # log(6).

This is a very effective example that shows that changing parameterization
can bring a completely different MAP parameter estimation. In general given
a parameter setting it is always possible to find a basis in which it corresponds
to mode of posterior distributions. This is of course a very unsuitable property
because we would like an estimation independent from the choice of the basis
that represent probability function.

An effect of parameterization problem for MAP can also be seen in the previ-
ously considered MAP estimator for GMM (as in section 2.4.2) and (as in section
HMM) 2.4.3. Let us consider parameter estimation with a Dirichlet distribution
for ¢; with parameters A; as prior distribution:

Pe) =1 c;\i_I(S(Zci—l) (2.94)

Posterior hyperparameters are A; = \; + v; and the MAP estimate for ¢; is as in
equation (2.71):
A —1 .

c; wa o (2.95)
Actually the maximum of the Dirichlet distribution does not coincides with the
mean i.e. \;/Y . If Ay <1 (i.e. \; < 1 and for example 7; = 0), the MAP
estimation gives non-zero probability to a parameter value that’s actually outside
the considered domain i.e. ¢; < 0; this can be simply avoided using X; > 1 but
also the case \; < 1 has been studied in [97], [95] and [63]. The ’-1” in the formula
is a direct effect of the basis in which the Dirichlet distribution is represented;
if the Dirichlet distribution is reparameterized into a soft-max basis as in [95] it
would give a parameter estimate without the -1’
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Let us consider the following basis transform where {¢;} depends on a new

set {¢; }:

ci(a) = % (2.96)

Instead of the traditional basis, a soft-max basis is used. In this case ¢;(a) always
normalize to 1 and there is a redundant degree of freedom because a 4+ n with
n =[1,...,1]7 leaves p(a) unchanged. This extra degree of freedom can be frozen
by imposing an arbitrary constraint. Let us designate with g(a x n) an arbitrary
density that constrains the redundant degree of freedom. It is possible to write
the Dirichlet distribution as :

P(a])) = ﬁ [T (0 gta % n) (2.97)

where T is normalization constant. At a first sight it can be noticed that the
distribution has no more the -1’ in the distribution that means that we have
no divergence problems. Then the maximum of the Dirichlet distribution in this
basis is equal to the mean of the distribution.

The question that naturally arises at this point is what kind of Bayesian
process are invariant w.r.t. choice of basis. In order to obtain a parameteriza-
tion invariant estimation it is enough to marginalize w.r.t posterior distributions
obtaining the marginal likelihood as objective function. We repeat again that
for complex models that involve hidden variables, estimation cannot be done in
closed form and approximations must be considered.

2.6 Model selection

Each modeling task starts with an hypothesis over the model; for example in a
GMM, an hypothesis on the number of components is done while in an HMM
the hypothesis is on the number of states and on the allowed transitions. A
wrong model choice can bring to a completely ineffective learning resulting poor
generalization and predictivity of the trained model. For this reason one of the
most important task in machine learning is choosing the model that better fit to
the data i.e. the model selection.

Let us define the problem in a mathematical point of view in probabilistic
terms: let us consider some data Y and a set of models m = {1,..., M} trained
on Y. Let us suppose that our goal is to make prediction on some unseen data U
i.e. p(U|m). Actually data U are not known at the moment of the learning and
best model must just be obtained using the information in the training data Y.

Let us consider a GMM example in which models just differ for the component
number. The likelihood of the training set p(Y|m) will reasonably increase as
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long as the component number increase and the model will fit always better the
training data. Anyway when the model is too specialized, it will 'overfit’ the
training data giving a very good score p(Y|m) but a very poor score p(U|m)
where U is different set from Y. The goal of the model selection is to find the
'right’ model m that trained on the data set Y can generalize as much as possible
the properties of the data.

In next section we will consider some of the most popular model selection
techniques.

2.6.1 Cross Validation

Cross validation is probably the simplest way to obtain a very general model
from the training data. In order to simulate an unseen data set the training set
is splitted into k folders. Then the given model m is trained k times using only
k — 1 folders out of the £ and leaving the unseen folder for computing the score
function (e.g. the classification error or simply the maximum likelihood). Finally
an average over the k trials is done. The best model is the model that holds the
highest average score but this time average score is computed on data that were
not available during the training. Pushing the idea of the cross validation to the
extreme the number of folders can be chosen equal to the data size N resulting
in the so called 'leave-one-out’” method.

A big advantage of cross validation is that no hypothesis on the model is
done and it can be applied to any kind of model selection problem (topology,
size, hidden variables etc..). On the other hand is evident that this method is
extremely computationally expensive. In fact &k different models must be learned
(one for each different folder) instead of one. Furthermore cross validation present
some serious problems when the score function presents some discontinuities (like
in Neural Network) or when the number of elements in the folder is too small.

To overcome those problems many methods that directly work on the model
with the all training data set have been proposed.

2.6.2 Bayesian model selection

Model selection problem can also be considered from the Bayesian point of view.
In fact following Bayes rule it is possible to write p(m|Y) = p(Y|m)p(m)/p(Y)
where p(m|Y) is the posterior probability of the model given the data, p(Y'|m) is
the data evidence given the model, p(m) is the prior over model and p(Y') is the
data probability (that does not depend on m). Comparing two models m; and
my means comparing their posterior probabilities p(m4]Y’) and p(mz|Y) i.e.

pma]Y)  p(Y]ma)p(mi) (2.98)

p(ms]Y)  p(Y|my)p(ms)
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If no prior informations on the models are available i.e. p(mq) = p(m2)
comparing model posterior results in comparing data evidences p(Y'|m;) and
p(Y|my). If models are parametric, data evidences can be obtained integrating
over parameters 6 i.e.

p(Y|m):/p(Y,9|m)d9:/p(Y|9,m)p(0|m)d9 (2.99)

The data evidence (2.99) or marginal likelihood is the key quantity in the model
selection framework. In fact the Bayesian integral has the remarkable property
of embedding the Occam razor property [93]. Occam razor is a philosophical
principle of the 14th century stating that one should not make more assumptions
than needed and when multiple explanations are available the most simple must
be preferred. It is a common (and wrong) opinion that Bayesian models just
differ from non-Bayesian models because of the use of some prior information;
Bayesian models automatically embed the Occam factor that allows comfortable
model selection.

In order to show this interesting property let us consider the same example
of [93] with a mono-dimensional distribution. Assuming that the parameter pos-
terior distribution p(8|Y,m) o p(Y|8,m)p(6|m) has a strong peak at the most
probable parameters 6y;p, the data evidence can be approximated by the value
of the peak times its width gy i.e.

p(Y|m) >~ p(Y|0rp, m) p(Orrp|m)ogy (2.100)

First factor in 2.100 p(Y'|0ap, m) is the data likelihood computed in the most
probable parameter fit while factor p(0yrp|m)ogp is the well known Occam factor
(see [56]). Occam factor acts like a penalty term that penalizes more complex
models and it is embedded in the Bayesian integral.

Let us make a further simplification considering p(fyp|m) uniform on a large
interval oy resulting in a prior distribution p(6ap|m) = 1/04. The Occam factor
becomes % Interpretation of the Occam factor given in [93] consists in the
posterior volume of m parameter space divided by the prior accessible volume. A
complex model is a model with a prior accessible volume oy larger compared with
a simpler model; in this case the Occam factor will penalize the more complex
model. It is anyway important to notice that Occam factor does not simply
depend on parameter number but prior and posterior probabilities are considered
(i.e. the prior and posterior parameter accessible volume).

In the case of multidimensional parameters, same conclusion can be recovered
assuming that the posterior distribution is well approximated by a Gaussian. In

this case the data evidence can be written as:

p(YIm) = p(Y |0y, m) X p(Opp|m) | H/2m | (2.101)
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where H = —VV logp(8|Y, m) is the Hessian of the parameter posterior distri-
bution. In this case the Occam factor is p(fxp|m) |H/27|~'/2. This result is also
known as the Laplace approximation that we will consider in the next section.

Figure 2.1 gives a visual explication of the Occam razor as described in [18]
and [93]. Three models m1, m2 and m3 with three different marginal likelihood
function of the space of possible data set. Model ml is extremely simple and
provides an extremely high value on a limited set of possible data; on the other
side model m2 is more complex than ml, because marginal likelihood must in-
tegrate at 1, it will cover a larger set of possible data sets with a smaller value
than m2. Finally the model m3 is the most complex that cover the larger data
set and obviously have the smallest marginal likelihood. To select the best model
given a particular instance of the data set, it is enough to compare the marginal
likelihood for the three models.

0.01 T T T T T T

P(Y|m1
0.009 - (¥Imi) n

0.008 - n

0.007 - n

0.006 - n

0.005 - P(Y|m2) 7

Marginal loglikelihood

0.004 - n

0.003
0.002 - n

0.001 - P(Y|m3) s
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0 100 200 300 400 500 600 700 800
Y

Figure 2.1: Visual explication of the Occam razor as described in [18] and [93].
Y denotes all possible data set.

2.6.3 Laplace approximation

The Laplace approximation is a local Gaussian approximation of the marginal
likelihood (or data evidence) based on a MAP parameter estimation 8 (see [77],[92]).
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Let us write the logarithm of the posterior parameter distribution as:

10) = tog(p(0, ¥ m) = Log(p{0lm)p(Y 18.m)) = Log p{6lm) + 3. foq (0. m)

(2.102)

under the hypothesis of independence in the data set iYZ} Let us consider now
the Taylor series of [(f) around the MAP parameters 6:

loes (0 — 0) + ... (2.103)

Let us stop the expansion to the second order; the linear term disappear
because the development is done in a maximum of the function (MAP estimation).
The second ordered term is actually the Hessian of the log posterior i.e.

BH(h)

(0) = Samatlos =~V Viog(p(6]Y,m) (2.104)

It is now possible to rewrite the log marginal likelihood as:

g
logp(Y|m) = log / dfexp[l(0)] ~ 1(0) + §log|27rH_1| =

d

1
5[09(2 T) — §log|H| (2.105)

= log(p(0]m)) + log(p(Y'|0,m)) +
with d space dimension. It is finally possible to write the Laplace approximation
for marginal likelihood as:

p(YIm) = p(@lm)p(Y10, m)|2m H']/ (2.106)

Laplace approximation suffers of many drawbacks. First of all it is based on
large data limit, and when this condition is not met the approximation can be
very rough. On the other side the approximation is based on a Taylor series
expansion that has as hypothesis some regularity conditions. When the model
uses hidden variables the log posterior may not meet this regularity conditions
resulting in a false approximation.

Furthermore Laplace approximation suffers from the main problem of all
methods based on MAP estimation: it is a basis dependent solution as explained
in section 2.5. For example when Laplace approximation of a Dirichlet distri-
bution must be used it is worthy to express it in a soft-max basis instead of a
classical basis in order to avoid singularity problems.
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2.6.4 The Bayesian Information Criterion

The state-of-art model selection criterion in many speech system is the Bayesian
Information Criterion (BIC) proposed in [120]. BIC can be directly derived by
the Laplace approximation. Let us consider separately the logarithm of terms
in 2.106: log[p(f|m)] does not depend on the data set size n, log[p(Y]0,m)]
linearly increase with n while log|H| increases as dlog (n). BIC approximation
just considers terms that grows with n. Furthermore asymptotically the Hessian
can be simplified as follows:

: 1 1 d 1
lzmn_>oo§log|H| = §log|nH0| = §log(n) + §log|H0| (2.107)

where d is the number of free parameters contained in the model. Keeping again
just the term that grows with n the well known BIC criterion can be derived:

logp(Y |m)B1c = logp(Y|0, m) — glog(n) (2.108)

Expression 2.108 has a very intuitive explanation: models with a large number
of parameters (i.e. p) are penalized more than models with fewer parameters.
The only point that matter in the BIC penalty term is the model size and the
logarithm of training set size. It does not depend at all on the prior parameter
probability. This is of course a very rough approximation compared to Laplace
approximation but it has the interesting properties of being bases independent.

The BIC approximation is equivalent to other non Bayesian model selection
criteria. For instance in [122] the equivalence in linear system between the BIC
and the cross validation with size of leave-out set equal to n[l — logﬁ] is demon-
strated . BIC is exactly equivalent to another model selection criterion coming
from coding theory: the Minimum Description Length criterion (see [115]).

Because of its simplicity the BIC is the most used technique in many practical
engineering model selection problems and in the following of this thesis we will
compare it with the Variational Bayesian model selection.

2.6.5 Other methods

Laplace approximation and BIC are two of the most popular model selection
criterion because of their simplicity and their low computational costs. Anyway
other approximations have been studied in literature. For example another pop-
ular approximation is the Cheeseman-Stutz approximation (see [30]) that uses
multiple Laplace approximation in order to try to compensate errors.

On the other side when available data is extremely poor, those approximations
are ineffective and inaccurate. In those cases numerical integration methods can
give a more precise answer even if they are extremely expensive in terms of
computational time and almost inapplicable when the parameter space is too
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huge. Those algorithms belong to the family of the Monte Carlo methods and
probably the most popular methods is the Markov Chain Monte Carlo (MCMC)
methods as in [104]. Bayesian variants of Monte Carlo methods integration have
been proposed as well (see [111]).

2.7 Conclusion

In this chapter we have revised the fundamental concepts of generative learning
with hidden variables. We have shown how Maximum likelihood learning can
be performed using the Expectation-Maximization algorithm. On the other side
fully Bayesian learning with hidden variable cannot be performed in the same way.
Bayesian inference i.e. inference in models where all quantities are integrated out
is impossible in close form or using iterative algorithm like the EM. On the other
side Bayesian inference has the appealing property of embedding the Occam razor
property that is extremely useful in the model selection framework.

Bayesian inference is generally done in an approximated way for example using
the well known Maximum a Posteriori criterion that is not fully Bayesian and
suffers from reparameterization problems but is tractable in the case of hidden
variables with an algorithm similar to the EM.

The Bayesian integral useful in the model selection task can be approximated
in various way or computed with numerical methods (that are generally resource
consuming and unsuitable when the parameter space becomes large). For in-
stance Laplace method makes a local Gaussian approximation around the MAP
parameter estimation asymptotically true. These approximations can be very
inaccurate because of poor available data or because parameter posterior are
poorly approximated by a Gaussian. Further simplified criteria are the BIC and
the MDL that approximate asymptotically the Bayesian integral.

In the rest of this work we will consider another type of approximation that al-
lows a posterior distribution estimation and define a lower bound on the Bayesian
integral. This approximation turns out to be extremely effective and an itera-
tive algorithm similar to the EM (and with the same computational cost) can be
derived in order to learn posterior distributions and Bayesian integral.
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Chapter 3

Variational Bayesian Learning

Variational methods are approximated methods that simplify the original prob-
lem by adding extra parameters (the variational parameters) that are trained in
order to provide an approximated solution instead of original ones. From an his-
torical point of view the term variational comes from the roots of the techniques
in the calculus of variations. Readers interested in a general perspective can refer
to [73], anyway in this work we will generally focus on the variational Bayesian
methods.

The core of variational approximation is in the capacity of bounding a given
function of interest f(#). Convex analysis theory is a useful tool for bounding
convex function (see [116]) and convex duality principle that states a concave
function f(z) can be represented as a dual function :

F(6) = min AT 6 — f*(\)} (3.1)
£7(0) = ming{AT0 — £(0)} 3.2

Let us now consider a probabilistic problem in a general graphical model with
observed variables Y and hidden variables X ([73]). Data evidence p(Y|0) =
p(Y, X10)/p(X|Y,0) is strictly related with the joint hidden variable and observed
variable probability. Variational approximations generally address the problem
of intractable form of joint p(Y, X|#) probability. For example it is possible to
consider an upper bound py (Y, X|0r) to the joint distribution (6 are bound pa-
rameters i.e. the variational parameters and py is the variational approximation
bound). An extremely important point is to choose the upper bound tractable
in order to allow efficient computation e.g. likelihood >y pu(Y, X|0y). The
variational transformation from p(Y, X10) to puy(Y, X|0y) is generally achieved
transforming dependency between variables and considering variational distribu-
tion parameters 0y instead of . The transformation must result in a tractable
form and at the same time must be as close as possible to the original probability
in order to obtain an accurate approximation.
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In literature variational algorithm can be classified in two main groups accord-
ing to [73]: sequential and block algorithms. In sequential algorithm probability
dependence is transformed during the learning process allowing the evidence to
determine the best path (corresponding to the optimal set {X}; see for example
[61],[60]). On the other hand in the block algorithms, transformation is defined
off-line, according to some knowledge of tractable structure that can be used.
Block methods were first introduced in [119] and developed in [49],[48] and [74].
Both sequential and block approaches can be unified on the bases of the convex
duality (see [59]).

Mathematically speaking in block algorithm, the set of variables Y and X'
that gives some kind of intractability are selected and their distribution p(X'|Y")
is approximated with ¢(X'|Y", ) where ¢() is the variational distribution with
parameters §. Variational distribution ¢() is generally chosen in order to minimize
the distance between the true and the approximated distribution i.e.

0 = argming K L(q(X'|Y",0)||p(X'[Y")) (3.3)

where K L designates the Kullback-Leibner divergence ([35]). The best variational
approximation becomes so ¢(X'|Y",8). The use of the KL divergence can be

justified using the bounding theory for convex functions. The data evidence can
in fact be bounded by:

' 1 1 ' ’ p(X,,YI)
logp(Y ') = log p(X,Y ) =log g XY ,0) ———
(V) = tog 300X Y = o 3 alX'0) Ry
' 1 pX‘,Y‘ - ’ ' ' ' .
> (XY, 0)log 2 (XYY (34)

P Q(XI |Y,7 9)
where Jensen’s inequality has been applied ([66]). So the tightest bound to the
evidence is the one with 6 = 0.

In this work we will focus on two main applications for variational methods:
parameter training and Bayesian model selection. In fact when parameters cannot
be estimated, they can be substituted by variational parameters. If the variational
bound is chosen in an appropriate way, the lower bound can be optimized using
an algorithm that generalizes the well known EM; this result was proposed for
the first time in [103] but Bayesian application of variational learning in generic
graphical models was considered in [36]. Variational methods are also known
as ensemble learning from a well known paper on neural network ([57]) where
“ensemble” of neural network are fitted to data. In those cases the variational
approximation concerns the posterior distribution that cannot be computed in
a tractable way. Variational Bayesian methods have been applied to a variety
of different models like Gaussian mixture models [6], hidden Markov models [94]

and mixture of experts [142].
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In this chapter we will detail variational Bayesian methods with specific ap-
plications to HMM and GMM for model selection and model learning.

3.1 Variational algorithms for Bayesian learning

In this section we mathematically detail variational methods for Bayesian learn-
ing. Let us consider again some data Y, hidden variable set X and a parameter
set 0 for a given model m. The key quantity for fully Bayesian learning (as
described in previous chapter) is the log-marginal likelihood:

logp(Y|m) = log / ddXp(Y, X,0lm) (3.5)

When hidden variables are used it is not possible to derive the posterior param-
eter and hidden variables distribution p(#, X|Y,m) and to compute 3.5 in an
exact way without using numerical methods. Here comes the need for the vari-
ational approximation. So let us introduce a variational distribution ¢(X,#) in
order to approximate the true (and unknown) p(X,8|Y, m). Applying the Jensen
inequality is possible to define an upper bound on the marginal log-likelihood as:

logp(Y|m) = log / d0dXp(Y, X, 0\m) = log / dngQ(Xﬁ)%
q\A,
p(Y, X, 0|m) _
> dXdbg( X, 0)log ——= 3.6
| s oeg B, (3.6

The bound represented as in 3.6 is still an untractable bound. The key assumption
is to assume that the variational distribution can factorize over parameters § and
hidden variables X i.e. ¢(X,0) = ¢(X)g(#). Now an iterative procedure that
optimize ¢(X) and ¢(6) can be derived. In fact 3.6 can be further simplified as:

tog (i) = [ dbaxtog a0 ")

= /d9q(9)[/qu(X)zog%+log P(q@(g;)] _

/d@q(@)/qu(X)logp(Y,X|9,m)—/ dXq(X)logq(X) +

a(f) _
p(0|m) - Fm(Q(X)7Q(9))

— log
(3.7)

Expression 3.7 is also known as variational energy or free energy. The goal of
variational learning is to find optimal ¢(X) and ¢(6) that maximize the free en-
ergy. 3.7 is composed by the expected energy given ¢(X) minus the entropy of
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q(X) (see [43],[103]), minus a penalty term that becomes larger with the number
of parameters. Because of the assumed factorization an algorithm similar to the
EM algorithm generally known as Variational Bayesian Fzpectation Mazimiza-

tion (VBEM) ([6]) can be derived.

3.1.1 Variational Bayesian EM

In this section we develop the VBEM algorithm that allows an iterative opti-
mization of the free energy that represent a lower bound on the log marginal
likelihood. Let us suppose that data Y = {y1,... ,y,} are i.i.d. and that model
m contains parameters  and hidden variables X = {z,... ,z,}. Optimization
of free energy 3.7 can be achieved simply deriving w.r.t ¢(0) and ¢(X) and equat-
ing to zero. This is a case of constrained optimization because ¢(X) and ¢(0)
must be probability density functions i.e. [ dz;g(z;) =1 and [ ¢(0)df = 1. We
will denote with a) the estimation of variable a at iteration ¢. In the iteration
process posteriors ¢(#) and ¢(X) are successively reestimated.

Let us consider the derivative of 3.7 w.r.t ¢(X) using Lagrange multipliers
method to enforce the constraint [ dz; ¢(z;) = 1:

0
o (). 4(0) 4 AL aXg(X) ~ 1} =
/d@ q(@)%/d)( q(X)logz% + A=
/d@q(@)[logp(X,Yw,m) —logq(X)—1]4+X2=0 (3.8)
(3.9)

Solving w.r.t q(X) we obtain:
log (X)(t+Y) = / dh q(6)D log p(X,Y]0,m) + [A — 1] (3.10)

Enforcing the Lagrange multipliers A, the normalizing constant Z(X)*+! is ob-
tained i.e.:

Z(X)(H'l) = / dX exp(/ dGq(G)(t) logp(X,Y |0, m)) (3.11)

We finally obtain for the update at time (¢ + 1):

log q(X)(t'H) = / dflogp(X,Y |0, m)— log Z(X)(H'l) (3.12)
Let us consider now the i.i.d. hypothesis. It is now possible to factorize ¢( X)(+!)
as ¢( X)) = T[7 ¢(2;)™*Y (and in consequence the normalization constant
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2(X)*D = [L(Z () *Y):

long)(t“):/dalogp(:ci,yilﬁm)—logZ(:vi)(t“) Vi=
1 . o 1
g(a:) ) = Z(e) D &"EP[/ d0 q(0)") log p(wi, yil0,m)] Vi (3.13)

Let us now derive w.r.t ¢(#) enforcing the constraint [ df ¢(f) = 1 using
Lagrange multipliers.

9B (g(X), q(6) + A | avato) 1)) -

dq(0)
) p(0m)
W/d%w)[/ AXq(X)log p(X, Y10, m) + log = G5

/ dX q(X)logp(Y, X|0,m)+ log p(6lm) —logq(0) + A =0 (3.14)

J+A=

Enforcing the Lagrange multiplier, it is possible to obtain the normalization
constant Z(6) as before. It is finally possible to write the update for parameter
distributions.

log q(0)“+Y) = log p(0]m) + / dX q(X) " log p(Y, X|0,m) — log Z(0)**) =

g(0)+) = ﬁp(ﬂm) exp| / 4X g(X)( Log p(Y, X |0, m)]

(3.15)

We show below that an analogy with the EM algorithm the update of hidden
variables is called E-like step while the update of parameters is called M-like step.
The VBEM will converge into a local maxima of the objective function (as in the

classical EM). In order to summarize the algorithm let us write the E-like step
and the M-step like:

1
VBE step: g(z:)* = ——eap| / do q(0)" log p(xi,yil0,m)] Vi (3.16)
NI
with ¢(X)*) = JTa(eu) ) (3.17)
=1
VBM step: ¢(6)*!) = %p@lm)ew[ / dX g(X) "V log p(Y, X|0,m)]
(3.18)

A first important consideration is that this is a free form optimization in
the sense that no hypothesis are done on the form of the distribution ¢(X) and
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q(8); the only assumption is that they are factorizable; for the rest the VBEM
optimization is a very general procedure.

Furthermore VBEM is a fully Bayesian framework in the sense that it pro-
duces parameter posterior distribution (i.e. the variational posterior distribution
q(0)) and not any explicit parameter estimation (like the MAP). In this sense
VB estimation has the useful property of being invariant to reparameterization.
Furthermore because of the fact free energy is an approximation of the Bayesian
integral, it directly benefits from the Occam razor property (see section 2.6.2).

Concerning the choice of variational distribution ¢(#) an important hint can
come from expression 3.18. In fact we will recognize that posterior ¢(6) is the
product of a factor depending on data and a prior distribution p(6|m): this sug-
gests that choosing the prior distribution belonging to the exponential conjugate
family helps in the tractability of the problem resulting in posterior distributions
with the same form priors.

As already noted into the introduction, optimizing the free energy means
finding the variational distributions that minimize the KL divergence with the
truth joint posterior over parameters and hidden variables i.e.:

g i = f 05 o000 GO

D(q(0)q(X)||p(Y, X0, m)) (3.19)

This is generally visually depicted as in figure 3.1.

3.1.2 VBEM: another point of view

We have previously considered the case of two different variational distributions
for hidden variables and for model parameters. In another point of view parame-
ters and hidden variables are considered at the same level as stochastic variables
defined by a probability distribution ( see [25],[23]). Looking at the VBE-step
3.16 and to the VBM-step 3.18, it is easy to notice a certain symmetry; There
is apparently no prior term in VBM-step 3.18, but actually there is a prior term
embedded in the joint probability p(X, Y |6, m).

Let us designate the set of hidden variables and parameters with R = { X, 0}:
the factorization hypothesis becomes:

g(RIY) = [[a:(RlY) Vi (3.20)
In this case the free energy will show no distinction between hidden variables and
parameters:
p(R,Y) .
F,, = q(R|Y)log ——— 3.21
>l og B (3.21)

R
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Figure 3.1: The marginal log-likelihood log P(Y'|m) differs from the free energy
F,, from the KL divergence between variational posterior distributions () and
prior distributions P.

Variational free energy 3.21 can now be optimized fixing all variables R; but one
R; deriving and solving w.r.t R; that gives:

< P(R,Y) >it;
R =
&) Yor < P(RY) >z

(3.22)

where < . >;; designates the expected value w.r.t. all R; but R;. Iteration
over all distribution R; will give a complete step over all distributions. The
normalization constraint [ ¢(R|Y)dR =1 must be of course imposed.

There is anyway a significant difference between hidden variables and model
parameters in term of complexity: in fact model parameters depends just on the
topology of the model while hidden variable number increases with the volume
of the training data set.

3.1.3 Empirical prior for VBEM

Up to this moment we have not mentioned any problem concerning the prior dis-
tribution p(@|m) that appears in the free energy. As long as the prior distribution
has a parametric form, it is defined by its own parameters called hyperparameters.
Hyperparameters (denoted with A) can be considered as quantities to be opti-
mized themselves; this is the idea of the empirical prior. In this case the VBEM
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algorithm will start with an initial guess over A, and once the convergence of the
free energy is achieved, hyperparameters are optimized i.e.

initialize A — F,.(¢(X),q(8),Y, ) (3.23)
VBEM: {¢(X),q(0)} = argmazyxy,q0Fm(q(X),q(0),Y,A) (3.24)
optimize \: X = argmaz\F,,(q¢(X),q(0),Y,\) (3.25)

Generally 3.25 will result in a non-linear system of equations that must be solved
with numerical methods.

Anyway other possibilities for handling prior distributions can be considered
as in section 2.3.4.

3.2 Approximated learning for ML and MAP

Variational methods are extremely useful for intractable form like marginal like-
lihood; anyway they can also be applied to tractable forms like the Maximum
Likelihood or Maximum a Posteriori criteria. In this section we will show the
link between EM for ML and MAP and VBEM showing that the VBEM is a
generalization of the Expectation-Maximization algorithm. This is intuitively
reasonable by considering that MAP and ML criteria are special case of marginal
likelihood maximization (see [18]).

3.2.1 VBEM for Maximum Likelihood

The objective function for maximum likelihood is obtained marginalizing w.r.t.

hidden variable set X:
logp(Y0) = Zlogp yil0) = Zlog / daip(zi,y:)0) (3.26)

As stated earlier, the ML estimation considers 67, = argmazglog p(Y'|0).

A variational bound can also be considered on the log-likelihood. Given the
convexity property of 3.26, a bound can be derived using any approximated dis-
tribution ¢(x) over hidden variables. The bound can be simply derived using
Jensen inequality as follows:

logp(Y|0) = Zlog/dx q(x )M

q(z;)

> Z/ dz; q(:) log plei; yilf) —F (3.27)

q(z;)
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Expression (3.27) is a free energy as well as in the VB case i.e. expression (3.7)
and it represents a lower bound on the exact log-likelihood. The same structure
can be recovered rewriting the expression as:

Fro = i/ dx; q(xi)log p(z;, yil0) —/d%CI(i’?i) log q(x:) (3.28)

We can notice the same structure of an energy form conditional on ¢(z;) and the
entropy of the conditional distribution ¢(z;) as in (3.7).

It is easy to verify that if the approximated variational distribution ¢(z;) is
chosen as the exact posterior distribution for hidden variables p(x;|y;, #) then the
bound reduces to the exact log-likelihood:

’ “20 J 2720
B = Z/ d'riq(xi)log%Zzi:/diﬂip(iﬂﬂyi,@)log[w

P(«’Ez’|yi79)

= 3 [ dualalu0)log p(uslh) = 3 logp(ul6) = log (Y10). (32

This result can be inferred applying the VBEM algorithm to the free energy
(3.7) enforcing the constraint on the hidden variable distribution [ dz;q(z;) = 1.
Indeed deriving w.r.t. ¢(z;) and solving:

= log p(@;,y:0) — logg(z;) =1+ A; =0 (3.30)

Enforcing the Lagrange multiplier constraint we obtain:
Ai=1—log / dap(x;,y:|0) Vi (3.31)
and so:

q(z:) = p(wily:, 0) Vi (3.32)

In summary optimizing the free energy w.r.t. ¢(z;) results in finding exact pos-
terior distributions. In consequence, the M-step becomes:

0 = argmazy F(q(z;)) = argmaz Z/ dx; p(xi|y:, 0) log p(xi,y;|0) (3.33)

Solution is exactly the auxiliary function used in the EM algorithm even if we
started our discussion with an approximated free energy.
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3.2.2 Approximated training

In extremely complicated models where interactions between a huge number of
variables is considered, posterior distribution (i.e. p(z;|y;,8)) cannot be com-
puted. In those cases the EM algorithm cannot be applied as long as in the E
step posterior distributions over hidden variables must be considered.

In those cases an approximated posterior distribution must be considered
instead of the exact one. As before a mandatory hypothesis it to consider inde-
pendence of hidden variables z; for obtaining a tractable approximation. In this
case, the free energy does not simply reduce to the log-likelihood but we have:

P Z’)I 7 9
Fn = Z/ diEiQ(SEi)ZOQM =

q(z;)
_ Z/dﬂfiq@ji)logp(in) +Z/ dai g(2:) log}%
_ Z lng ylw Z/ d$ q log ( ) (334)

($2|y2, )

Because of the fact log p(y;|0) does not depend on hidden variables optimizing 3.34
means minimizing the KL divergence between real joint posterior distribution of
hidden variables i.e.

q(zi) = argmingz, / dziq(x;)log ]% = argming(z,) D(q(x:)||p(x;y:, 0))
(3.35)

In general the bound will not coincide with the log-likelihood because ¢(z;) will
just approximate with the posterior p(z;|y;, 8).
In the M-step the expectation will be taken w.r.t. ¢(x;) instead of p(z;|y;, 8):

0 = argmazxyg Z dz; q(z;)log p(xi,y:|0) (3.36)

3.2.3 VBEM for MAP

In the case of MAP estimation, the optimization algorithm must handle prior
distributions on parameters together with hidden variables.

Orrap = argmazxg [log p(0) + Z log / daip(i,yi)0)] (3.37)

The E-step is not concerned by prior over parameters and for this reason it can be
treated as in previous section; if a close form for posterior over hidden variables is
available the variational bound will reduce to the exact log-likelihood, otherwise
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the approximation must be used in order to reduce the distance between the
variational distribution and the real one.

The M-step will simply consider prior distributions into the optimization task
i.e. in the case of exact posteriors:

Oriap = argmazgllog p(0) + / dzip(zily:, 0) log p(xi, y:|0)] (3.38)

In this case the M step coincides with the M-step for classical MAP described in
section 2.4.1. On the other hand in case of variational optimization:

Orniap = argmazgllogp(6) + Y / dx; q(x;) log p(xi, yi|0)] (3.39)

3.2.4 ML and MAP as special cases of VB

Let us consider the extreme case in which the variational distribution over param-
eters is Dirac delta i.e. ¢(f) = §(0 — 6*). Let us consider the case of variational
distribution over parameters (without hidden variables for simplicity), the free
energy can be decomposed as:

Fo = [ d0400) tog p(V1000) ~ [ da(0)10g 4(6) =
= / d0o(6 — 07)logp(Y|0)p(6) — / dio(0 — 0" )logd(0 —67) =
log p(Y'|0")p(0™) — / dhs(0 — 6" )log (6 — 67) (3.40)

The term 6(6 — 6*)log (0 — 6*) is constant and does not take part into the
optimization. Maximizing free energy gives in this case:

Oriap = argmazg[log p(Y |0")p(07)] = argmaxe«[log p(Y|0")p(607)]  (3.41)

Expression 3.41 is actually the MAP estimation for parameter §*. This enforce
our statement that MAP is a point estimation that just considers 'density’ instead
of 'mass’. If the variational distribution is constrained to be a delta i.e. all its
mass is concentrated in a point then the VB estimation reduces to the MAP
estimation. Anyway it must be pointed out again that the MAP solution is
always dependent on the choice of the representation of p(#); that means that
while the VB will converge to the same solution independently from the chosen
basis, once the distribution is constrained to be a delta, the solution will depend
on the representation chosen for 6.
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On the other side, in the case of Maximum Likelihood learning, if the vari-
ational distribution is constrained to be a Dirac delta, the result will be basis
independent i.e.

B = [ d0400) tog (V10) ~ [ d04(0) togq(6) =
— / d05(0 — 0%) log p(Y |0) — / d0S5(0 — %) log 6(0 — 0%) =
logp(Y67) — / dhs(8 — 0)log (6 — 67) (3.42)

that results simply into the classical ML criterion because 6(6 — 6*)log 6(8 — 6)
is constant:

03, = argmazxelog p(Y'0") = argmazg«log p(Y |07) (3.43)

To summarize MAP and ML criterion can be recovered from variational learn-
ing when variational distributions are assumed over parameters and are con-
strained to be a Dirac delta. Anyway while VB and ML will converge to same
results as long as they are representation independent, the MAP solution will
always depend on the choice of the representation.

3.3 VBEM for Conjugate-Exponential models

In this section we discuss the application of variational Bayesian methods to a
general model. The following problem has been studied in [52] and [18] coming to
conclusion that convenient update in the VBEM algorithm can obtained for all
models belonging to the Conjugate-Exponential (CE) model. Let us first consider
the definition of CE model.

3.3.1 Conjugate-exponential models

Conjugate-exponential models are well known models in statistical inference; for
an exhaustive review see [14] and [29]. Let us consider a given model that rep-
resents data Y with hidden variables X, parameters § and prior over parameters
p(0|X); p(X,Y|0) belongs to the conjugate-exponential family if it satisfy two
conditions:

Condition 1 : The complete data likelihood belongs to the exponential family i.e.
P(X,Y10) = g(0)F(X, Y Jeap((0)Tu( X, Y)) (3.44)

with u(X,Y) and f(X,Y) are functions that characterize the exponential
family, ¢(0) is a vector of natural parameters and ¢() is simply the nor-
malization constant resulting from integration of 3.44 w.r.t. X and Y.
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Condition 2 : The parameter prior distribution is conjugate to the complete-data like-

lihood 1i.e.:

p(0ln,v) = h(n,v)g(0)"exp((0)"v) (3.45)

with A = {n, v} hyperparameters and h(n,r) normalization constant com-
ing from integrating out 3.45 w.r.t. 6.

Once conditions (1) and (2) are satisfied, posterior distributions have the

same analytical form as prior distributions with augmented hyperparameters A
that can be interpreted as a modification of prior hyperparameters A by data.

3.3.2 VBEM for CE

Once conditions (1) and (2) are met, the VBEM algorithm can be derived with
tractable updates for the E step and for the M step (see [52] and [18]). Let us
consider variational distributions over hidden variables ¢(X) and parameters ¢(6)
and let us assume the factorization ¢(8, X) = ¢(8)q(X).
The VB-E step is:
(@) = gu f(7i,y:) exp[qb u(@i, y;)| = p(a:ly, &) (3.46)
N

ax) = [ (=) (3.47)
i=1
where ¢, is a normalization constant and ¢ is:

3= / 40 4(0)6(0) =< 6(0) >400 (3.48)

where <. >,y designates the expectation w.r.t. g(0).
This result can be simply obtained substituting the CE model into the VBE-
step 3.16 1.e. :

1
q(X) = Z—Xexp(< logp(X,Y|0,m) >4)) =
= —e"cp Z < logg(0) + log f(xs,y;) + &(0) ulzs, ys) >4(0)) (3.49)

Because of the fact that we consider the logarithm of an exponential model, it is
possible to average parameters w.r.t. ¢(6) obtaining:

Hf (i, yi)] exp( Z¢ u(xi, yi)) (3.50)
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In [18], the so called parameter inversions is considered i.e. if ¢(€) is invertible,
it is possible to find a parameter set § such as ¢ = qb(é) This is actually an
averaging effect of the “ensemble” learning; in other words a parameter set is
equivalent to the parameter set of ensemble of models defined by the probability
distribution ¢(8). The VBE step can be rewritten in this case as:

o) = - T1 plewild.m) (3:51)

0 is known as the variational point estimate ([52],[18]). Variational distribu-
tion ¢(z;) still belong to the CE family; it means that multiple VBEM iterations
are possible keeping the same structure.

The VBM step can be equivalently obtained by direct substitution and taking
advantage of the fact that prior and posterior distributions have the same form:

1
q(0) = Z(@)eiﬂp(< log p(X,Y'|0,m) >4(x)) p(6]m) =
= h(,2)g(8)"exp(5(0)" ) (3.52)
with updated hyperparameters:
n = n+n (3.53)
o= v+ uy) (3.54)
=1

ll(yz) = <u(x2-,y2-) > q(xi) (3.55)

- 1 - _

h(i, ) = Zexp(zdogf(xi,yi) >q() (3.56)

i=1

It is important to notice that after each iteration the new ¢(#) and ¢(X) still
belong to the exponential family so that the updated formulas are actually valid
at a generic iteration of the VBEM algorithm.

The variational point estimation allows a straightforward comparison between
the MAP and the VB. In fact the MAP uses current parameter estimation in the
E step , while VB uses parameters obtained by averaging over current possible
models with parameter distribution ¢(#). MAP and VB have actually the same
complexity but the variational point estimation cannot always be obtained in a
convenient way. In fact it relies on the invertibility of the function ¢(.) and on
the unicity of the inversion solution. This can be easily understood if we consider
¢7H< ¢ >q(9)] where ¢ and 6 have different dimension; in this case the inversion
may not be well determined. For models like HMM natural parameter inversion is
a straightforward procedure but for other models like Linear Dynamical Systems
([18]) the problem is more flagrant. Currently methods for automated algorithm
derivation have been proposed in the VB framework in order to overcome those

difficulties (see [27],[25]).
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3.4 Variational Bayesian Model Selection

Variational Bayesian methods operate on a lower bound of the log marginal like-
lihood. In section 2.6.2 we have described the model selection properties of the
marginal likelihood that embeds the Occam factor. Occam factor penalizes more
complex models that overfit the training data and offer poor generalization.

As long as Variational free energy F), is a bound over the log marginal like-
lihood, it is reasonable to expect that it has some model selection properties. In
this section we will detail the mathematical background that motivates this prop-
erty and in the next chapter of this work we will make intensive use of Variational
Bayesian model selection.

3.4.1 Ensemble learning

In the original formulation of the ensemble learning ([5]) using the notation in
[103], a variational bound over an ensemble of models can be obtained i.e.

L=logpY)= Z/ d0dX p(Y,X,0,m) >

p(Y7X797m) ¢
A0 dX ¢(X,0,m)log " = F .
;/ q(X.,0,m)log JX 0m) (3.57)

where with m we designate the model index and with ¢(X, 8, m) we designate
the joint variational distribution over hidden variables, parameters and model.
Expression 3.57 comes again from Jensen inequality and it is true for a generic
q(X, 8, m) distribution. In order to find the best ¢(X, 8, m) we make the hypoth-
esis of factorization over the three quantities X,0 and m.

q9(X,0,m) = g(m) q(X|m) q(0]m) (3.58)
Rewriting expression 3.57 we obtain:

= m m m)lo plY, X, 0jm) 0 IM =
Fo= Y am)l [ X d(X]m) a(0lm) tog Lt 1og By

= Y g(m)[Fr + log ZEZ;] (3.59)

m

m

where with F,, and p(m) we designate the free energy of model and the prior
distribution over model m. Optimal variational distributions ¢(f|m) and ¢(X|m)
can be found using the VBEM algorithm. In order to find the optimal variational
distributions ¢(m) over models it is enough to solve 0 F'/dg(m) = 0 under the
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constraint ) ¢(m) =1 enforced by the use of a Lagrange multiplier.

oty Sl [F + fog BN 4 A (o) — 1] -
Fo 4+ logp(m) —logg(m)—14+ X =0 Vm (3.60)

Enforcing the Lagrange multiplier condition and solving w.r.t. g(m) we obtain:

q(m) = iexp(Fm)p(m) (3.61)

where Z,, is the normalization constant:

Zm =Y exp(F,)p(m) (3.62)

m

In other words the best variational posterior for a model m is proportional to
the exponential of the model free energy times the prior over the model. If no
prior information is available over the model, the best model is the model with
the highest free energy. This is a very appealing results because it shows that
in the variational approximated framework the free energy has the same model
selection properties as the log marginal likelihood. Furthermore in VB learning
the free energy has the double property of objective function and model scoring
function.

3.4.2 Free energy and Occam factor

If the free energy can be used to make model selection, it must have a penalty
term embedded somewhere, a sort of Occam factor as defined in section 2.6.2.
The penalty term is evident if we rewrite the free energy as follows:

Fo = Flikelihood — Dpenalty (363)

p(Y. X, |0
Flikelinood = / dX dfq(0)q(X)log % (3.64)
Dpenatey = D(q(0)][p(9)) (3.65)

The first term in 3.63 (Flikelinood) is the likelihood of complete data likelihood
computed using variational distributions ¢(X) and ¢(6), while the second term
Dopenaity is the KL divergence between the variational distributions ¢(6) and prior
distributions over parameters p(#). By definition D(a||b) > 0 with equality when
a = b; so D(q(0)||p(0)) is always positive and acts like a penalty term. In fact it
will be larger for model with a larger number of parameters. Contrarily to the BIC
it does not simply considers the parameter number but it consider the divergence
between prior distribution and the posterior (approximated) distributions. This
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is exactly the same principle of the Occam razor that considers the prior and
posterior accessible parameters volume i.e. o,y /0, (see section 2.6.2).

Unsurprisingly in large data limit, the BIC is recovered also from the free
energy penalty term (see [5]). Let us give an intuitive explanation as in [18]
considering separately the likelihood term and the penalty term.

Concerning the likelihood term Fiikerinood, we can imagine that when n — oo (n
is the size of the data set), the mass of the variational distribution is concentrated
around the MAP estimation i.e. ¢(0) — 6(6 — Orrap). Let us consider then the
E-step that becomes:

log q(X) o / (0 — Oriap) logp(X,Y|0) = log p(X, Y |0rap) (3.66)

As consequence the limit of the likelihood term will give the likelihood com-
puted on the MAP parameter estimation i.e.

im0 Flikelinood = log p(Y |0arap) (3.67)

Let us consider now the penalty term D,cpa, (i.e. expression (3.65))limiting
our investigation to the case of ¢(f) of a conjugate-exponential form. In this
case 1t can be shown that exponential family distribution results in asymptotic
normality (see [18]). Assuming in the large data limit a Gaussian form for ¢(9),
it is possible to write the following limit:

. . d 1
limp—sco Dpenatty = lzmn_mo[/ q(8)log p(0) + 5 log 27 — §log |H|| =
d
= —§logn+ O(1) (3.68)
Assumption made here are similar to the assumption made in the BIC section (see

2.6.4): just terms that grow with n are kept. Finally we can write the asymptotic
limit of the complete free energy as:

d
limp—eoFrn = logp(Y |0rrap) — 2 logn = BIC(Y,n) (3.69)

that is the Bayesian information criterion for model m. The case in which ¢(6)
is not in the conjugate exponential family is not considered here.

3.4.3 A bias problem

Free energy has a mathematical foundation as model selection criterion even
if it is just an approximation for the real (often uncomputable) log marginal
likelihood. This approximation can introduce a bias in the decision about the
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best model. Let us reconsider the difference between the free energy and the
marginal likelihood for a model m:

log p(Y'|m) = log / dX df p(Y, X,0\m) = F, + D(q(X,0)n||[p(X,0]Y,m))
(3.70)

Comparing two models m; and mgy exactly means comparing log p(Y |m;) and
log p(Y|msy) (under the hypothesis of uniform prior distributions otherwise priors
must be considered too) i.e.

logp(Y|m1) - logp(Y|m2) = le - sz +
D(Q(X79)ml ||p(X,9|Y,m1)) - D(Q(ng)m2||p(X79|Ya m2) 7& le - Fm2 (371)

The difference between comparing marginal likelihood and comparing free energy
Is D(Q(X7 9)m1 ||p(X, 9|Y’ ml)) T D(Q(X7 9)m2 | |p(X, 9|Y’ m2)' As long as Q(X’ e)ml
and ¢(X,0),,, are extremely different the bound may became more or less accu-
rate. Predicting the accurateness of the bound is not a trivial task.

Let us consider a simple example with two GMM with M and M + 1 compo-
nents. In order to simplify the problem, let us assume that each component con-
tributes to the term D(q(X, 0)a||p(X,0|Y, M)) with of a fixed amount Dy (this
is again an approximation) in order to have D(q(X, 0)ax||p(X,0]Y, M)) = M Dy,
and D(q¢(X,0)p41||lp(X,0)Y, M +1)) = (M +1) Dps. Comparing the two models

will result in:

logp(YIM + 1) —logp(Y|M) = Fyyr—Fu+(M4+1)Dy — M Dy =
— Fugr— Far4 Dar 2 Faer — Fur - (3.72)

Looking at 3.72 it is easy to understand that when Fy;1; — Fas is used Dy is
neglected introducing a bias towards simpler models. This phenomena has been
experimentally verified in [18] comparing the VB model selection with Bayesian
model selection obtained using Monte-Carlo methods.

3.5 Online learning

In real data problems when the amount of data is extremely important, an in-
crease in hidden variable number is generally consequent (we repeat that hidden
variable number increases with the number of available observations). In those
cases it is extremely useful to derive online algorithms that contrarily to the
batch algorithms update parameters (or distributions) for each instance of the
observations at a time.

Expectation-Maximization can be implemented in an online (incremental)
fashion as proposed in [103]. In Bayesian learning, when the M-step passes
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through augmented hyperparameters, the incremental version of the learning al-
gorithm is even more appealing because it can be easily interpreted.

In the context of Variational Bayesian learning online VBEM has been con-
sidered in [50],[118]. Here we will revise the basic concept of online learning as
in [18].

Let us limit the discussion again to conjugate-exponential models with hyper-
parameters A = v,n and let us divide the data set in batches of size N* where
b designates the batch. The idea is to pass the augmented hyperparameters of
batch b as prior hyperparameters of batch b+ 1. Mathematically speaking in the
E-step the algorithm will compute N® hidden variables X* for data in the batch
b and hyperparameters are updated:

n o= 7" 4+ N (3.73)
o= ST u(y) (3.74)
yi e b

where with y; € b we designate data y; that belongs to batch b. Once conver-
gence is achieved in one batch b, it is enough for the next batch to initialize
hyperparameters with results from the previous batch i.e. n® = 7 and v* = .

Intuitively all information about batches processed up to a certain moment
is contained in the current estimation of 7,7 and does not depend on previous
hidden variables values or previous hyperparameters estimation.

Because of the huge quantity of data in experimental part of this work we will
make an intensive use of online algorithms.

3.6 Variational Bayesian prediction

One of the goal of machine learning is building a model for making inference on
some unseen data. For example in speech recognition the inference consists in
making recognition on a test set different from the training set used for learning
the model. Even if in the experimental part of this thesis (chapters 6 and 7) we
focus on clustering and no prediction is used, for sake of completeness we address
the problem of prediction in the Variational Bayesian framework. The prediction
task consists in computing the probability of an unseen data set Y given some
training data Y and a model m i.e.

p(Yp|Y,m) = / 4 p(Yir |9, m) p(0]Y m) (3.75)

or eventually averaging over all possible models:

pulY) = [ anpivi

6,m)p(6,m|Y) (3.76)
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Eventually expressions 3.75 and 3.76 can be easily extended to the case of hidden
variables. As long as posterior distributions are not always exactly computable
a first approximation consists in substituting them with variational posterior
distributions i.e. p(6|m,Y") &~ ¢(6|m) and p(8,m|Y) ~ ¢(0, m) that results into:

p(Yu|Y, m) ~ / 40 p(Yir|0, ) q(6]m) (3.77)

Y,m)~ ) / do p(Yy

For some models expressions 3.77 and 3.78 are tractable and can produce straight-

p(Yu

6,m)q(f,m) (3.78)

forward Bayesian prediction (e.g. GMM). Anyway in some other models like
HMM they still produce intractable forms. In those cases a further convex ap-
proximation based on Jensen inequality must be considered (for further details
see section 4.2.4).

Another rough and simple method to approximate 3.75 and 3.76 is simply to
consider parameter first modes (a.k.a. means) that we will denote with v as
in [94] where likelihood computed on 6,7y 5 is obtained as:

p(YulY,m) = p(Yu|0ruve, m) (3.79)
p(YulY,m) ~ ZP(YU Onve,m) (3.80)

Even if this is a rough approximation, it can still give interesting results (see

[18],[94]).

3.7 VB in machine learning

In recent years the use of Variational methods (Bayesian and not) has been ap-
plied to huge number of models. From an historical point of view it was first
applied in [57] in the case of a one-hidden layer neural network (with hidden vari-
ables) with a variational distribution constrained to be a Gaussian with diagonal
covariance matrix. In [13] the case of full covariance matrix is considered.

The term ensemble learning appears in [103] in the sense of fitting an ensemble
of models.

Since then VB methods have found their way in many different machine learn-
ing problems. For example in [26] a VB algorithm for Principal Component
Analysis is described; in [142] the case of VB learning of mixture of experts is
considered; in [51] the case of a Bayesian mixtures of factor analyzers is studied
in the light of VB framework. In [53] approximated inference on switching state-
space models is proposed. In [94] free form optimization with HMM is proposed
for the first time and in [6] generic inference in graphical models with hidden
variables is considered.
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3.8 VB in speech processing

Even if Variational Bayesian methods are relatively recent, they have already been
applied to a large number of problems related to audio and speech processing.

A first type of application of VB algorithms is solving problems that cannot
be solved with classical exact techniques like the EM and require approximated
methods.

For example the denoising and dereverberation problem can be formulated
in a probabilistic framework of Bayes-optimal signal estimation (see [10]). This
framework can be efficiently treated using a VB approach to solve the problem
in an approximated way. In this case the intractability comes from the definition
of a model that considers clean speech as a hidden variable to be estimated
(because corrupted by noise). As previously discussed, the use of hidden variables
in Bayesian approaches leads to an impossibility of closed form solution. This
approach has been applied both to single microphone and microphone array (see
[8L,[9L,[7])-

In the same family of variational algorithm we can consider the ALGOQUIN
algorithm (see [79],[80],[44]). ALGOQUIN is a probabilistic method for consid-
ering noisy speech as the result of clean speech, noise and channel effect. The
joint posterior distribution between those terms cannot be considered in an exact
form and variational algorithms are used to determine their approximated pos-
terior distributions. The spirit of the ALGOQUIN algorithm is very close to the
one in the work of [10] because both of them introduce intractable probabilistic
framework on the speech production taking into consideration different factors
(noise, channel , reverberation) and solve them with approximated algorithms.

VB framework has been used also into models like the switching state space
models (SSM) as a method for efficient inference in an extremely computational
expensive task (see [87],[86]). In this case the main issue is the computational
complexity; in fact, extending the SSM to a switching method significantly in-
creases the computational overload. The use of variational methods simplifies
the inference in this kind of models.

Many other works are devoted to the comparison of classical learning methods
like MAP and ML with the VB criterion in order to avoid many common problems
like overfitting of the data or mismatches between models and data. [125] and
[128] consider the VB-GMM for speech data outlying the highest capacity of VB
to match the data to model under different conditions like an extremely huge
number of Gaussians and shows that the recognition results can improve when
VB is used instead of ML.

Application of VB to continuous speech recognition systems has been treated
in [137]. In this work and in successive publications (see [138],[139]) authors
introduce the Variational Bayesian Estimation and Clustering (VBEC) algorithm.
In VBEC framework a shared state triphone clustering in a speech recognition
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system is built using VB for estimation and for model selection. Comparison
with a ML/MDL based system is done. VB outperforms the ML/MDL system
when the amount of training data is poor; on the other side when the amount of
data increases performances of two systems are similar.

The Bayesian method is often used in order to determine the optimal Gaus-
sian number in large vocabulary speech system [141] and the robustness of the
obtained model w.r.t. different factors [140]. In [69] and [68] VB is applied
in order to obtain sofisticated Successive-State-Splitting (SSS) algorithms: the
topology and the optimal SSS are determined applying the Bayesian property of
the VB learning.

A comparison of ML, MAP and VB on large vocabulary speech recognition
has been studied in [126]. In this work it seems that VB sometimes oversmooths
posterior distribution estimation resulting in a small loss of accuracy.

Application to speech recognition is relatively satisfactory because this is by
definition a discriminative task and VB (like MAP and ML) is a generative pro-
cedure thus results cannot in any case compete with those coming from discrim-
inative learning methods like MCE or MMI.

On the other side, when the problem is merely formulated as a generative
task, VB approach shows interesting improvements on the classical techniques.
In [133] and [129] we studied the application of VB learning and model selection
to a generative task as the speaker clustering. In [130] we studied and compared
the VB with a BIC/ML system while in [131] we studied the use of a background
model as prior information in the clustering task comparing with a BIC/MAP
system. In this kind of generative tasks that need efficient model selection the
VB interestingly outperforms the ML, and the MAP.

Other interesting application of VB in the context of feature transformation
and feature selection can be found in [82] where Variational Bayesian Principal
Component Analysis is applied to space feature reduction for speech recognition
inferring the optimal subspace dimension for each phoneme. We have derived a
VB formulation of the feature saliency problem for speech recognition (see [132])
and for audio type classification ([134]) and compared it with the original method
proposed in [85] i.e. the MML (Minimum Message Length).

As final remark Variational Bayesian modeling has also been applied to speech
synthesis problems (see [146]).
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Chapter 4

Variational Bayesian Learning for

GMM and HMM

In this chapter we consider the two most important models in speech processing
i.e. Gaussian Mixture Models and Hidden Markov Models under the light of
the Variational Bayesian framework. In chapter 2 we have discussed in details
the Maximum Likelihood and the Maximum a Posteriori learning for GMM and
HMM. After discussing general VB learning in chapter 3, we apply here the
VBEM to the two most important models in audio processing methods. The state
of the art systems in speech recognition uses HMM with GMM as density function
for emission probability (see [144]). HMM/GMM training and decoding have
been achieved using both generative and discriminative methods. ML learning
has been studied in [109], MAP learning in [46]. Discriminative methods can
be grouped into two groups: Minimum Classification Error (MCE) methods (see
[75]) and Maximum Mutual information (MMI) methods (see [106]). As long as
in this work we consider just generative models we will not give details about
discriminative methods for HMM/GMM.

The variational Bayesian solution to the HMM problem was first proposed by
D.J.C. MacKay in [94] while VB GMM was studied by H. Attias in [6],[5] and
n [34]. We reconsider here both solutions because they will be the core of VB
applications of chapters 6 and 7.

4.1 VB for GMM

Let us consider again a Gaussian Mixture model with M components and pa-
rameters 0 = {c¢;, i, 2 1

M:

M
p(yn) = Z (yn|$n =1 0) = I|9 = ¢ N yn|/~527 (4'1)
1=1

=1
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with Y ={y1,... yny} i.i.d. samplesand X = {zy,...,zx} hidden variables. The
natural choice for parameter prior distributions is the same as in MAP learning
le.:

pd) = P({Ci}u{m}a{zi}):P({Ci})HP(Mi|Ei)P(Ei) (4.2)
p({ei}) = Dir(h) (4

3)

p(pil¥i) = N(po,&3i) (4.4)

p(X:) = W(ao, Bo) (4.5)

in order to obtain a conjugate-exponential model where Dir(), N() and W()

designate a Dirichlet, Normal and Wishart distribution and Ao, po, &, ao, Bo are
distribution hyperparameters.

According to the previous discussions on conjugate-exponential models (see
sections 2.3.2 and 3.3 variational posterior distributions have the same form of
prior distributions with new hyperparameters i.e.:

q(0) = Q({Ci}a{ﬂi}a{zi}):CI({Ci})Hq(Mz‘|Ei)Q(Ei) (4.6)

q{ci}) = Dir(\) (4.7)
q(pilX:) = N(pi, &iX) (4.8)
q(Xi) = W(ai, Bi) (4.9)

where A;, pi, &, a;, B; are updated hyperparameters. It is important to notice that
factorization (4.6) is not an hypothesis but it is a consequence of prior distribution

factorization (4.2) and of the M-step of the VBEM algorithm (i.e. (3.18)).

4.1.1 VBEM for GMM

The application of VBEM algorithm in this case is straightforward. Let us des-
ignate as usually with ¢(6) and ¢(X) variational distributions that we suppose
independent for tractability issues. Concerning parameter distribution ¢(6) ac-
cording to priors (4.3 - 4.5) we can factorize as ¢(8) = ¢({c:}) [; ¢(pi]X:)q(%5).

First hyperparameters A;, p;, &, a;, B; must be initialized. The VB E-step can
be obtained simply applying 3.16 resulting in v = ¢(z, = i|y,) i.e.

n

0=t = il) = s &S eapl = = 0 Sl — p0/2) canl—5)
(4.10)
Z(xn) = ZQ( = i|yn) (4.11)

9(X) = Hq n = ilyn) (4.12)
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where the ensemble parameters are obtained integrating w.r.t. ¢(6):

logé = <logei>=W(\)—U(> ) (4.13)
i d

logE; = <log|¥i| >= Z U((a; +1—2)/2) —log |Bs| + dlog2 (4.14)
z=1

¥, = <Y¥Y>=aB" (4.15)

where W = dlog I'(x)/dz is the digamma function ([1]) and d is the dimension of
the observation vector.

The VBM step is similar to the MAP M-step because of the fact the model
is actually a conjugate-exponential model. First the following quantities are

computed:
T
o= Y A (4.16)
t
T t
o = il (4.17)
Zt:l i
T
ri = Z v (ye — ) (ye — )" (4.18)
t=1
then variational posterior distribution hyperparameters are updated as follows:
NS (1.19)
a; = v+ a (4.20)
& = v+ & (4.21)
¥: @i + o po
g = — 4.22
p s (4.22)
B; = Bo+ i+ vio(wi — po)(@i — po) /(7 + &) (4.23)

4.1.2 Free energy computation for GMM

Free energy is a key quantity for model selection purposes. In the case of Varia-
tional Bayesian GMM it can be easily computed as follows:

o= ZZQ(%)//C](Ei)C](/M|Ei)logp(anEn,un,xn)dEidm-|-
Y p(alc) P S:)
+ ZZQ(In)/Q(C)ZOdeC—l-Z/q(ui|2i)10g q(,ui|2i)d'ui+

+ Z/ q(%;) log p(zf)d&—l—/q(c)logz(—c)dc (4.24)




Rewriting terms related to distance between prior and posterior distributions (i.e.
last three terms in (4.24)) it is possible to obtain:

M
F = —Dpi(M|ho) — Z Dw ishart(ai, Bil|ao, Bo)
=1
M M
— Z Dy ormat(pi, Bif (&iai)||po, Bi/(€oai)) + Z F(7) (4.25)
=1 =1
N _ i J
F(i) = ~ilogé; — Z’yf log~y! + % (—dlog2m + log:; — Tr(Xi/v:) — E)
n=1 g
(4.26)

For the KL divergence of Dirichlet, Normal and Wishart distributions see ap-
pendix A.

4.1.3 VB prediction for GMM

When prediction using VB posterior distributions is used, it turns out to be of
a tractable form for GMM. It is a well known result that integrating a Gaussian
distribution under Normal-Wishart distribution a t-student distributions.

In fact given an unseen data set Yy

p(Yp|Y) = / d0p(Yyr|0)p(0]Y) ~ / dp(Yir10) () =
/[Z ;N (Yu|pi, Xi)q({ei}) g 2i)q(3:)] = Z”Tz to,(Yulpi, As)  (4.27)

where 1, designate a t-student distribution with w; = a;+1—d degree of freedom,
mean p;, covariance A; = ((& + 1)/&wi)B; and weights m; = X;/ > X;. The t-
student probability density function is defined as:

A | A s
[(w; /2)(w;m)d/? w;

A* = (y—p)"Aily — pi) (4.29)
In large data limit i.e. N — oo the t-student mixture reduces to a GMM.

On the other side as described in [24], using a t-stud distribution instead of
a Gaussian distribution have some advantage in case of poor available data be-

tw, (Yulpi, As) (4.28)

cause t-student distribution is more heavy tailed respect to Gaussian distribution.
Eventually VB learning can be done directly on the t-stud distribution parame-
ters instead of passing by a GMM and then inferring prediction parameters (see

[24]).
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Unfortunately many models do not admit the same simple solution for Bayesian
prediction (and for VB prediction). In those cases variational approximation must
be considered again.

4.1.4 Empirical priors for GMM

In this section we address the problem of determining empirical prior in the case
of a GMM. In section 3.1.3 we described the general problem of hyperparameters
estimation. In the GMM case, step 3.23 consists in the initialization and step
3.24 is the VBEM algorithm described in section 4.1. Let us concentrate on the
optimization step i.e. (3.25) when the free energy is expressed as in (4.24). Once
optimal posterior distribution are estimated (i.e. the variational distributions),
the only term dependent on prior distributions is the KL divergence between
priors and posteriors. Thus in order to maximize the free energy w.r.t. hyperpa-
rameters it is enough to minimize the distance between prior distributions and
variational posteriors i.e.

argmazx\F,(q(X),q(0),Y,\) = argminy K L(q(0,))||p(6,))) (4.30)

Because the KL divergence can be written as sum of KL divergences for each
independent parameter distributions the optimization can separately work on:

1
Doir(AlAo) (4.31)
2
M
ZDNormal(piaBi/(fiai)HpOaBi/(ani)) (432)
=1
3
M
Z DVVisham‘(aiv Bi||a07 BO) (433)

=1

Let us consider separately the three divergences.
First term: Dp;.(A||Ao). Let us derive the (4.31) w.r.t. Ao and equate to

a% Dpi-(A|Xo) = a% log T(M Xo) — MlogT(Xo) + (Mo — 1) Z[w(m —U() M) =
= MU(M Xg) — MT(Xy) — i[w(m — U M) =0 (4.34)

=1
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To solve this equation a gradient based method as the Newton-Raphson method
can be used. Furthermore the solution is a maximum because the second deriva-
tive w.r.t. Ag is negative for Ay > 0.

Second term: Zf\il Dnormat(piy Bi/(&:ai)||po, Bi/(&0a;)). As before let us
derivate (4.33) w.r.t. & and po and equate to zero.

M

D =" DNorma(pi, Bi/ ()| po, Bi/ (€oai)) =

=1

=3 / N(pi, Biftsa)llog(Bif6oas) — (pi — po)? - Biftoa]  (4:35)

oD _ 1 X
oD
8—&) = — Z —po) - (pi — po) > a:/ B; (4.37)

Third term: Ef\il Dwishart(ai, Billao, Bo). As before let us derivate (4.33)

w.r.t. ag and By and equate to zero.

M
= Z sthart(a27 B ||a07 BO) (438)
oD o
o =2 Z U(ag+ 1 —1) — 2ln2 + InBy— < log; >] = 0 (4.39)
ao .
1=1 d=1
D &
o5 = D laBy' = <N >] =0 (4.40)
0 ;

=1

The system composed by equations (4.39) and (4.40) fixes the first moment
and the first log-moment of the prior distribution to the average of the same
quantities obtained averaging the variational posteriors. To solve this system
numerical methods must be used.

4.2 Variational Bayesian Hidden Markov Mod-
els

The very first work on VBHMM was proposed by MacKay in [94] where a pro-
cedure equivalent to the Baum-Welch was derived in order to optimize the free
energy of an HMM. In this section we consider those results and finally we try to
answer to the three fundamental questions on HMM exposed in section 2.2.2.
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4.2.1 HMDM Variational Free Energy

Considering the same notation as in section 2.2.2, we designate with Y = {y1,... ,ys,... ,yr}
the observation sequence, with S = {sy,...,8 ... ,s7} the state sequence and

with § = {A, B, 7} the HMM parameters (we consider here the discrete proba-

bility state emission). Prior distributions are set to independent Dirichlet distri-

butions:

p(d) = p(m) Hp(au‘) Hp(bik) (4.41)

p(m) = Dir(A;) (4.42)
plai;) = Dir(Xa,;) (4.43)
p(bik) = D”'()\b,k) (444)

Let us introduce the variational distributions over parameters and hidden vari-
ables i.e. state sequence S: ¢(A, B,w,S). The variational distribution approx-
imate the intractable exact posterior p(A, B, 7, S|Y). In this form the problem
is not tractable so the independence hypothesis is considered i.e. ¢(A, B, 7, S) =
q(A, B,m)q(S). The following form for the free energy is obtained applying Jensen
inequality.

)p(ﬁv A, B) >

log p(Y) = log /drr/dA/

p(Y,S|7T,A, B)p(Tr,A, B)
> 7 =
> /d"r/dA/dB gs q(m, A, B, S)log o A B.S)

p(Y,S|m, A, B)p(w, A, B)

> dw/dA/dB o A, B)g(S)log P 21T A D7)
/ 2l A B)alS)od = B a(S)

) p(m, A, B),
/d?‘f‘/dA/qu AB[E q(S (S) +509m]—FHMM
(4.45)

We find again in 4.45 two terms: the first one is the likelihood of the data and
the second one is the penalty term that penalizes more complex models.

Let us rewrite p(Y, 5|0, A, B) as:

~

T
lng(Y S|7T A B = Ts Ha5t5t+1 H Styt] (446)
t=1

t=1
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We can now rewrite the free energy as:

T T
FHMM = /d 7T51 /dAZQ(S)ZGStSt+1 —I_/dBZQ(S)ZbStyt
S t=1 S t=1

p(m, A, B)

7(](#7 A, B) (4.47)

Zq Jog Q(S /dTrdAqu(Tr,A, B)log
S
(4.48)

4.2.2 VBEM for HMM

Because the HMM with prior distributions defined before is a model that belongs
to the Conjugate-Exponential family the Variational Bayesian EM algorithm can
be applied in order to find optimal distributions ¢(6) and ¢(S5). An optimiza-
tion algorithm was derived by MacKay [94] inspiring successively the natural
parameter inversion proposed in [18].

Let us consider the E-step and derive the free energy (4.45) w.r.t. the distri-
bution over state sequence ¢(5):

85}%?4 B /dn/dA/qu(vr,A, B) p(Y; 510, A, B) — log q(5) + const =0
q

(4.49)

Substituting now the sequence (4.46) into the partial derivate, we can find
again the independence between parameters in the first derivate.

log q(S) = /dWQ(W)ﬂ51 +/dAQ(A)loga5tst+l +/dBQ(B)bStyt —log Z(5) =

<logmg >q(m) + < 10g Ggys,, >q(a) + < logby,y, >qB) —log Z(5)
(4.50)

We have added here a normalization constant Z(S) that should results from
a constrained optimization problem enforcing the constraint > . Q(S) = 1; in
section 4.2.3, we show how Z(S) can be obtained directly from the backward-
forward algorithm.

The intuition in [94] consists in observing that the sequence ¢(S) can be
rewritten in terms of a modified parameter set:

(7, A,B) = (exp<logm > 4(m), €xp < log A >q4y, exp < log B >(p))
(4.51)

a(s) = ﬁmﬂaw g (1.52)

t=1
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Under a Dirichlet prior expression 4.51 can be computed using the expectation
of the log Dirichlet distribution i.e.

/dw Dir(m

In order to compute sufficient statistic for the HMM the forward-backward
recursion can be again applied using parameters 4.51. The only difference is

NERINERTHIPYH (4.53)

that now those quantities are sub-normalized distributions and a normalization
constant must be set for normalization purposes. Let us define & and (3 recursion
terms analogous to a and [ in section 2.2.2:

N
a(i) = (Y s =1il0) = [Z &1 (1)Lsis, bjo (4.54)
ﬁt(L) = P(Ytiﬂ% = 7:7 0) = [Z asi'sjbjyt-l-l/gt‘}'l(j)] (455)

and equivalent sufficient statistics 3:(z, 5)
éu-1izh; (ye) Bi(4)
N ~

Let us consider now the VBM step. Deriving free energy (4.47) w.r.t. g(7, A, B)
and solving, we obtain:

:Yt(la]) = 15(375—1 = iast = ]|1/1T70) = (456)

togam. A.B) = | [ a(S)logn(Y. S|, A, )|+ logp(m, 4, ) =

= /q(S)logp(81
+ log p(m) + log p(A) + log p(B)

From 4.57, it is easy to understand that posterior variational distributions over
parameters g(A, B, m) results so automatically factorized into terms whose op-
timization is independent from each other. In other words simply using the
Markovian hypothesis and the prior independence hypothesis we found out that
variational distributions over parameters are independent in between them; this
is not an ulterior hypothesis but it is a consequence of the model. To summarize
for the VB approach, it is possible to write without any assumption:

q(0) = q(A, B,m) = q(A)q(B)q(m) (4.58)

Because of the fact HMM with Dirichlet priors belongs to the conjugate exponen-
tial model we are sure that posterior distributions have the same form of prior
with updated hyperparameters.
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N
g(7) = Dir(Ar), A =An+ Y _Ao(i, ) (4.59)
J
- - T
qa;) = Dir(Aay)s Aoy =Aay + Y Ali ) (4.60)
i=1

T
Q(i)ik) = Dir(j\bik)7 j\bik = )\bik + ZZ%‘(%]) (4'61)
t %

Contrarily to the MAP algorithm the VB does not explicitly estimate any
parameter but just evaluate the posterior distributions over parameters. In this
case there are no reparameterization problems as in formula (2.84).

Natural parameter inversion for HMM

Results of the previous section can be obtained applying the natural parameter
inversion ([18]). In fact expression (4.51) can be interpreted in terms of natural
parameters ¢(f) and expected natural parameters i.e.

0 {n, A, B} (4.62)
o(0) = {logm,log A, log B} (4.63)

¢ = < &) >.0)= 1< log ™ >y(r), < log A >4y, < log B >y)}
(4.64)

In order to obtain the Variational point estimation 0 such as ¢ = qb(é) it is
enough to use the inverse of ¢. In HMM the situation is very convenient because
¢ = log(.) so the inverse is simply the exponential function.

- ¢_1(< o >q(€)) = (exp < logm >q4(r), €xp < log A >4y, exp < log B >q(B))
(4.65)

It is evident that results (4.65) and (4.51) are the same. In this case the
inversion is straightforward and the Variational point estimation can be easily
obtained. This comes from the fact that in HMM parameters are independent.
This is not always the case in other models belonging to the CE family where
the inversion is not a simple task.

4.2.3 Free energy computation for HMM

In order to evaluate expression 4.45 a brute force computation of all terms is not
necessary; instead an implementation trick can be used. Let us consider again

62



the free energy in the HMM case and write it as in [43] i.e.:

Fraym = /qu(A)log Zii; —I-/dB (B)log EB; _I_/dﬂ'q(ﬂ')[ PE:;

—I-H(q(S))—I—/ dAdBdrdS q(A)q(B)q(m)logp(Y,S|A, B,m) (4.66)

where H(q(S)) denotes the entropy of variational distribution over the hidden
variables. Let us rewrite entropy using expression (4.50):

H(q(5)) = —Z S)log q(S

= -y q(S)[/ dr dAdBlogp(Y, S|m, A, B) — log Z(S)]

= —Zq(S)[/ dr dAdBlogp(Y,
()

)+ log Z(S) (4.67)

Substituting expression (4.67) into (4.66), we obtain the following:

= ) p(4) ) @ wq(m)lo p(7)
Faum = /qu(A)l gq(A) —I—/qu(B)l gq(B) —i—/d‘ q(m)l gq(w)
+ log Z(S) (4.68)

The likelihood term simplifies between the two expressions and the free energy
reduces to the KL divergences between prior parameter distributions and varia-
tional distributions plus the normalization constant for the state sequence. Z(5)
can be directly obtained after the forward-backward recursion as:

log Z(S Zz s1)) with Z(a(s))) =Y als) (4.69)

S

Z(a(s¢)) is the normalization constant for the & in the forward algorithm.

It is straightforward to notice the analogy with expression (2.25) for comput-
ing the probability of an observation sequence in ML HMM in which the sum of
successive « 1s used.

4.2.4 VB prediction for HMM

Let us consider prediction of an unseen sequence Yy given a training sequence
Y. As described in section 3.6, posterior distributions can be approximated by
variational posterior distributions i.e. p(8]Y) = ¢(9).

Contrarily to the GMM case this does not result in a tractable integral for
a HMM. We are obliged again to approximate the integral with a lower bound
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applying Jensen inequality as follows:
plY) = [ dog0¥10) > cop [ a0 a(0)tog 3 p(v: 510
s

> emp/d@q(@)Zq(S)logM (4.70)

S q(5)

In this case, Jensen inequality has been applied two times in order to obtain a
bound with variational distributions over parameters and hidden variables (i.e.
state sequence). Expression (4.70) can be estimated as proposed in section (4.2.3)
with the test sequence instead of the training sequence. So given parameter
variational distributions ¢(6), the forward algorithm can be used to determine
log Z(S) and finally compute the bound.

4.2.5 Summary

To conclude this section on HMM we reformulate the three fundamental questions
about Hidden Markov Models ([109]) in the light of variational Bayesian learning.

Question 1 “Given an observation sequence Y and a parameter set 8 find p(Y']0)” must
be reformulated in Bayesian terms as “Given an observation sequence Y and
a parameter distribution ¢(6) find [ ¢(0)p(Y']8)”. As long as the integral
is intractable, it must be bounded as in expression (4.70). To evaluate the
bound a modification of the forward algorithm that uses Variational point
estimation instead of parameters is derived; the analogy between the VB
forward algorithm and the classical forward algorithm is extremely strong
anyway: the forward algorithm operates on the exact probability p(Y|9)
while the VB algorithm operates just on a bound.

Question 2 Concerning the best state sequence given an observation sequence Y and
distributions ¢(6), the VB forward algorithm can be easily transformed
into a Viterbi like algorithm considering the max instead of the sum all
over possible states. Again this algorithm works on a bound and not on the
exact probability distributions.

Question 3 The maximum likelihood estimation of parameters § in a Bayesian frame-
work is substituted by the estimation of posterior distributions p(6|Y’). As
long as optimal posterior distributions cannot be found unless numerical
methods are used the variation bound is used as objective function. Param-
eter learning can be done with a modification of the Baum-Welch algorithm
that consider Variational point estimates as parameters.
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4.2.6 Empirical priors for HMM

The problem of empirical priors for HMM is analogous to the one described in
section 4.1.4 for the GMM case. When emission probabilities are discrete and
their prior distribution is a Dirichlet distribution optimal hyperparameters can
be found as in section 4.1.4 in the case of mixture coefficients. Again the problem
consists in simply making prior distributions as close as possible to the variational
posterior distributions. The explicit computation is omitted for brevity.

4.3 VB for HMM with GMM emission proba-
bilities

Let us consider in this section the unification of results of section 4.1 and 4.2 in
an HMM with emission probabilities represented by GMM.

Parameter set is now simply extended with § = {n, A, G} where G = {¢s,k, tos; by 2sik }

are weights,means and covariance matrix of the k&th Gaussian component for the
1th state.

Two kind of hidden variables must be considered: the state sequence S =
{s1,...,s7} and the Gaussian component X, = {x15,,... ,2ms }. Variational

distributions factorizes as follows: ¢(7, X, .S) = ¢(7)q(S)q(X|5) = q(7)q(S) [[; a( X

(obviously the Gaussian component hidden variables are conditioned on the state
sequence).

4.3.1 HMM/GMM Free energy

The free energy for a HMM/GMM can be simply written as combination of free
energies for the HMM and the set of GMM that models the emission probability.
Combining notations of section 4.2 and 4.1 it is possible to write:

= o p(A) TqlT)lo }@
Fauvmamm = /qu(A)l gq A) -I-/d q(m)! gq(ﬂ) +
)

p(csik) P(fesik) P(Xsik
+ q(cs.k)log + q(ps;x)log + q(Xs;x)log —=—
sz:[ (€t q(cs;k) (st q(tts.r) (Eet) q(Xsi)

+H(q(S, X))+ / dAdG dn dS dX q(A)qg(m)q(G)q(S, X)logp(Y,S, X|A, G, )
(4.71)

]

In this case free energy (4.71) have to deal with the two sets of hidden variables
X and S. H(q(S,X)) is the entropy of the joint probability over S and X.
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Extension of log p(Y, S, X|A, G, m) is straightforward.

T T

logp(Y,S, X|A,G,7) =gy Ha8t5t+1 Hlogp(yt|5t,:cst) =

T T

=T H Usys,,, H log N (yiltz.,, Xz.,) (4.72)

As before posterior distributions over parameters can be factorized as a con-
sequence of the Markovian hypothesis and prior independence hypothesis:

g(A, 7, G) = q(A)q(m)q(G) = q(A)g(m) [TT] alcor)alsun

Vsik)q(Xsix) (4.73)

4.3.2 VBEM for HMM /GMM
The EM-like algorithm can be applied to the HMM/GMM again simply com-

bining results from previous sections. In the E-like step derivatives w.r.t hidden
variables variational distribution ¢(X,.S) is considered.

oF
%/gﬂ)m B / 9(A)q(G)q(m)q(5, X) logp(Y, S, X|A, G, m) — log (X, 5) + const
g(X,

(4.74)

Solving w.r.t. ¢(X,5), we obtain:
log (X, 5) = /dM(ﬂ)logﬂsl +/dAQ(A)loga5t5t+1 +
[ a(Gog Niwile,  22.) ~ tog 2(5.%) (4.75)

where Z(S5, X) is a normalization constant. All expectations in 4.75 have already
been computed: expectation of Dirichlet distributions can be computed using
formula 4.53 and expectation for Gaussian distributions have the same form of
equations (4.13-4.15).

Modification coming from the use of GMM instead of a discrete distribution
for output probability results in the same factorized form for the hidden variable
distributions as 4.52. This means that a forward-backward algorithm can be
used to compute sufficient statistics. The algorithm must consider now hidden
variables related with the Gaussian component too; this will simply results in
a form similar to 2.41 that uses expected values computed w.r.t. variational
distributions:

s p(YVisi= g ke = R0 oM G (8)a Bixbin(ye) Bi(5)
&, k) = - = AR (4.76)
p(Y10) 2 im G (1)
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The M-step is simply obtained combining the M-step of the HMM i.e. 4.59 and
4.60 with the M-step of the GMM i.e. (4.7 - 4.9). Augmented hyperparameters
are this time computed using sufficient statistics 4.76.

4.3.3 Free energy computation for HMM /GMM

Considerations of section 4.2.3 are still valid for free energy computation in the
case of HMM/GMM. The free energy after some simple manipulation can be
written as:

= 0 p(A) mTg\mTIIo p(ﬂ-)
Fumvmiemm = /qu(A)l gq(A) +/d q(m)l gq(w) +

P(Csik) Plpsik) P(Ssk)
zs; %:[Q(Csik)l()g a(csr) + q(ps,x)log a(ror) + q(Xs,x)log Q(Es,‘k)] +log Z(S, X)

(4.77)

Again it is basically constituted of two terms: a KL divergence term between
prior and variational posterior distributions and the normalization constant of
hidden variables sequence (states and Gaussian components).

As before log Z (S, X) can be computed with the forward algorithm.

4.3.4 Prediction for HMM/GMM

For prediction purposes the real (unknown) posterior distribution over parameters
is approximated with variational posterior distributions p(0]Y) ~ ¢(6). In the
case of GMM, as described in section 4.1.3 the predictive distribution results
in a mixture of T-stud distributions. On the other side in HMM, predictive
distribution can only be obtained as a lower bound as described in section 4.2.4.

To compute the prediction on unseen data in the HMM/GMM model we
are obliged to extend approximation 4.70 in order to be able to handle hidden
variables X and S i.e.

(VoY) ~ / d6g(0)p(Yu]0) > cap / 40 4(6)log 3" p(Y, 5, X|0)

> exp/d@q(@)Zq(S,X)log% (4.78)

S

As before expression 4.78 corresponds to the variational lower bound of the
marginal likelihood of a test sequence given variational posterior distributions.
It can be computed again using the forward algorithm using é(i, k) as defined in
4.76.

The extension of the HMM/GMM in the variational case is basically analogous
to the extension of the HMM/GMM in the ML case (see section 2.2.2).
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4.4 Conclusion and summary

In this chapter we have applied the Variational Bayesian framework to Gaussian
Mixture Models , Hidden Markov Models and the combination of HMM/GMM.
We have answered to three question: how to write the free energy, how to learn
the model and how to make inference.

In both cases the Variational learning results in an inexpensive modification
of classical HMM and GMM learning procedures in which expectation over pa-
rameters are used. In HMM case, a modified forward-backward algorithm can be
applied with variational point estimation for parameters instead of parameters.
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Chapter 5

Preliminary experiments

In this chapter we analyze different behaviors of Maximum Likelihood (ML),
Maximum a Posteriori (MAP) and Variational Bayesian (VB) learning in the
framework of Gaussian Mixture Models. We focus our attention on GMM because
it is the core of our speaker indexing systems (see chapter 7).

We will consider particularly three impact factors tightly related between
them: the model size (that in case of GMM is defined by the component number),
the amount of data available for learning and the impact of prior distributions
(obviously this factor does not concern the ML framework). Experiments are
developed in order to study the three algorithms in different combination of the
impact factor.

The model size and the amount of data are strictly related in the sense that
an amount of data can be poor or not, depending on the size of model that must
be learned. For example 1K observations can be considered a reasonable amount
of data for 2 components GMM and a poor amount of data for a 512 components
GMM. In different experiments we will fix the model size and change the amount
of data or vice versa we will fix the amount of data and progressively increase
the components number. We will see that in extreme conditions VB performs
definitely better than MAP and ML. Furthermore VB avoids overfitting problems
typical of other approaches.

The choice of prior distributions is a more complicated problem. An interest-
ing case study would be to use non-informative priors that bring no information
to the learning process. Unfortunately those kinds of prior distributions are often
improper distributions or raise intractable forms from a practical point of view
(see section 2.3.1). The use of improper prior is possible as long as the posterior
distribution is a proper distribution but in the following work we will stick to the
case of proper prior distributions. The simple way to “simulate” non-informative
distributions is to use very flat prior distributions. Anyway the idea of flat prior
still depends on the kind of model and on the quantity of training data. This
kind of prior distributions is also known in literature as broad priors, weak priors
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or small priors together with flat prior; we will refer indifferently to them in the
following sections. Let us make a simple example of a Dirichlet prior distribution
with prior hyperparameters A\g and with a data term n;; the posterior hyper-
parameters is A\; = n; + Ag. A “non-informative” prior can be achieved setting
Ao <€ n; 1n the case n; 1s known or at least estimated. For instance if n; is of the
order of IM, Ay = 1K can be supposed not to bring much prior information while
if n; is of the order of 1, a “non-informative” hyperparameter can be obtained
Ao € 1. The actual value of n; is generally determined by the model size and the
amount of data. Again in experiments, we will keep fix those two quantities and
change the prior value.

Before going on with experiments, some general considerations must be done.
It is well known that ML estimation can be considered as a special case of MAP
estimation (apart from parameterization problems) when prior over parameters
is non-informative; so we expect ML and MAP estimation to give the same re-
sults when broad priors are considered. On the other side, we showed that when
variational distributions are extremely peaked, (in the limit case a delta distri-
bution), MAP and VB coincide (again apart from parameterization problems).
An extremely peaked variational distribution (i.e. ¢()) can result because of two
factors:

e an extremely peaked prior distribution (i.e. p(6))
e a huge quantity of data that make the posterior extremely peaked.

In the first case, we expect VB and MAP to have similar performances but
very different way from ML. In fact the result is basically given by prior distri-
butions. In the second case VB, MAP and ML will converge towards the same
solution, in fact as we showed in chapter 3 when N — oo where N is the amount
of training data, the three methods converge to the same solution (under some
hypothesis on the MAP parameterization form).

To summarize, both MAP and ML are parameter estimation techniques that
give the same results when prior distributions on parameters are small w.r.t.
the log-likelihood of the data, that happens when priors are weak (in the limit
case non-informative) or when an infinite amount of data is available (and the
data term dominates the prior term). VB estimator converges to MAP and ML
estimator when prior distributions are extremely peaked but when prior distribu-
tions are flat, VB estimator significantly differs from others because parameters
are integrated out w.r.t. variational distributions.

In the following experiments, we aim at comparing ML, MAP and VB on the
same GMM learning task. Anyway an important consideration must be done:
MAP and ML are parameter estimation techniques while VB is a parameter
distribution estimation technique. It means that using MAP and ML we can learn
parameters and use them in the test, while using VB we will obtain parameter
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distributions. For testing purposes, VB prediction must be used and parameters
must be integrated out; we already discussed in section 4.1.3 that integrating
out a Normal distributions w.r.t. a conjugate Normal-Wishart prior results in a
t-student distribution. For this reason, in the test concerning the VB framework
a t-student distribution inferred by VB variational distributions (as defined in
section 4.1.3) will be used. As previously outlined using a t-student distributions
has many advantages compared to a Normal distribution because it is a heavy
tailed distribution less sensitive to outliers (for an extended discussion on the
advantages of VB methods for mixture of t-stud distributions see [24]).

Let us now consider a simple measure we will use in the sequel. We experimen-
tally verified that VB makes clustering harder than other techniques (depending
on its prior). In other words, other non-fully Bayesian techniques aim at using
all parameters available in the model while VB tries to use just the “necessary”
number. Let us make a simple example with a GMM; let us consider a case in
which only few data are available for large number of components. We experi-
mentally observe that the ML (or the MAP) tries to split the data all over the
Gaussian components while VB clusters data in few clusters (consequence of the
Occam razor principle). A simple way to quantify this behavior is using accu-
mulator variances (we do not use mixture weights because VB does not estimate
explicitly mixture weights). Accumulator mean is 1/M where M is the number
of Gaussian components and we expect variance to be small when data are split
over components while variance to be high when data are concentrated in few
clusters. Mathematically speaking if 7! designates the accumulator for the ith
Gaussian estimated on the sample y;, the accumulator variance is computed as:

~|

A= 23 UMY bl - 1P (5.1)

For this reason, in following experiments we will estimate accumulator vari-
ance as a measure of how “hard” clustering is done.

The chapter is organized as follows: in section 5.1 we compare ML, MAP
and VB in terms of performances as a function of the data for different prior
settings. In a similar way in section 5.2 we study performances as a function of
prior for different amount of data. In section 5.3 we study results as a function of
the initial Gaussian component number. Prior optimization and model selection
experiments on synthetic and real data are described in sections 5.4 and 5.5.
Finally in section 5.6 we address the problem of model adaptation comparing

MAP and VB.
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5.1 Performance vs. Data for different priors

In this section we compare the three learning methods (VB,ML,MAP) on simple
modeling task progressively increasing the amount of training data with different
priors. Once training is done the log-likelihood is computed on a test set using the
learned parameters or the t-student distribution (see section 4.1.3). It must be
pointed out that those experiments do not aims at deriving any conclusion on a
recognition task but only aim at studying the different behaviors of VB,MAP,ML
trying to understand their differences.

In order to avoid local maxima problems that exist for all learning framework,
we ran 5 times each EM (or VBEM) algorithm with 5 different initializations
(the same for the three algorithms), computed 5 different test-log-likelihood and
plotted the average.

We are equally interested in changing prior distributions from broad (non-
informative) priors to strong peaked priors. Because we are not here interested
in providing any prior information but just the strength of the prior distributions
(we will consider later the case of empirical Bayes priors), we consider a fully tied
prior with a relevance factor 7. Mathematically speaking prior distributions are
derived as follows :

Aoy =T (5.2)
poi =0 (5.3)
for =T (5.4)
agi =T (5.5)

By=711 (5.6)

where 0 is vector of zeros and [ is the identity matrix. The double index 0:
designates prior hyperparameter for the ith Gaussian component. We fixed here
the component number at 8. The amount of training data varies from 100 frames
to about 2000 frames with a step of 20 frames. In this way we should move from
a spare training data case to a non-spare training data case. In the same way
different values of 7 are considered from a range from weak priors to a highly
peaked prior. We consider the following cases: 7 = {1E —6,1,10,100,1E + 6}.

Figures (5.1-5.5) plot the test-log-likelihood w.r.t. the amount of training data
for different values of 7. Figures (5.6-5.10) plot accumulator variances (that give
us informations about how “hard” the clustering is) for the different scenarios.

Let us analyze different results. In figure 5.1, a very small prior is used.
First of all it can be noticed that ML and MAP give exactly the same result.
Furthermore, when training data is spare VB gives a higher test log-likelihood
compared to the two other. When the amount of training data increase, curves
converges towards the same value. Figures 5.2-5.3 consider the case of informative

72



priors (7 = {1,10}). In those cases, MAP and ML have different performances;
MAP that gives better results than ML; on spare data VB still performs better
than others, and again the three approaches converges for increasing amount of
data. When 7 = 100, prior distributions are peaked enough to make VB and
MAP have the same performance: in this case they both perform better than
ML. Finally when prior is too peaked i.e. 7 = 1F + 6 in figure (5.5), MAP and
VB still perform the same but data modify prior distribution very slowly resulting
in poor performances.

Similar considerations can be done about the accumulator variance as a func-
tion of amount of data plotted in figures (5.6-5.10). MAP and ML have the
same accumulator variance when priors are non-informative, while MAP and VB
coincide when priors are strong. Anyway it can be noticed that when few data
are available VB always makes harder clustering than ML and MAP. This can
interpreted again as a result of the Occam razor principle in which when few data
are available, VB tries to avoid overfitting and gives a more compact solution.
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5.2 Performance vs. Priors with different data

In this section we compare in a similar way the three algorithms changing the
prior distribution sharpness regulated by 7 for different amount of data. The
experimental framework is the same as in the previous section: an 8 Gaussian
components GMM is used and to avoid local maxima, 5 different initializations are
considered and finally the average value for test-log-likelihood is plotted. Values
of 7 ranges from 1E-6 to 1E410. Test log-likelihood is plotted on a semilogarith-
mic scale w.r.t. 7. We consider different amount of data ={20, 200, 2k, 20k, 200k }
frames for training. Figures (5.11-5.15) plots test log-likelihood w.r.t. 7 for dif-
ferent amount of data while figures (5.16 - 5.20) plot accumulator variance for the
same parameters. In all pictures ML estimation is evidently a constant because
it does not depend on any prior distribution.

Let us analyze the different scenarios. An extremely interesting consideration
can be done looking at the very extreme case of only 20 frames for the train-
ing (figures 5.11 and 5.16). The VB solution is extremely regularized even for
small values of 7 and better than the ML solution. On the other hand for small
prior values the MAP solution is the worst solution. We would expect that the
MAP and ML have the same performance but it does not happen here, this is a
direct consequence of the MAP parameterization problems (see section 2.5). In
the classical MAP basis representation, the lack of data generates drop of perfor-
mances: a possible solution to this problem is finding another basis such that the
estimation does not degrade that much e.g. a soft-max representation (see [95]).

Looking at accumulator variance in figure 5.16 we can notice that for small
priors VB makes clustering less hard than ML. Again this is a consequence of
Occam razor principle that does not make harder clustering but tries to make the
right clustering i.e. when very few data are available and no prior information
is available the clustering does not overfit the data but regularize the solution
avoiding a model that strongly fit only the few data (in the same way in which
it avoids model that strongly fit lot of data).

When the amount of data increases, we verify again that for small priors MAP
and ML have the same performance while when prior becomes more important
MAP and VB have the same performance. When prior becomes too strong perfor-
mances degrade (not enough data to modify the prior). In figures 5.12,5.13,5.14,
we can notice a peak in the performance; this peak actually corresponds to the
best prior (that is actually unknown but can be somehow estimated). In all those
cases VB performs better than MAP and ML for small prior and limited amount
of training data. When very large amount of data is used (figure 5.15), the three
techniques perform the same for small 7 values and we observe performance
degradation when prior becomes too strong.

Same considerations can be done looking at accumulator variance. We can
notice a peak in the variance for an optimal value of prior (that’s actually not at
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the same value as the peak in the log-likelihood figures because log-likelihood is
computed on the test set and accumulator variances is computed on the train set).
When prior becomes too big variance goes to zero. This is easily understandable
because with large common priors over Gaussians all accumulators will have the
value of 1/M where M is the number of components.
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5.3 Performance vs. Initial number of Gaussian
components for different priors

In this section we consider system performance with a variable initial number of
Gaussian components with different priors. We fixed the amount of training data
at 2k frames. Initial number of Gaussians moves from 10 to 250 by a step of 5.
Multiple initialization is used as in previous sections. Three different values of
7 = {1£ — 6,1,100} are used. We aim here to investigate the capacity of self
pruning of MAP and VB and make a comparison with ML.

Let us consider the case in which a single vector is assigned to a Gaussian,
in this case the ML algorithm will produce an infinite covariance; on the other
hand VB and MAP will produce simply a null accumulator for the given Gaus-
sian. MAP will then produce parameters equal to maxima of prior distributions,
while VB will produce Gaussian parameter distributions equal to prior parameter
distribution. In other words, data does not give any contribution to estimation
of parameters that relies only on the prior information. When prior is not large,
this typically results in the loss of the Gaussian component. Anyway because VB
is a fully Bayesian technique, we expect to have a different behavior for different
priors.

Increasing the Gaussian component number and keeping constant the amount
of training data, we expect many components to be pruned from the MAP or
the VB. In figures (5.21,5.23,5.25) the test log-likelihood w.r.t. initial number
of Gaussian component is plotted for different values of prior 7. In figures
5.22,5.24,5.26 the final Gaussian components after the training is plotted. When
prior is broad, we can again notice that MAP and VB give the same result. In-
creasing the Gaussian component the test log-likelihood dramatically decreases
for the MAP/ML learning while it is almost constant for the VB (figure 5.21).
This can be explained looking at the final component number represented in figure
5.22. MAP and ML keep all initial components while VB prunes out components
that are too weak resulting in an almost constant number of final components.
This is an extremely useful property because, extra degrees of freedom do not
give overfit problems because they are pruned out. Anyway there are some cases
in which VB pruning can give a wrong pruning. In [96] an example of wrong
pruning is described; in fact when the amount of data is extremely limited (in
the limit case the train set may contain a single element) the symmetry break that
generates the pruning (and the clustering itself) may degenerates in a completely
wrong result (interested reader can find details in [96]).

When 7 increases MAP performances diverge from ML and get closer to VB
performance. In figure 5.23, 7 = 1 is used; priors are not negligible now. An
increased performance results for both VB and MAP; now MAP better regularizes
the solution. Figure 5.24 shows the final Gaussian component: VB component
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number is now increasing because of the regularization imposed by the stronger
prior. Also MAP prunes some components, but in an softer way than VB.

When finally 7 is 100 i.e. a strong prior MAP and VB have the same per-
formance. Test log-likelihood decreases when the initial Gaussian component
number increases (figure 5.25). Initial Gaussian component is preserved at the
end of the training (figure 5.26). Anyway VB and MAP performances do not de-
grades drastically as the ML performances due to the regularization effect done
by prior distributions and due to the averaging effect.

An interesting phenomenon is depicted in figure 5.26. Using a value of 7 = 100
both MAP and ML have the final component number equal to the initial one up
to 250 components. On the other side the VB keep all components up to a
value of about 230 and then starts pruning them out. This means that the high
value of 7 that prevents from pruning for few components becomes relatively less
important when the component number increase.

To summarize, a useful property of the VB learning is pruning extra degrees of
freedom that are not used during the training. This process is of course sensitive
to prior values that can regularize or not the pruning process.

It is interesting to figure out what happens to the free energy when a degree
of freedom is lost. Figure 5.27 plot the free energy value (left Y-axis) and the
pruned component number (right X-axis) w.r.t. iteration number. Each time a
component is pruned out there is a “jump” in the free energy; in fact each time
a component accumulator is zero, its variational posterior distribution becomes
identical to the prior distribution and their KL divergence is zero. The penalty
term is so decreased and the free energy is increased; that explains the jump in
the graph.
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5.4 Prior optimization

In this section we study the effect of the optimal prior estimation in the VB frame-
work. The procedure for optimal prior estimation is described in section 4.1.3.
It consists in iteratively optimizing the bound given some priors and then priors
given variational distributions previously obtained. In this way it is possible to
further increase the value of the free energy.

In order to study the impact of prior optimization, we run experiments on a
8 Gaussian component GMM with 2000 frames as training data. Broad priors
are used (i.e. 7= 1FE —6). Then 30 iterations of the VBEM algorithm described
in section 4.1 are done followed from a one-step prior optimization. This pro-
cedure is iterated until convergence. Free energy w.r.t. the iteration number is
plotted in figure 5.28. During the VBEM iteration, free energy is increasing with
iteration. When optimal priors are estimated for the first time, there is a free en-
ergy jump, because prior distributions move from non-informative distributions
to distributions fitted to data. Then convergence is achieved after few steps. It is
important to notice that there is always a jump (positive or negative) in the free
energy after a prior optimization: this is because the optimal prior distribution
is not the optimal posterior distribution.

The problem we want to investigate now is: do optimal prior depend on ini-
tial prior choices 7 In order to answer this question we run joint variational
distribution-prior distribution optimization with different choices for initial pri-
ors. Figure 5.29 represents the initial prior choice as a function of the optimization
iteration. Figure 5.30 represents free energy value. Unsurprisingly different initial
prior choices always converge to the same free energy value, showing that optimal
priors are not sensitive to initial prior choice. Anyway this is not valid if the prior
distributions are too strong to be modified by data; in this case the optimal prior
will simply coincides with the current prior because the data contribution will be
negligible.

Figure 5.31 plots in the same way the test log-likelihood obtained after prior
optimization. Again the final value of convergence is the same for all initial prior
choice but it is not the value that maximizes the test set log-likelihood.
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5.5 VB model selection

In this section we explore the use of the VB framework for making model selection
on a synthetic data problem where the exact component number is known and a
real data problem. The theoretical basis of this section can be found in sections

2.6 and 3.4.

At first 1000 observation are generated using a 3 component Gaussian mixture
model. This data are used as training set for learning different GMM gradually
increasing the component number from 1 to 10. The 10 different models are
learned using ML and VB criteria and they are scored using respectively BIC and
VB free energy. We investigated as well the dependence of the VB solution from
7. Scores are plotted in figure 5.32. Both BIC and VB select the 3 component
models and VB result is robust to prior distribution.

In the second experiment we use 1000 acoustic vectors (MFCC) and repeated
the same experiment. The theorical BIC selects a value of 10. Figure 5.33 plots
VB free energy for 10 different component models. When the prior 7 is small
the chosen value is 4 while when prior strength increases, free energy has same
problems as the BIC diverging towards more complex models.

In summary when the data has intrinsically a best model (as in the synthetic
case) BIC and VB provide the right solution. On the other hand in real data
applications, BIC definitely needs to be tuned to provide reasonable results. VB
is sensitive as well to prior distributions in the model selection task.

2000

1000

-1000

Free energy

—2000

-3000(- // /.

~4000 I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Gaussian components

Figure 5.32: Free energy and model selection for synthetic data
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5.6 Variational Bayesian Adaptation

In this section we compare MAP and VB on the adaptation task using an empir-
ical prior distribution. Empirical Bayes approach considers a prior model given
from the knowledge that someone has on the basis of data estimation for instance.
In speech and speaker recognition tasks, it generally means the use of a speaker
independent model that can be adapted with the current data.

We aims here at comparing the MAP and the VB on the speaker adaptation
task with empirical Bayes prior. In order to estimate the prior model, a 32
Gaussian component GMM is estimated using 50k acoustic vectors from different
speakers. This background model is adapted using different amount of data from
a given speaker and the adapted model is scored on a test set from the same
speaker. Prior distribution sharpness is regulated again with a parameter 7 that
produces distributions with the same form as in [46] i.e. given a background
model B = Ef\il EN(ub, 3% and a strength factor 7; (one for each Gaussian),
hyperparameters for prior distributions can be estimated as :

)\02' = C?ZTZ' (57)

poi = (5.8)
boi = 7 (5.9)
adg; = T; (510)
By = 727 (5.11)

We set 7, = 7 Vi. A small 7 results in not sharped prior distribution, on the
other side a large 7 results in very sharped prior.
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As already noted in section 2.5, application of MAP to GMM may result in

divergence problems for the weights estimation (i.e. ¢; = E?\,};‘l_l if A, <1). In
order to avoid this limit case, the empirical adaptation formula proposed in [113]
is used i.e.:
_ b i ‘
¢ = o+ (1— ozi)? (5.12)
a = & (5.13)

Ti

Even if this solution is not mathematically derived from the MAP, it avoids
degenerated case.

5.6.1 Performance vs. data for MAP adaptation and VB
adaptation

In the first set of experiments, test log-likelihood is plotted w.r.t. the amount
of adaptation data for different choices of 7 = {1F — 5,1,1F + 4} in figures
5.34,5.36,5.38. As in previous experiments for the same scenarios accumulator
variance is plotted in figures 5.35,5.37,5.39.

The test log-likelihood inferred using the VB is higher than the one inferred
using the MAP. The difference is bigger when few training data are used and
when small 7 is used but there is no large gain compared with experiments in
section 5.1 when non-empirical Bayes prior are used. In fact using an empirical
background model that has a lot of information about the model reduces the
difference between the two approaches. On the other hand, it is interesting to
check the accumulator variance. When large 7 is used MAP and VB accumulator
variances coincide; when small 7 is used we can identify two phases: when few
data are available MAP clusters data harder than VB; when huge amount of data
is used VB clusters data harder than MAP. This can be seen an attempt of VB
to build a model avoiding overfitting problems i.e. when few data are used they
are splitted all over Gaussians avoiding some Gaussian to fit in a strong way the
few data and when more data are used it avoid to fit all Gaussians giving a model
that’s too generic.

In other words we can see here the averaging property of the VB method that
does not aim at finding some parameters from some data but aims at estimating
distribution; as direct consequence this estimation is smoother compared with
other parameter estimation techniques.
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5.6.2 Performance vs. prior for MAP adaptation and VB
adaptation

Figures 5.40,5.42 and 5.44 plot the test-log likelihood w.r.t. the prior factor 7 for
three different amounts of adaptation data (100, 400 and 1000). As expected in
the case of small amount of training data and weak prior distributions, the VB
approach largely outperforms the MAP. After a peak at the optimal value of 7
performances degrade when priors become too strong.

On the other hand when the amount of data increases, the difference between
MAP and VB is marginal at all values of 7.

5.7 Occam factor in the the E step

Looking at EM and VBEM equations, we can notice a certain similarity with
MAP. Since conjugate priors are used the M step consists for both MAP and
VB in the update of hyperparameters with new statistics coming from the data.
The E step is significantly different because in the case of VB, parameters are
marginalized w.r.t. their distributions. This directly takes into consideration the
Occam factor ([93]).

The E-steps for MAP and VB learning are

Enrap = N(y¢|0mapr) (5.14)
Eyvg = exp(/Q(@) log N(y:|60)d) (5.15)
We know by assumption that Oy ap = argmazeP(y|0)P(0) where P(0) is

the parameter prior distribution and Q(#) is the variational distribution. Let us
define « as:

_ JQ(0)log N (y:|0)do

5.16
log N(yt|9MAP) ( )

Let us rewrite Ey g as function of a:
Eyp = exp(alog N(y:|0mar)) = exp(log N(y:|0rar)®) = N(y:|0rrar)®. (5.17)

i.e. the variational E step is the same as the MAP E step with an exponential
factor a. The value of a will actually depend on the shape of the distributions
N(y:|0rr4p),Q(0) and of course on yz; If Q(0) is extremely peaked around param-
eter set Opr4p then a — 1.

In order to show the impact of « into clustering let us consider a simple case
of 2 component GMM with a training set of only one point. Let us suppose that
providing some kind of initialization the MAP E-step give us {a,b}. Considering
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the previous discussion, the VB E-step will provide {a®, b°} where o, 3 are Occam
factors for VB expectations. {a,b} must actually be normalized into:
a 1 a” 1

N aa-|-bﬁ:1_|_s_§

(5.18)

MAPE T T4 VET

We are actually interested for determining the law that regulates the difference
between my4p and wyp i.e. values of a,b, a, that make the VB estimation
different from the MAP estimation. So let us consider the following inequality:

bP

>
a®

(5.19)

ISEI~

Considering a given couple of a, b, the inequalities has the form of a plane with
intersection with axes given by rg,1,:

B logh— aloga > logh—1loga (5.20)
log a log b

=1- o =1— 21

e log b log a (5:21)

Knowing that a,b are expectations they can only be positive values and that
a,3 > 0, the plane may intersect the possible values of a,3. Conditions for
rg,to > 0 are complementary:

rg > 0= {b>a} (5.22)
to > 0= {a > b} (5.23)

[so-surfaces for the given function of «, 3 are planes. Let us now consider
relation between accumulator variances that can be rewritten as:

W]2\4AP_7TMAP27T\2/B_7TVB (524)
That has always as solution:

O£<bﬁ><(c—\/c2—4)v a>bﬁ><(c—|—\/02—4)
a
- 2 - 2

a (5.25)
where ¢ =  + 2 and ¢ > 2. Those are again equations of two planes.

Let us plot marap, mve and varyap,varyp (variance accumulator for MAP
and VB) for a simple couple {a = 1E-5,b = 3E-5} function of o, in figures
5.46.5.47.

When a set of N data is used the result for the final Gaussian weight is a sum
of function with the same shape as 5.46 and the iso surface will be no more a
plane. For 5 points, for example the result is plotted in figures 5.48-5.49.
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5.8 Conclusion

In this chapter we have experimentally verified some theoretical results in a GMM
task. ML, MAP and VB have the same performances in the inference task when
enough training data are provided. On the other hand when some extreme situ-
ations are considered like very poor amount of training data, very large models
or particularly strong prior VB outperforms both MAP and ML.

In the adaptation task the averaging property of VB is even more evident:
when few data are available they are clustered harder than the MAP criterion
while when lots of data are used they are not concentrated on few Gaussians but
they are spread all over other components. This can be seen as combination of
two different effects: one coming from the Occam factor and the other coming
from the averaging effect. The Occam factor tries to use just degrees of freedom
necessary to the modeling task and it explains why few Gaussian components only
are modified when few data are used contrarily to MAP. On the other hand when
more data are used the averaging effect of VB results in a more soft clustering.

In some sense Occam factor and averaging effect are both consequence of the
Bayesian integral and the final result can be very different depending on the prior
distribution as described in section 5.7.
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Chapter 6

Variational Bayesian Speaker
Change Detection

An important problem to solve in audio document indexing is to detect the
speaker change!. In this chapter we explore how VB learning may contribute
to this task. The classical solution to this problem consists in supposing two
competing models, one for the speaker change (i.e. for two speakers) and an-
other for one speaker. The best model is selected using a selection criterion or a
thresholded measure (e.g. the Gish distance).

We detail in the following chapter some theorical problems related to the
derivation of the BIC formulation, LLR formulation and we propose the use of
the VB metric for speaker change detection.

6.1 State of the art

In many audio systems, data segmentation is a task of main importance. For
instance in large vocabulary speech recognition systems for broadcast news, ob-
taining an initial segmentation in homogeneous blocks of audio data is a necessary
step for adaptation and decoding purposes (see [45],[32],[20]).

In the literature there are three main groups of speaker change algorithms: the
decoder based segmentation, the model based segmentation and the metric-based
segmentation.

The decoder-guided segmentation is simply the result of the decoding of the
audio file. Segmentation is then obtained cutting at the decoded silence points
generated from the recognizer (see [81],[143]). Anyway this kind of solution con-
siders the silence points, and does not explicitly take care of changes in the
acoustic data.

In the model-based segmentation different models represent different acoustic

!Speaker Change Detection is also referred in literature as Speaker Turn
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data, for instance speech /non-speech and eventually sub-models like narrow band
speech, wide band speech, noisy speech etc. (see [12],[78]). The segmentation is
obtained with a Viterbi decoder with all models in parallel. Obviously if there
is a mismatch between the model and the data the technique becomes ineffective
on the unseen data.

Metric-based segmentation system are the most popular solution. They are
based on two neighboring windows and a similarity measure between the two
windows in order to determine if a changing point takes place. The most common
choices for metrics are the KL divergence ([123]), the LLR ([28], [38], [37],[102])
and the BIC ([31],[127],[38],[90],[145],[135]). All metric based methods need an

heuristic threshold to be fixed in order to obtain effective results.

6.2 Mathematical formulation

Let us consider a window Y = {y;,...,yx} in which we suppose a changing
point at time ¢. The hypothesis of changing (H,,12) point considers that Y¥; =
{y1,... .y} and Y3 = {yy, ... ,yn} are generated by two different speakers while
the hypothesis of no speaker change (H,,0) consider that Y = {Y7, Y5} is generated
by a single speaker. In terms of model, H,,, is parameterized with a single
Gaussian with parameters 6,0 while H,,1, is parameterized with two Gaussian
distributions with parameters 6,1, 6,2 estimated respectively on Y1, Y5.

The metric based method aims at comparing the two hypotheses based on
some dissimilarity criterion in order to infer one of the two hypothesis. Most
common criteria for doing this kind of inference are the Log Likelihood Ratio

(LLR) and the Bayesian Information Criterion (BIC).

6.2.1 Log Likelihood Ratio

In the Log Likelihood Ratio (LLR) technique the two hypothesis are represented
as the ratio of the likelihood of the hypothesis H,,o (no speaker change) and
hypothesis H,,12 (speaker change). Mathematically speaking we have:

Lo = Y. logp(ylfmo) (6.1)
Y={V1,Y2}

Lyia = Y logp(ylbmi) + > log p(y0m2) (6.2)
Y1 Y2

where 0,,9,0,,1,0,,2 are parameters defined in previous section.

It must be anyway pointed out that 6.2 is not a real log likelihood because it
is not possible to write a probability density function for this form.

The decision is taken considering the LLR as:
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where A is a threshold heuristically set. As long as we have L,,12 > L0, the
LLR will be always negative; for this reason the empirical threshold must be set
in order to make a decision on the changing point.

6.2.2 Bayesian Information Criterion

As already mentioned in a previous chapter, the BIC penalizes more complex
models and was introduced in the speaker change detection framework in [31].

In this case the threshold is simply given by the complexity of the two models
le.:

A

where P is the difference of number of parameters in the two models.

The tuning parameter A was introduced in [127] in order to improve per-
formances versus the theorical BIC that provides generally very poor results.
Introducing the “tuning” parameter BIC is basically a thresholded LLR.

The BIC is based on an approximation of the probability density function but
in the hypothesis H,,15 there is no valid pdf. This is an improper application of
the BIC.

Tuning of the parameter A can be done on a development data set like in [38]
but as soon as conditions slightly change the criterion becomes less effective.

6.3 Variational Bayesian Speaker change detec-
tion

The VB model selection framework has a natural application in the speaker
change detection problem. Instead of comparing log-likelihood or penalized log-
likelihood it is in fact enough to compare the variational free energies of two
models. The problem that the two Gaussian model is not a valid pdf is overcome
with a very simple trick: the two Gaussian model is considered as a 2 components
GMM in which during the learning hidden variables are forced to belong to one of
the two Gaussians. In this way it is possible to obtain a valid pdf to approximate
with variational methods.

Let us consider Gaussians with parameters 6,,0 = {ttmo, Umo}s 0m1 = {ttm1, Ui}y Oma =
{ttm2, Um2}. In the Variational Bayesian formulation prior probability functions
over parameters must be defined first. Then choosing probability functions in
the conjugate-exponential family we define:

p(ﬂmolrmo) = N(Mm0|p07ﬁorm0) P(Fmo) = W(Gm (I)O) (
p(/umllrml) = N(:uml |/007 60Fm1) P(le) = W(GOa (I)O) 6
p(/um2lrm2) = N(:um2|/007%30Fm2) P(Fm2) = W(GOa (I)O) (
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where W() designate a Wishart distribution and {po, 8o, @0, o} are distribution
hyperparameters. Estimation of variational posterior distributions is easygoing

because they have the same form as prior but with updated hyperparameters (see

section 3.3). Let us define the following quantities:

ﬂmO

e ¢
= N;yz /~Lm1:;;‘yi /jm2:mzyi

1

= N Z(yi — fim2) " (Yi = fim2)

1=t

Variational distributions have the following form:

Q(,um0|rm0) = N(pm0|/6m0rm0) Q(FmO) = W(am07 (I)mO)
Q(Mm1|rm1) = N(pm1|5mlrm1) Q(le) = W(amly (I)ml)
Q(,Ufm2|rm2) = N(pm2|/8m2rm2) Q(FmQ) = W(am27 (I)mQ)

where

/8m0
6m1
/ng

Am0
m1

Am2

me
pml

pm?
(I)mO

(I)mQ

N —t+aq
N o + Bopo
N + By
N pim1 + Bopo
N + fo
N fima + Bopo
N + Bo
Do+ T S0 + T Bolfimo — po)” (fimo — po) /(T + Bo)
Oo + T St + T Bolfim1 — po) (fim1 — po) /(T + Bo)
O+ 1Sz + T Bolfimz — po)” (fimz — po)/ (T + Bo)
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The decision over the speaker change is taken now simply comparing the
variational posterior over models for hypothesis H,,o and H,,15. Let us designates
with Fo and F,,12 free energies for models H,,g and H,,12 (even if H,,12 is not a
valid model). Variational posterior over models, designated as g(m0) and ¢(m12)
are:

q(m0) = exp((Frmo)p(m0) (6.27)

q(m12) = exp((Fni12)p(m12) (6.28)

The decision is taken comparing ¢(m0) and g(m1). Because there is no available
prior information on the prior model probabilities, it is reasonable to set p(m0) =

p(ml). Furthermore the exponential function is a monotonic function that means
that the decision can be simply taken on the free energies difference:

VB, =F.— 2> 0 (6.29)

Both F,,0 and F,;12 embed a penalty term given by the KL divergence between
prior and posterior distributions. The decision does not require any threshold.

Anyway in Bayesian approaches prior distributions over parameters must be
defined. We will see later in this chapter that the VB speaker change detection
is extremely sensitive to prior distributions.

6.3.1 Free energy for speaker changes

The term V' B,, can be easily written using results of section 4.1. The expression
of F,0 is a form mathematically correct:

N
Fino = Z/ q(1mo|l'10)q(T'mo) Log p(yil ptmos Umo) +
=1

— K L(q(ptmo| o) | [P(1m0|Tm0))) — K L(q(T'm0)[|a(T'mo)) (6.30)

The first integral can be evaluated as in section 4.1.2 and KL divergences can be
found in appendix A.

On the other side Fj,15 is not a valid free energy because there is no valid
probability density function to bound. As in the BIC this is approximated by
the two free energy of single Gaussians:

Fr2 = Ele f q(pm1|Tm1) gDt ) log p(ys|pom, Tmr) +
+ 3t @i | T2) @(Tinz) Log p(yilttma, Tmz)

— K L(g(pm1 D) |[P(ptm1 [Ta1))) — K L(g(T1)|[g(Tn1))

— K L(g(pm2 U2 ||P(pm2|Um2))) — K L(g(Lm2)|[g(L'n2))

(6.31)

Each term in 6.31 is computable as before.
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6.4 Search algorithm

In order to compare the BIC and the VB solutions in the fairest way, a common
experimental framework is fixed. The search algorithm used in our experiments is
the same as [31]. This is a classical algorithm for speaker change point detection
and it is based on a window of growing size in which the changing point is
searched. If no changing point is detected the window grows of a size equal to
MOREFRAMES; once the maximum size i.e. MAXWINDOW is achieved
the whole window is considered as produced by the same speaker and the search
continues on the remaining data. The algorithm can be summarized as follows:

1 Initialize the window [a,b] where a« = 0 and b= MINWINDOW

2 Find the changing point in [a, b]
for BIC find the point of local maxima of BIC(m) >0
for VB find the point of local maxima of VB(m) >0

3 if no change is detected in [a,b] then b=b+ MOREFRAMES
else if ¢ is the detected changing point in [a,b] then @ = t 4+ 1, b = a +
MOREFRAMES

4ifb—a> MAXWINDOW thena=b—- MAXWINDOW

5 go to point 2

Value of MOREFRAMES is experimentally set to 1 second and value of
MAXWINDOW is set to 10 seconds.

6.5 Experiments

6.5.1 Database description

Speaker change algorithms are tested on the four files of the HUB4-96BN database
for a total of almost 2 hours of broadcast news in very different conditions. From
labels we can obtain 528 different speaker change points that represent a con-
sistent number of data for experimental tests. Anyway those files contains large
non-speech parts; we will not consider changing points inside the non-speech parts
because there is no label to determine if the change is correct or not. On the
other side we will consider changing point from speech to non-speech segments.
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6.5.2 Metric

Two kinds of errors are generally considered in literature (see [31]). The type I
error also referred as recall (RCL) when a true change is not found in a given
window and the type 2 error also referred as precision (PRC) when a detected
change is not referred in the label file. To summarize:

number of correct detected speaker changes

(6.32)

total number of detected speaker changes
number of correct detected speaker changes

(6.33)

total number of real speaker changes

An average measure between PRC and RCL is the so called F-measure (see

[114]) defined as:

_ 2x PRC x RCL

6.34
PRC 4+ RCL ( )
Measure 6.34 can be more intuitively rewritten as

1 1 1

) VO T .

7~ “%re T ROT) (6.35)

6.5.3 Setting prior distributions

Variational Bayesian algorithms must be provided with prior distributions over
parameters and we expect a final result (in terms of model training and model
selection) affected by the choice of those prior distributions.

In this specific application, prior distributions are set as Normal-Wishart dis-
tributions with hyperparameters {3y, ao, ft0, po, ®o}. The same choice as in [46] is
assumed for tying together different hyperparameters in order to obtain a more
robust estimation. Mathematically speaking we set:

ag=0o =7 (6.36)
Oy =71 (6.37)
po=1y (6.38)

where [ is the identity matrix and y is the mean computed over the whole file.
Performances can be studied now w.r.t. the tuning parameter 7.

A physical interpretation of 7 can be proposed as well. In fact the higher the
value of 7 is, the more peaked prior distributions are. In this sense 7 defines the
“strength” of the prior distribution.
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6.5.4 Results

In this section we describe experimental results for the BIC and for the VB
framework previously described. The search algorithm and window parameters
are the same for the two approaches; in this way the model selection properties
of BIC and VB are compared in the fairest way.

Figures 6.1,6.3,6.5 plots the F-measure, the PRC and the RCL for the BIC
w.r.t. the threshold A while figures 6.2,6.4,6.6 plots the F-measure, the PRC and
the RCL for the VB method w.r.t. the prior strength 7. In table 6.1 results for
the best BIC and for the best VB are reported.

In the BIC based system a low value of A produces a large number of speaker
changes resulting in RCL close to 1 and in very low PRC. The best A value is
14.5 and results in a F' = 0.63.

In the VB based system a low value of 7 produces on the contrary a low
number of speaker changes resulting in PRC close to 1 and a huge 7 results in
high PRC. First of all this application is extremely sensitive to the value of the
prior distribution contrarily to the robustness of the VB speaker clustering system
defined in chapter 7. This is obviously due to the limited size of the window that
makes the model selection very difficult with very few data.

Anyway the use of a Bayesian factor to perform the model selection allows an
extremely fine tuning compared to the BIC tuning. This can be seen in results
for the best systems: best BIC can achieve F' = 0.63 while best VB can achieve
F =10.70.

PRC [RCL| F
BIC A =1 0.04 | 1 [0.07
BIC A = 14.5 (best) | 0.88 | 0.49 | 0.63
VB 7 = 1E — 10 (best) | 0.75 | 0.66 | 0.70

Table 6.1: Value of PRC, RCL and F for the theorical BIC, the tuned BIC and
the tuned VB
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Chapter 7

Variation Bayesian Speaker
Clustering

In this chapter we describe a speaker clustering system based on Variational
Bayesian learning. The need of Variational methods arises because the cluster
(speaker) number is often unknown and must be estimated from data using dif-
ferent model selection methods. The state of the art systems often use the BIC
criterion in order to obtain an estimation of the cluster number. As discussed
in chapter 2, BIC is a first order approximation of the Bayesian integral that is
only valid in large data limit. On the other hand speaker clustering real problems
have often to deal with limited amount of data provided by speakers making the
BIC criterion extremely inefficient. The most common trick to balance the poor
quantity of data is to multiply the penalty term by a factor A that should bring
the criterion closer to the experimental conditions. It is well known that setting
the best A value is extremely difficult and it is generally done in an heuristic way.
Furthermore the BIC model selection is composed of two completely separate
steps: a first step in which the model is trained with a Maximum Likelihood or
Maximum a Posteriori criterion and a step in which the penalty term completely
independent of the trained model is appended in order to create the score.

The use of Variational Bayesian learning allows simultaneous model learning
and model selection: in fact the same objective function (the free energy) is used
to determine parameter distributions and to make model selection out of the pos-
sible models. The advantage of variational methods is that they are not based
on asymptotic properties of the function but on a lower bound derived using the
Jensen inequality always valuable even when the amount of data is extremely
poor. In this sense, no manual adjustment is required i.e. no heuristic factor A is
required to adapt the model selection criterion to the real conditions because it
is always valid. Anyway when only poor amount of data is available the problem
of the tightness of the bound becomes a main point in fact the bound (that is al-
ways verified) may become so vague that model selection may become inefficient.
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Furthermore the VB model selection is a biased model selection towards simpler
models as described in section 3.4.3.

The other appealing property of Variational Learning consists in its capability
of avoiding the model overfitting as experimentally verified in GMM experiments
of chapter 5 and of pruning extra degrees of freedom when they are not used.
Those properties are useful for indexing purposes when different amount of data
are produced by different speakers as it is often the case in speaker segmentation
problems:; in those situations the overfitting is avoided by the reduction degrees
of freedom when only few data are available and the model is too complex.

In this chapter we will describe our speaker segmentation system based on
the Variational Bayesian learning/model selection and we will compare it with a
system based on ML or MAP for the learning part and BIC for the selection part
that is actually the state-of-the-art system for audio indexing.

7.1 State of the art

Many different systems for speaker clustering have been proposed based on dif-
ferent techniques but the basic architectures can be classified in three classes
according to [101]:

e The ascendant architecture
e The evolutive architecture

e The sequential architecture or the real time architecture

Let us consider in details the three architectures.

7.1.1 Ascendant architecture

The ascendant architecture is the very classical architecture for speaker indexing
problems proposed by Gish in [55]. This work is the foundation for many of the
current indexing systems.

The first step consists in a first phase of silence detection that gives a first
rough segmentation into different blocks. This segmentation is simply based on
energy thresholding.

Then a speaker change detection is operated as described in section 6.1 based
on the BIC (or on the LLR) criterion. This step gives a more precise segmentation
into different speakers. After that different segments are merged together using
again a similarity measure like BIC or LLR.

This architecture produces extremely pure clusters from a speaker point of
view but from the other side the segmentation obtained in the speaker change
detection step is not reconsidered in the other steps. This can generate errors if
the segmentation is not exact.
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7.1.2 Evolutive architecture

The evolutive architecture has been proposed in [99] and [100]; this system is
called evolutive because there is a close interaction between the different steps of
the indexing system and the segmentation is refined at each step.

The file is modeled with an HMM where states represents different speakers
and transitions model speaker changes (as in proposed in [107]). Anyway in this
architecture the HMM is not static but evolves during the different algorithm
steps.

At first the whole file is represented with a single state GMM that represent a
single speaker. Then a state is added to the model representing another speaker.
Models are then adapted using the MAP method and a Viterbi alignment is run
on the new model. In this way another segmentation is obtained. Adaptation
and alignment are iterated until a maximum of log-likelihood function is achieved.
Other speakers (or HMM states) are progressively added and the procedure re-
peated until an increase in the log-likelihood function is no longer observed.

The interesting point in this kind of approach is that the segmentation is
reconsidered after each step and an initial segmentation error in the initial phase
may be reconsidered in the next steps. Another advantage consists in the fact
that some a priori information can be added using a Universal Background Model
for adaptation purposes: this solution has the advantage of requiring less data
for obtaining a robust model.

7.1.3 Real time architecture

The real time architecture or sequential architecture is an extremely recent solu-
tion proposed in [89]. Its advantages consist in the fact that it requires a reduced
execution time and the whole signal is not necessary for obtaining a partial seg-
mentation that can be obtained in real time at signal reception.

Contrarily to the hierarchical approach that have a quadratic complexity with
the size of the signal, the algorithm proposed in [89] has only a linear complexity.

Real time algorithms are based on three different methods: a “Leader Follower
Clustering” (LFC) algorithm as proposed in [41], a dispersion based speaker
clustering (DSC) algorithm and an hybrid speaker clustering (HSC) algorithm.

The LFC algorithm uses a clustering technique based on k-means clustering.
Given a new observation, only the nearest centroid is modified; if all centroids
are too far a new class (speaker) is created. The DSC algorithm is based on an
intra-class dispersion criterion: the goal is minimizing the measure that consists
in the dispersion. This method has the advantage of being threshold independent.
The hybrid algorithm is a combination of the DSC and the LFC because they
do not produce the same error. Performances can be improved by using the two
techniques at the same time.
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Real time architecture performs worst than the classical hierarchical clustering
because the use of the whole audio file allows a better selection of the number
of classes. On the other hand online speaker clustering is interesting in many
applications where the audio stream is processed in real time.

7.2 Speaker indexing system

7.2.1 Model topology

The model topology chosen for our system is the very classical fully connected
HMM in which each state represent a cluster (i.e. a speaker) introduced in [107].
This model is defined by the ensemble of states {s;,...,ss} where S is the
number of states, the transition probabilities from state r to state j, a,; and the
emission probabilities of an observation y; given a state j i.e. p(y|s;).

In our model we make an approximation on transition probabilities in order
to simplify the problem considering {c,;} independent of the original state r i.e.

am-:a;,:aer,r/'withj:{l,...,S} (7.1)

Under this approximation the likelihood of a sequence Y = {y;} can be written
as a simple mixture model i.e.

S
p(Y) = ZP(Y7 S) —Funder the hypothesis Zajp(y|5j) (72)
S

i=1

Making this simplification results in a model like the model depicted in figure
7.1.

The main drawback of such simplification is that the time information con-
tained in the file is not used in the modeling task. Anyway when speaker cluster-
ing (and generally speaker recognition or verification) is done the temporal infor-
mation is not essential as long as systems are based on Gaussian Mixture Models
(see [112],[113]). Audio indexing systems are also generally based on algorithms
that do not consider the time properties of the signal (see e.g. [99],[3],[83]). Any-
way more complicated speaker indexing systems (as well as speaker verification
or identification systems) have been proposed that uses high-level informations
like phonetic or lexical properties that are aware of the time structure of the
signal (for instance see [4],[11],[76]). In conclusion using a system that does not
explicitly take care of time is still a reasonable approximation.

On the other hand a main advantage consists in the extremely simplified learn-
ing and decoding algorithms that can be obtained considering a mixture model
instead of an HMM. The gain in terms of computational time and complexity
is considerable. For this reason we will base our experimental system on this
assumption.
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Figure 7.1: Ergodic HMM topology for a 4 states HMM that represents 4 speak-
ers. States D1 and D2 are dummy states (non emitting) that represents the initial
and the final state always visited

7.2.2 Duration constraint

A common problem in speech modeling consists in explicitly identifying the state
duration density (see e.g. [42]) in order to include it in the HMM formulation.
This approach has been largely used in speech recognition framework. As pointed
out in [84], building a speaker model using very few frames (in the limit case
just one frame) results in very poor clustering quality and for this reason an
explicit duration per state must be considered. The difference with the speech
recognition case is important anyway: in speech we can expect a given phoneme
to have an intrinsic duration density determined by the generation mechanism
of the phoneme; in the audio indexing task there is absolutely no information
on how long the speaker is talking and how many data will be provided per
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speaker; for this reason it is useless to define a density duration model. The only
point that matters in this case is to assume a minimum quantity of frames to
estimate the speaker model in a robust way . Common choices are imposing a
fixed segment length (see [84],[83]) of D frames that are assumed generated by
the same speaker or imposing a minimum duration constraint per speaker as in
[3] in order to avoid spare solutions in which data are clustered using extremely
small blocks.

In our system we will use a sequence of blocks of fixed length D as in [84] in
order to obtain a robust and non-spare solution. Mathematically speaking the
observation sequence Y = {y;,... ,y;} can be rewritten as a sequence of blocks
of length D designated by O; where O; = {Oy,...,O4p,...,0ip}. Each block
O, is assumed to be generated entirely by the same speaker (state) s; following
the law p(O|s;). The log-likelihood of the sequence Y can be rewritten as:

H

logp(Y') = log p({O:}) Z Z (Osls;) (7.3)

7.2.3 Emission probabilities

Most speaker indexing systems use Gaussian Mixture Models as choice for model-
ing the emission probability p(O;|s;) but other proposed solutions are for instance
vector quantization ([33]) or Self Organizing Maps (SOM) ([83]).

In our system we will consider GMM in order to model speaker emission prob-
ability and in section 7.5 we will experimentally verify how VB learning can solve
many problems of the classical GMM based indexing systems. The probability
p(O¢|s;) is modeled by an M component GMM with means p;;, covariance matrix
I';; and weights 3;; where ¢ = {1,..., M} designates the ith component of the
jth state.

Under the hypothesis that frames in block O, are independent the likelihood
can be written as:

D M
=112 BN(Oulps, 1) (7.4)

p=1 =1

The number of Gaussian components is fixed for all speakers to the value of M,
but we will show later that VB learning can prune out extra unused components.

It is possible now to write the log-likelihood for the observation sequence Y
as:

S

T
logp(Y']0) = Z log Z a; P(Oys;) = Z log Z Qj HZ/BUN Ouplptij, I'ij)7.5)
t=1 =

p=1 =1
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where 0 = {a;, 8i;, tij, I'ij }. Up to this moment we have assumed that the state
(speaker) number S and the Gaussian component number M are fixed and a
priori known. Generally this is not the case in speaker indexing systems and a
model selection criterion is necessary for determining the real number of speakers.

7.3 Model learning

In this section we show how it is possible to learn the model defined in section
7.2.1 according to the three criteria considered in this thesis: ML, MAP and VB.
The hypothesis of known value of S speakers is first considered here.

7.3.1 Maximum Likelihood Learning

The log-likelihood (7.5) is the objective function for the maximum likelihood
criterion. Two kinds of hidden variables must be considered in this case: a
variable x; that designates which speaker (or state) generated the block O; and
an hidden variable z;, conditioned on the value of z; that denotes which Gaussian
component generated the observation Oy,. x; can assume values in the interval
{1,...,5} while z;, can assume values in the interval {1,... , M} and must always
be interpreted as conditional to the value of ;.

A simple application of the EM algorithm that furthermore considers duration
constraint D can provide a parameter estimation. Let us designate with v,,—; the
probability of variable z; to be equal to state j and with ., —i.,—; the probability
of variable z;,, to be equal to component ¢ conditioned on the value of z,. The
E-step is :

=] — P = 7|0y) = d ! 7.6
Ty = Plae =310/ > ;i P(Ols;) (7.6)
Vep=ile=j = P(2p = i|ze = J,04) = Bl (Orps 5. Ts) (7.7)

S BiN (O, iy Tij)

Once vz,=; and 7;,,—;|-,=; are estimated, it is possible to update the parameters
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in the following M-step:
T

= Z FYl‘t:j/T (78)
Et 1 Zp 1 Vo= Vap=i|lzi=j

Bij = (7.9)
Et 1279 1 Vze=j
s = Et 12;9 1 V=3 Vap=ilzi= =iOw (7.10)
1] T N
Zt IZp 1 Vo= Varp=i|z:=j
Iy = Zt 12;9 1 Vo= Vzp=ilze= =i(Osp — WJ’)T(Otp_Wj) (7.11)

Et 1279 1 Voe=3Vap=ilz:=j

It is easy to identify in the E-step (7.6-7.7) and in the M-step (7.8-7.11) a simple
extension of the EM for GMM in order to handle two levels of mixtures: one
related to the speaker model and one related to the Gaussian; in fact the model
is now reduced to a simple mixture of mixtures.

7.3.2 Maximum a Posteriori Learning

In the MAP framework, the objective function is constituted by log P(Y,0) =
log P(Y'|0) 4 log P(8) where log P(Y'|0) has the same form as 7.5 and log P(6)
represents the prior over parameters. The natural choice for prior parameter
distributions is a set of distributions that belongs to the conjugate family in
order to obtain posterior distributions with the same form of priors i.e.:

P(aj) = Dir(Aao)  P(Bi;) = Dir(Ago)
P(pij|lij) = N(po, &ol'y)  P(L'yj) = W (v, Bo) (7.12)
where as always Dir() designates a Dirichlet distribution, N() a Normal distri-
bution and W () a Wishart distribution (see appendix A).

The E-step will be the same as before i.e. equations (7.6-7.7). In the M-step
we will have:

_ Et lzp lﬁyzt ]Vztp—ﬂl’t ]Otp

Hij = (7.13)
Et 1Zp 1 Yoe=5Vzp=ilz:=j

T — Et 12;9 1 Voe=iVep=ilei=3 (O — Mij)T(Otp_Mij) (7.14)

17 *

Et 1Ep 1 Voe=3Vzp=ilzi=j
T D
= Z Vor=jVap=ilzi=5 (7.15)

t=1 p=1
T

Z Voimi (7.16)
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and finally updated hyperparameters of posterior probability distributions can
be computed:

Mo, = Nj + Ao (7.17)

As; = Nij + Ago (7.18)
Nij itii + &o po

;= SO0 7.19

&ij = Nij + & (7.20)

Nijéo(pij — po)(pij — po)”
Nij + po
Vi; = Nij + 1%} (722)

®;; = N;; Tij +

+ @ (7.21)

The MAP parameter estimation can be obtained considering the maximum of
posterior distributions:

Ao, — 1
o = ;\7 (7.23)
E] ay; T 1
Mgy, — 1 _
Bij = S s =1 (7.24)
Hij = Pij (7.25)
T..
Iy = i 7.26
J Vij —d ( )

where d is the vector dimension.

7.3.3 Variational Bayesian Learning

In this section we consider the VB learning of the same model. In this case
there will be no explicit parameter estimation but simply parameter variational
posterior distribution estimation. In this section we will develop the VBEM for
our specific model, show how it is possible to compute the free energy (because
of model selection purposes) and finally derive the optimal hyperparameters.

VBEM

If prior distributions are defined as 7.12 the model belongs to the conjugate-
exponential family and according to results of section 3.3.1 the VBEM algorithm
can be applied.

In the E-step the joint variational distribution of both hidden variables must
be considered ¢(x4, z4,) i.e.

(e, 25) = q20)q(20p]0) o exp{< logog, >
+ < logBe, 2, > + < log P(Olay, 24p) >} (7.27)
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where with < . > we designate the expected value w.r.t. the variational distri-

bution. Applying the variational E step we obtain the variational estimation of

hidden variables designated by ;,—; and 7, —ijz,=;:

_d}

. > ~1/2

3]
. 1 -
with £ = 5(01‘? - Ptp)TFij(Otp — Pip)

Vztp =ilzi=j

Vep=iler=i = A Vzp = U2 = J) = A
ztp=t|Tt=j

D M
Voimj = @ H Z’Yz*tp:ﬂzt:j
:Yart:j = Q(’Yl‘t = .]) = E ~ %

with d as before being the dimension of the observation vector.
expected values can be computed as follows:

log é; = U(A Z)\%

log Bi; = W(Ag,) — Z Asi;)

log fij = Z U((vi; +1—1)/2) — log |®;| + glog2

I';; = I/”(I) 1

where W is the digamma function ([1]).

(7.28)

(7.29)

(7.30)

(7.31)

Parameters

(7.32)

(7.33)

(7.34)

(7.35)

In the M step, posterior distributions will have the same form of prior distri-

butions. Reestimation formulas for parameters are given by:

T ~
Zt:l ﬁyl't:j
T

Et 12;9 1 Vo= J’Yth—ert =j
Yoy Yoy Aaemi
Et 12;9 1 Voe=i Varp=iler=3 Otp
Zt 12;9 1 Vo= J’Vth—le“t =j
Et 1 Do VeimiVep=iteemi (O — 11i) " (Orp — i)

Oé]':

ﬁij

Hij =

Zt IZp lﬁyxt ]ﬁyztp—ﬂl’t =j
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and hyperparameters reestimation formulas are given by:

Mo, = Nj + Aao (7.40)

Ag; = Nij + Ao (7.41)
Nijpii + &o po

;= 7 7.42

&ij = Nij + & (7.43)

Nijéo(pij — po)(pij — po)”
Nij + po
Vi; = Nij + 1%} (745)
where N;; = Et ) Zp | Ver=iVarp=ilz.=; and N; = Zthl Vo= -
Finally variational posterior distributions are defined as:
q({e;}) = Dir({Xa;})
q({Bi;}) = Dir({s,})
q(pij|ij) = N(pij|€iT5)
q(Lij) = W(vij, i)

®;; = N;;L'ij +

+ @ (7.44)

Free energy computation

We show in this section that it is possible to derive a close form for the variational
free energy (3.7) when we consider a model like (7.5). The importance of a closed
form for the free energy expression consists, as previously described, in the fact
that it can be used as a model selection criterion that can be used instead of
other model selection criterion (e.g. BIC, MML, etc.).

Let us re-write expression (3.7) for the model we are considering:

F@wz/dwmm«wwu,%>mm<ﬂ

p(0,719) ,
) —Dlq(0)|Ip(9)] (7.50)

where accordingly to our previous discussion, hidden variable set v = {7, |z, , V2. }

=< log

consists of two variables: one referring to the cluster and the other referring to the
component and where ¢(v) is the variational distribution over hidden variables.
Hidden variables are actually discrete variables.

Considering the factorization p(O,v|0) = p(O|y, 0)p(7|6) we can rewrite (7.50)
as sum of three different terms:

mewi/wwmw«wwamm%wwuw@wwn+
- [ anranao)iogats) - Dla@lp@)] (750
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SESRGRGIS

Figure 7.2: Direct graph that represent the Bayesian model for speaker clustering.
xy and z;, are hidden variables. The box indicates that the elements inside must
be repeated a number of times equal to the value in the top-right corner.

Considering the fact that ¢(vz,, =i, 72 = J) = ¢(3 = 7) 4(V2p = 1|72 = J)
and considering the same notation as before:

Vo=ilo=i = 4(Vzep = 17z = J) (7.52)

Vor=i = (Ve = J) (7.53)

Coming back to expression (7.51) we will consider separately the three terms.

e the first term is:

| dbd1a)a(0)tog((013.0)) + Log(p(310)) (7.54)

Because of the fact hidden variables are actually discrete variables, integral
w.r.t. v becomes a sum over states and mixtures. Let us explicit expression

(7.54) w.r.t T',D and hidden variables:
D S M
))I) D) SEMEREREY )

t=1 p=1 j3=1 =1

log(p(Ospl, 07z1p=iwi=j)) + Log(p(Vary=izi=i)10))] (7.55)
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Considering now the factorization p(7s,,=iz,=j|0) = P(Ve,=;|0)p(2ep = 1]z¢ =

J,0) = a;B3; and using the previously defined quantity 77 it is

p:i|zt:j7

possible to rewrite (7.55):

T S
Z Z Vze=j 109 o; + Z Z Varp=ilre=j log 7 Fthp—zm ]] (7'56)

t=1 j=1 p=1 =1
All elements in (7.56) are explicit and known.

e Let us now consider the second term in (7.51):

/ dbdrvq(+)g(0)loga(~) = / a()loga(7)dy (7.57)

Let us explicit this expression w.r.t. time, duration and hidden variables.
The result is:

D S M
Z Z Z Vee=5Vzip=ti,xt=3 log [7zt=j72tp=i|zt=j] =

B

t=1 p=1 j=1 =1
T S D M
ZZ{%% =j log%ﬂt =j +2272tp—2|zt JZOQ’Vth_Zm ]]} (7'58)
t=1 j=1 p=1 =1

Again in (7.58) all terms are explicit and known.

o The last term to consider is the KL divergence between posterior distribu-
tions and prior distributions. Because of independence between parameter
distributions, it is possible to write:

Diq(9)||p(9)] = D(Dir(Aa;)||Dir(Aao))
+ Z D(Dir(Agij )| Dir(Ago))

+ Z Z D(N(pij, fijVij(I)i_jl)”N(po, fouijq);jl))
+ Z Z D(W (v, ;)| [W (v, @) (7.59)

A close form for all KL divergence in 7.59 can be found (a useful summary

can be found in [108] or Appendix A).
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Optimizing prior distributions

In this section we derive equation that allows to optimize hyperparameters given
posterior distributions.

The criterion to optimize hyperparameters is the bound on the marginal like-
lihood obtained averaging all possible models. Considering prior over models
p(m) and variational posterior g(m) we can write the lower bound:

log HY) = F = Y alm) [Fo + Log ) (7.60)

m

Terms that depend on priors are F,, and variational posterior over models ¢(m)
(see 3.61). Our goal is to find optimal hyperparameters denoted with h =
{205 Agos po, €0, 1o, o} that optimize F. Deriving F w.r.t A and ¢(m) we obtain:

g_];: — ;q(m)aaim =0 (7.61)
or o P .
Gam) (£ +1 gq(m) 1]=0 (7.62)
Solving we obtain:
o am) e - p(m) (7.63)

m

Partial derivatives in 7.64 must consider all different parameters KL diver-
gences 1.e. all terms of equation 7.59. Let us consider separately each term:

First term: D(Duir(X,;)||Dir(Aao)). Equation (7.64) gives:

Zq(m)aD(q(Aag:zzllq(Aao)) _ Zq(m)3D(Dir()\aaj;jo||Dir()‘ao)) _ 0

m m

(7.65)

Developing and using Dirichlet distribution expected values we obtain:

a)\ m)[logl'(SmAao) — Smlogl'(Aao) +

Z{ w0 = 1) (U(haj) = U(Y_ Aai))}] =0 (7.66)

where S, denotes the number of speaker (i.e. clusters) of the mth system.
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Deriving now 7.66 w.r.t A\,o we get;

Y a(m)[S - ¥(SmAao) — S ¥ ao+2{\11 o) = (" X))} = 0 (7.67)

m

In order to solve 7.67 a Newton-Raphson method can be used. Second order
derivate uses derivative of the Psi function called polygamma function (see [1]).

Second term: ). D(Dir(Ag;;)||Dir(Ago)). Proceeding in an analogous way
we can write:

0 > a(m)[SmlnT (MuAgo) = S My InT (Ago) +

Thso 2
Sm Mm
Moo= 1) D> Y {Wh,, =¥ gy} =0 (7.68)

Deriving (7.68) w.r.t. Ago

Sm Mm
> q(m)[Sn MU (M Aso) — S Mau¥(Aso) + 3D (T(Agi) — T Agy))] =
7 7

m

(7.69)

Again Newton-Raphson method can be used to find out solution of the equa-
tion.

Third term: E]- > D(N(psj, fijl/ij(l)i_jl)HN(po, Eouij(l)i_jl)). In the case of diag-
onal covariance matrix we can further simplify the KL divergence using product
over the dimension /.

ZZD pliafij’/ijq)i_jl)||N(P07fol/ijq)i_jl)) =
o ZZ ZD pzyl, ”VZJ 2]1)||N(p017€0’/2] ”1)) (770)

Averaging over models we have:

ZZ/N Pijs ZJVZJ 7 Z log 50’/” Ul (/”Lijl - pOI)Q ’ foyijq)i_jll]
{
(7.71)

Deriving 7.71 w.r.t. po (or por component by component) we have:

m) Z Z / N(pijs €vii®5") Y (it — por)] = 0 (7.72)

{
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that gives

1
por = ZCJ(W)S—M YO < piq > (7.73)
m m i
Deriving 7.71 now w.r.t. & and solving we have:

> alm) Z Z Y b= Z Z Z Z (it = por) - (piji = por) > Ty
(7.74)

That gives

Do a(m) 3530550 < (pijt — por) - (pijt — par) > Ty
> @(m) S M

The solution is a close form solution in this case and there is no need for

o =

(7.75)

numerical methods.
Fourth term: ), E]‘ D(W (vi;, @) ||W (v, @o)).

We can write averaging over all models:
Z ZZD VU7 17 ||W(V07(I)0)) =0 (776)

Deriving 7.76 w.r.t vy and @y we find first moment and log first moment of
the Wishart distribution.

Zq(m)[ZZ{Z\I}(VO—I—l—l)—21n‘2+ln(1)0}] = Zq(m)zz<logfij>

(7.77)
Zq(m)zzwq)&l = ZQ(m)ZZ<Fn‘>
] ] (7.78)

In the case of diagonal ®; matrix it is possible to reduce the first equation to a
one-variable expression, and solve it using Newton-Raphson.

7.3.4 Optimal segmentation

Once the model is learned, it is a straightforward task to obtain the segmentation
applying the Viterbi algorithm described in sections 2.2.2. Viterbi segmentation
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find the best sequence of speakers that generated observations we will designate
it with Spess. The duration constraint can be easily handled with minor modifi-
cations in the algorithm.

Anyway an important difference must be pointed out between the MAP /ML
methods and the VB method. In fact while MAP and ML provide parameters,
VB provides distributions over parameters. In practice it means that the VB
segmentation must be obtained integrating out probabilities w.r.t. variational
distributions.

In other words while MAP/ML during the Viterbi algorithm consider the
emission probability p(z; = s;), the variational Bayesian Viterbi algorithm con-
siders g(x; = s;) i.e. expression ¥, —ijs,=; (see equation 7.29).

The complexity overload is minimum compared with the classical algorithm
in the sense that parameter expected values are used instead of parameters.

7.4 Estimation of speaker number

In section 7.2 we have assumed that the number of speakers (i.e. states in the
ergodic HMM) is a priori known. In real problems, this is rarely the case and the
cluster number S must be estimated as another parameter of the model.

The most common choice is to turn the problem into a model selection prob-
lem. As already discussed in section 2.6, the observation likelihood of a given
model will generally increase as long as the complexity of the model increases.
For this reason the likelihood is not a useful quantity for the model selection
purposes. The most used model selection criterion in speech processing is the
Bayesian Information Criterion (see section 2.6.4) introduced for segmentation
purposes in [31]. The popularity of the BIC is largely due to its simplicity. In
speech processing manual tuning of the penalty term is generally required (see
[127]).

Ideally the search algorithm in the model space should be an exhaustive search
followed by a model selection. For instance if we suppose that in a given audio
file there are no more than S,,,, speakers, all possible models with a number of
clusters in between S,,,; and 1 should be learned and then the best model should
be selected using for instance the BIC. This technique is rarely applicable for
computational reasons and the search algorithm is reduced to a greedy search.

In next sections we will describe the search algorithm we used in our experi-
ments.

7.4.1 Search algorithm

The greedy search algorithms generally used in the speaker clustering task are of
two types: bottom-up algorithms or top-down algorithms (see [70],[71]). In the
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bottom-up algorithms, the observation sequence is initially considered belonging
to one cluster. The algorithm progressively splits the file into smaller clusters
until a termination criterion (e.g. a model selection criterion is met). On the
other hand the top-down algorithms initially over-segment data in a number of
clusters larger than the real one and successively merge couples of clusters until
a termination criterion is met.

The top-down algorithm is generally preferred to the bottom-up because merg-
ing clusters is easier than splitting a cluster in more clusters. In our system we
use a top-down algorithm. The first step consists so in over-clustering the audio
file in a number of clusters hypothesized larger than the actual one.

Initialization

Initial over-segmentation can be achieved in many different manners. Possible
choices are:

e Finding the changing points (for review of those techniques see chapter 6)
in the audio file and assigning each segment to a different cluster.

e Running a K-means algorithm with S,,,, different clusters where S,,,, is
chosen to be larger than the real cluster number.

e Uniformly dividing the audio file in 5,4, different segmentation and assign-
ing each segment to a cluster (this solution is analogous to the flat start
initialization in speech recognition [144]).

Once the over-segmentation is fixed, a GMM can be obtained for each cluster
using the EM algorithm.

According to the type of over-segmentation different initialization of the tran-
sition probabilities can be realized. For example probabilities could be propor-
tional to the number of frames in the cluster. Anyway experimentally we verified
what already stated in [2]: the initial transition probabilities value have a very
small impact on the final result.

Reducing the cluster number

The search algorithm in the space of all possible clusters combination should
move from the initial S,,,; to the optimal value S,,;. As stated before the ex-
haustive search of all possible combinations is impossible and a greedy solution
that progressively reduces the cluster number one by one is preferred. Again
different solutions are possible:

e Merging iteratively two clusters according to some similarity measure or a
model selection criterion until a termination condition is met.
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e Eliminating iteratively a cluster according to some criterion and running
again the EM algorithm using previous models as initialization until a ter-
mination criterion is met.

Of course the quality of the search algorithm is strongly influenced by criteria
chosen for the cluster merging and for the termination condition. In next section
we review possible criteria.

Merging and Stopping criteria

Generally the criterion for merging and stopping different clusters consists in
some kind of penalized score in order to consider the fact that the likelihood
monotonically increases with the number of clusters. The penalty is generally
considered under the form of a threshold.

In [123], the KL divergence between distributions of two different clusters is
used as criterion for determining if they belong to the same speaker or not. The
distance is compared with an heuristic threshold that must be determined case
by case and there is no general rule for fixing it.

In [67], the use of the Gish-distance (see [55]) is proposed. Gish distance
is basically a Log-likelihood ratio (LLR) based measure and was first used in
the context of speaker identification [54]. Let us consider two clusters s; and s,
with observations y; and y, and with models §; and ;. Let us designate with
y = y1 Uy, and with 6 the model learned using y. The LLR criterion is:

LLR=L—L, - L, = Z log p(yi|0) — Z log p(y1461) — Z log p(yai|02)
Y Y1 Y2u

(7.79)

In order to make a decision if clusters s; and s; should be merged into s the
LLR is compared with an heuristic threshold. In [67], the Gish-distance is used
together with a penalty term in order to avoid the over-segmentation.

The use of both LLR and KL is proposed in [124] together with the use of
the cluster purity criterion that we will use later (see 7.6).

Another alternative measure that can be used is the (AHS) arithmetic har-
monic sphericity measure proposed in [22] in the context of speaker recognition.

Anyway the most common criterion for speaker clustering purposes is the
BIC introduced for this task in [31]. The BIC explicitly sets the threshold as the

difference of number of free parameters between models {6;,6,} and 6:

BIC =L — Ly — Ly — 0.5 PlogN < 0 (7.80)
P = card{0} — card{6,} — card{0:} (7.81)

As previously discussed the BIC is a rough approximation of the Bayesian integral
and in order to be effective, the penalty term must be adjusted by an heuristic
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threshold (see [127]). In [45], two different penalty terms are considered in a BIC
fashion: one that penalizes too many clusters and one that penalizes too many
speakers in order to have a finer control on the clustering task with the drawback
of two tuning parameters to set.

A solution to alleviate this problem proposed in [2] is to consider the model
complexity in order to obtain P = 0. This solution partially solves the problem
of the heuristic tuning of the penalty term but is anyway based on the asymptotic
assumption of the BIC.

Other stopping criteria can be considered like stopping when occupancy goes
beyond a certain value (see [70]) or when the reduction of gain in the data like-
lihood goes beyond a certain threshold (see [123]).

An alternative method proposed in [83] for reducing the number of clusters
from S,,,: to 1 uses no cluster merging but the cluster with the smaller occupancy
is progressively removed and the EM is re-run using the remaining models as
initialization. As long as the new model is close to the old, very few iterations
are needed for the convergence. The BIC criterion is used to score the S,
different segmentation and the final segmentations is the one with the highest
score.

From one side it seems that this algorithm is more computationally expensive
than the merging solution because all 5,,,, models must be obtained. On the
other hand there is no additional cost in the search of possible clusters to merge:
this cost can be extremely high if the initial over-segmentation is realized with a
high number of clusters.

In this work we introduce as alternative to those measures the use of the
Variational Free energy as threshold free criterion for model selection i.e.:

SF=F,—F, —F,<0 (7.82)

where Fj is the free energy of the merged clusters and Fj, and Fj, are free energies
of unmerged clusters. The algorithm stops when there is no further gain in term
of the considered criterion in merging clusters.

7.5 Experimental Framework

In this section we describe the experimental framework we used in the experiments
section. The goal of simulations is to compare in the fairest way the Variational
Bayesian learning used to learn models and to select best models with classical
algorithms based on MAP /ML for the learning step and on BIC for the selection
task. In the rest of this work we will refer as system 1 the system based on
ML/BIC, as system 2 the system based on MAP/BIC and as system 3 the system
based on the VB framework.
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The model considered here is the ergodic HMM with emission probabilities
modeled as GMM with M components described in section 7.2.1 and fixed dura-
tion constraint over states equal to D.

The over-segmentation is achieved supposing the initial state (speaker num-
ber) Spqz very large. The observation file is splitted into S,,., uniform segments
and a GMM is trained using the EM algorithm. Transition probabilities are set
as uniform. This initialization corresponds somehow to a flat start initialization.
Systems 2 and 3 need as well an initialization for the prior distributions; different
prior settings will be investigated.

Once the system is initialized the learning algorithms as described in sections
7.3.1 and 7.3.2,7.3.3 can be run in order to obtain a model estimation that will
produce parameters in the first two cases and parameter distributions in the
VB case. Segmentation is then obtained running a Viterbi algorithm. Score is
computed following the metric described in section 7.6.

The cluster with the minimum occupancy i.e. the one with the smaller frames
number is then removed and learning algorithms are run again with the full
observation set and the reduced state number 5,,,,—1 with the previously learned
models as initialization. This procedure is iteratively repeated until the number
of cluster is reduced to 1.

For model selection purposes a score must be computed for each intermediate
model. In system 1 (ML learning) the score can be simply computed using the

BIC:

BIC(S;) =logP(Y]0;) —0.5-X- P -logN (7.83)
P=SM(1+d+d (7.84)

where we made the assumption that covariance matrix are diagonal matrix.
For system 2 (MAP learning) the BIC must be modified in order to consider
the use of a prior distribution in the following way:

BICnap(S:) =log P(Y|0:) + logp(8) —0.5-X- P-log N (7.85)

The additional term in 7.85 is the log probability of MAP parameters; in the
asymptotical approximation i.e. N — oo this term becomes negligible respect to
other terms.

For system 3 the score for model selection is the same objective function as
for the training i.e. the free energy computed as in section 7.3.3.

The selected speaker number is the one that holds the highest score. The
choice of this algorithm is partially due to the fact that a curve of the score of
the system w.r.t. the model selection score can be obtained for all possible speaker
numbers. This is a convenient way to study how correlated the two considered
criteria (model selection score and clustering score) are. Figure 7.3 summaries
the clustering algorithm proposed.
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7.6 Evaluation and Metric

In order to evaluate the quality of the clustering task we chosen the same metric
as in [3] and [83]. As long as experiments were run on the same database, the
use of the same evaluation criterion will simplify the comparison.

The metric is based on the computation of two quantities the average cluster
purity (acp) and the average speaker purity (asp). Acp was introduced in [124]
and consider the purity of a given cluster w.r.t. a given reference speaker. The
motivation for the acp comes from the initial application of the speaker clustering
task to adaptation purposes in speech recognition systems. In fact if a cluster
has a high acp, it can be successfully used for adaptation purposes on a reference
speaker. Anyway the drawback of this metric is that a simple way to obtain
a high score is considering a large number of different clusters spreading the
reference speakers in more clusters than needed. For this reason the asp has
been introduced as the dual measure of the acp in the sense that considers the
purity of a speaker in terms of clusters among whom his observations have been
spread. Symmetrically to the acp it should be enough to consider a single cluster
to obtain an asp equal to 1. The geometric mean between asp and acp is used to
balance both effects.

In real speaker clustering application (e.g. broadcast news data) together
with the speech data under different conditions, there are different types of non
speech data like music, noises or others. Generally those segments are removed
in a pre-segmentation step of speech/non-speech segmentation. Anyway we are
interested as well in running experiments with the whole data in order to study
the capacity of the algorithm to cluster the speech and the non-speech as well:
thus no prior speech/non-speech segmentation is considered. To express this in
the evaluation metric we use the same solution as in [83] in which non-speech data
are considered as a “speaker” (i.e. an extra state) in the computation of the acp
and ignored in the computation of the asp. In this way, non-speech spread over
different clusters will not reduce the global score. The drawback of this choice is
that the number of selected clusters may be larger than the real one because of
many spurious non-speech data.

Mathematically speaking we define:

e R: number of speakers
e S: number of clusters

e n;;: total number of frames in cluster ¢ spoken by speaker j

n;: total number of frames spoken by speaker 7, 7 = 0 means non-speech
frames

e n;: total number of frames in cluster
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e N: total number of frames in the file

e N,: total number of speech frames

It is now possible to define the purity of a cluster p; and the purity of a
speaker ¢ ; as:

Pi. (7.86)
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q.; = (787)
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Averaging respectively w.r.t. all clusters and all speakers we obtain the acp and
the asp:

s
1
acp = w7 ; Pi. 1. (7.88)
R
asp = A ; q;n.; (7.89)

Finally the geometric mean of acp and asp can be used as score for measuring
the quality of the clustering resulting in:

K = \/acp-asp (7.90)

7.6.1 Interpretation of results

In the following experiments we will report results in term of K; anyway it is
interesting to study not only the value of the system as selected by the model
selection criterion but also other scores that give a better insight on the clustering
process. We will consider together with the selected system the best absolute
score obtained by the system computed using the known labels and the score
obtained initializing the system with the real number of clusters obtained by
labels. In the ideal case those three results should be the same. Anyway we will
experimentally verify that when the system is initialized with the true number of
clusters the performance is always very poor compared to the best system. On
the other hand the efficiency of the model selection criterion will be determined
comparing the best result with the selected result.
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7.7 About prior distributions

Bayesian approaches (both VB and MAP) require in the initialization step prior
distributions over parameters. The choice of those distributions is a critical point
for learning and for model selection. For tractability issues we have chosen those
distributions in the conjugate-exponential family. Anyway the problem of setting
the hyperparameters still remains.

In section 7.5, we will study in detail the impact of the hyperparameter choice
on the final clustering score. We will consider two cases of priors: fixed priors
and empirical Bayesian priors.

In the case of fixed priors we are interested in studying simply the impact of
the strength of the prior on the final result. Because the number of hyperparam-
eters can be large, we adopted in this case the same tying approach described in
[46]. We suppose here a full tying; mathematically speaking we fix:

Aag =Agg =Co=ao=T7 (7.91)
Bo=r-1 (7.92)
po=y (7.93)

where [ is the identity matrix and y is the mean of the observation sequence Y
and 7 is a strength factor that determine the sharpness of the prior distribution.
In the case of flat broad prior (that are supposed to be non-informative i.e. to
add as few information as possible) the factor 7 will be small and negligible
w.r.t. the data contribution in the posterior distributions. On the other hand
the strength of the prior distribution can be increased with a larger value of
7. We are particularly interested in studying the impact of 7 on the clustering
performances.

Furthermore we are interested in verifying if the empirical optimal prior dis-
tributions estimated as proposed in section 7.3.3 correspond to the optimal clus-
tering score function of the hyperparameters.

On the other hand, prior distributions can be estimated from a separate data
set in order to capture important a priori information to be used as starting point
for the system. In speech and speaker recognition this kind of approach based
on the Maximum a Posteriori criterion is referred to as MAP adaptation (see for
instance [46] and [113]). In speaker clustering approaches, the MAP adaptation is
largely used (e.g. see [99]) because the speech provided by a single speaker is often
not sufficient to generate a robust model. For this reason a background model is
used to initialize prior distributions. Currently used MAP adaptation techniques
as described in [113] are anyway far from the Bayesian spirit because they generate
a set of updated parameters ignoring their distributions. Furthermore the best
adaptation formulae are sometimes empirically derived and not motivated by the

MAP framework (e.g. the GMM weight adaptation).
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In an analogous way, VB system can be initialized with a background model.
In this case the result will be a fully Bayesian framework (even if approximated)
that will generate posterior distributions over parameters that can be used for
segmentation. Because prior distributions have the same form in the MAP and
the VB framework, it could be thought that the adaptation process will results
in the same formula. However, two very big differences must be pointed out.
First of all the E-step is completely different in the two systems: MAP consider
parameters and VB parameter expected values resulting in different accumulator
estimation. On the other hand VB does not adapt any parameter but adapt the
variational posterior distribution over parameters. Those distributions then will
be used for segmentation purposes.

7.8 Database description

Database we used in our experiments is the Hub4 1996 evaluation set. It is
composed of 4 files with respectively 7, 13 15, and 20 speakers. Together with
the speech data, a large amount of non-speech is present in those files except
in file 2 where the non-speech part is almost negligible compared to the speech
part. On the other hand, the speech part is not homogeneous and it includes
narrow band and wide band speech. Furthermore speech is often corrupted by
different noise sources like music or background speech. That makes the clustering
task extremely challenging because the same speaker may be clustered into two
different states if the background noise change.

Non-speech parts are very heterogeneous too with different types of non-
speech events. There is no pre-segmentation speech/non-speech separation in
our work and according to discussion of section 7.6, in the evaluation step we will
augment the number of speaker by one in order to consider an extra cluster for
non-speech. We will consider respectively 8, 14, 16 and 21 clusters for the four

files.

7.9 Experiments

In this first experimental setup we initialized the three systems with S,,,, = 30
and M = 15. Duration constraint is set to D = 200 frames i.e. 2 seconds. The
feature vector consists of 12 MFCC coefficients.

Table 7.1 shows results for system 1 (based on ML/BIC). The first line (ML
known) is the result obtained initializing the system with the actual speaker
number; the second line is the best result obtained over all possible speaker
numbers. Last three lines are results for the selected systems as functions of the
parameter .
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As a general remark, the best system never corresponds in our experiments
to the system initialized with the known speaker number. This is probably due
to the finer coarse that can be obtained by merging small pure clusters. The BIC
based selection task is extremely sensitive to the choice of A. In fact for A = 1 the
selected system has very low performance. In Files 1 , 2 and 4 the best system
is chosen when A = 3 while in file 2, the best system is already selected with
A = 2. Visually the dependence of the system 1 to the threshold A in terms of
performance (value of K) and in terms of inferred number of cluster is depicted in
figures 7.4 and 7.5. Not only the best threshold is far from the ideal case (A = 1)
but it changes from file to file.

Figures (7.8-7.11) depict how the BIC is related with the clustering score
function of A. The green line represents K function of number of clusters. Blue,
red and black lines represents the BIC value for A = {1,2,3}. When A = 1 or
A = 2 the BIC does not follow the K curve. Only when A = 3 the BIC follows
K closer. When the number of speaker is large the solution is extremely spiky;
in fact when there are very few data for a given Gaussian in ML learning , the
covariance matrix estimation gives extremely poor results. This problem does
not exists in the Bayesian framework.

It must be noted also that in file 4 the selected score is smaller than the best
system (second line). It means that in this case the BIC is completely inefficient
in selecting the best system.

File File 1 File 2
N.|acp | asp | K | N.| acp | asp | K
ML (known) 8§ 10.61 1089 |0.74 |14 |0.76 | 0.66 | 0.71
ML (best) 10 1 0.80 | 0.88 | 0.84 | 15 | 0.83 | 0.69 | 0.76
ML/BIC A=1 |28 | 0.91 | 0.50 | 0.67 | 30 | 0.89 | 0.45 | 0.64
ML/BIC A=2 | 19 | 0.90 | 0.67 | 0.77 | 20 | 0.86 | 0.57 | 0.70
ML/BIC A=3 | 10 | 0.80 | 0.88 | 0.84 | 15 | 0.83 | 0.69 | 0.76

File File 3 File 4
N.|acp | asp | K | N.| acp | asp | K
ML (known) | 16 | 0.76 | 0.77 | 0.77 | 21 | 0.72 | 0.66 | 0.69
ML (best) 151079 1084 | 0.82 | 12 | 0.64 | 0.82 | 0.72
ML/BIC A=1 |30 | 0.87 | 0.55 | 0.69 | 30 | 0.81 | 0.57 | 0.68
ML/BIC A=2 |15 {0.79 | 0.84 | 0.82 | 21 | 0.71 | 0.65 | 0.68
ML/BIC A=3]15{0.79 | 0.84 | 0.82 | 14 | 0.66 | 0.74 | 0.70

Table 7.1: Results on NIST 1996 HUB-4 evaluation test for speaker cluster-
ing, ML /BIC

The same experiment is now run using systems 2 and 3. Prior distributions
for VB and MAP are set broad and non-informative with 7 = 1E — 3. Results
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for both systems are shown in tables 7.2 and 7.3. First of all, the best result and
results obtained initializing the system with the actual number of speakers are
the same for system 2 and system 3. This means that the amount of data is large
enough to make the VB learning and the MAP learning converge to the same
solution. On the other side they are different from the ML case; file 1 and 3 hold
a score higher in the VB and MAP case while file 2 and file 4 hold a score higher
in the ML case. Anyway the difference is never higher than 2 — 3% in absolute
showing that the performances of the three systems are almost equivalent with
the considered setting.

Unsurprisingly the BIC applied to the MAP system has the same behavior
observed in the ML system. The optimal value of X is equal to 3 for files 1, 2,
3, 4 . The theorical value of A = 1 provides very poor results as before. Figures
7.6 and 7.7 plots the inferred number of speakers and the selected value of K as
a function of the threshold value .

Figures (7.12-7.15) depict how BIC is related with the clustering score function
of A for system 2 based on MAP learning. The green line represents K as a
function of number of clusters. Blue, red and black lines represents the BIC
value for A = {1,2,3}. When A = 1 or A = 2 the BIC does not follow the K
curve. Only when A = 3 the BIC follows closer K as previously noticed for the
ML/BIC system. Anyway this time, the score curves look less spiky than in the
ML case. This is due to the regularization effect of the Bayesian approach that
does not suffer from the reduced amount of data per Gaussian when the number
of speakers is large.

On the other hand in the VB system the free energy always select the best
system (see table 7.3). This is an extremely appealing result because it shows
that the Variational Bayesian method, even if approximated provides an efficient
model selection criterion.

Figures (7.16-7.19) show on the same graph for the four files the clustering
score K and the variational free energy F,,. It can be easily noticed that F,, has
the same form as K and the maxima of F,, and K coincide.

To summarize the free energy closely follows the clustering score while the
BIC requires some tuning to be effective in the model selection task. In next
sections we will study the impact of prior distributions on the final score. We
will consider both the cases of non-informative (small) priors and strong priors
and finally consider the empirical optimal priors.
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File File 1 File 2

N.|acp | asp | K | N.|acp | asp | K
MAP (known) 8 10.69|0.89|0.78 |14 |0.70 | 0.58 | 0.64
MAP (best) 10 | 0.84 1 0.90 | 0.87 | 9 |0.70 | 0.78 | 0.74
MAP/BIC A=1|35|0.87]0.29 | 0.52 | 32 | 0.89 | 0.41 | 0.60
MAP/BICA=2 |16 | 0.85]0.74 | 0.79 | 22 | 0.88 | 0.54 | 0.69
MAP/BICA=3 |10 | 0.69 | 0.71 | 0.87 | 9 | 0.70 | 0.78 | 0.74
File File 3 File 4

N.|acp | asp | K | N.|acp | asp | K
MAP (known) | 16 | 0.77 | 0.78 | 0.77 | 21 | 0.75 | 0.64 | 0.69
MAP (best) 151 0.76 | 0.83 | 0.80 | 12 | 0.70 | 0.80 | 0.74
MAP/BIC A=1 |33 |0.89 |0.54 | 0.69 | 31 | 0.81 | 0.47 | 0.62
MAP/BIC A =2 |15 | 0.76 | 0.83 | 0.80 | 21 | 0.75 | 0.64 | 0.69
MAP/BICA=3 |15 |0.76 | 0.83 | 0.80 | 12 | 0.70 | 0.80 | 0.74

Table 7.2: Results on NIST 1996 HUB-4 evaluation test for speaker cluster-
ing, MAP/BIC

File File 1 File 2
N.|acp | asp | K | N.|acp | asp | K
VB (known) | 8 [0.72 10.92 | 0.81 | 14 | 0.69 | 0.64 | 0.67
VB (best) 10 | 0.84 1 0.90 | 0.87 | 9 |0.70 | 0.78 | 0.74
VB (selected) | 10 | 0.84 | 0.90 | 0.87 | 9 | 0.70 | 0.78 | 0.74
File File 3 File 4
N.|acp | asp | K | N.|acp | asp | K
VB (known) | 16 | 0.76 | 0.84 | 0.80 | 21 | 0.71 | 0.65 | 0.68
VB (best) 14 10.76 | 0.84 | 0.80 | 12 | 0.69 | 0.79 | 0.74
VB (selected) | 14 | 0.76 | 0.84 | 0.80 | 12 | 0.69 | 0.79 | 0.74

Table 7.3: Results on NIST 1996 HUB-4 evaluation test for speaker clustering,
Variational Bayesian learning/model selection with non-informative priors
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or with the Free Energy; the best system is the system with the higher score.
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Figure 7.5: K values inferred by BIC criterion w.r.t A (System 1 ML/BIC)
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Figure 7.7: K values inferred by BIC criterion w.r.t A (System 2 MAP/BIC)

135



— lambda 1 — lambda 1

— lambda 2 — lambda 2

— lambda 3 — lambda 3
185 I I I I N 03 25 I I I I N 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 7.8: BIC for A = {1,2,3} and clus- Figure 7.9: BIC for A = {1,2,3} and clus-
tering score for file 1 - system 1 (ML/BIC) tering score for file 2 - system 1 (ML/BIC)

x10° File3 x10 File4
-14 T 1 -15 T 0.8
-145F
151
-16F 506
-155f
-161
-17F 104
-165
-17r
/ — lambda 1 — lambda 1
— lambda 2 — lambda 2
— lambda 3 — lambda 3
-175 L . L . L 0.3 -18 L . - . L 0.2
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 7.10: BIC for A = {1, 2,3} and clus- Figure 7.11: BIC for A = {1, 2,3} and clus-
tering score for file 3 - system 1 (ML/BIC) tering score for file 4 - system 1 (ML/BIC)

136



10 Filel <16 File2

-155[

-165

-L75¢

— lambda 1
— lambda 2
— lambda 3

— lambda 1

— lambda 2

— lambda 3
N

185 I I I I I 03 25 I I I I I I 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Figure 7.12: BIC for A = {1,2,3} and Figure 7.13: BIC for A = {1,2,3} and

clustering score for file 1 - system 2 clustering score for file 2 - system 2
(MAP/BIC) (MAP/BIC)
il Fie3 10 Fied
-14 1 -15 0.8
-1451
151
-16F
-155f
-161
-17F
-165
-17r “ 1 /
— lambda 1 — lambda 1
— lambda 2 — lambda 2
— lambda 3 — lambda3
s ‘ ‘ ‘ ‘ ‘ : 0 " ‘ ‘ ‘ ‘ ‘ : 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Figure 7.14: BIC for A = {1,2,3} and Figure 7.15: BIC for A = {1,2,3} and
clustering score for file 3 - system 2 clustering score for file 4 - system 2

(MAP/BIC) (MAP/BIC)

137



<16 File 1

- I I I I I

Figure 7.16: Free

score for file 1
” Fie 3
-14 1

A \/\
\ / /A .\
/\ \\\ / / f\\x\/ \

Figure 7.18: Free energy and clustering Figure 7.19: Free

score for file 3

138

-L75

-1.85

-195

-2.05

0.75
07

0.65
“ 06
0.55
05

045

04

0.35

0 5 10 15

score for file 2

20 25 30 35

energy and clustering Figure 7.17: Free energy and clustering

File 4

-16

x10°
’\/\/\
INY

score for file 4

20 25 30 35

energy and clustering



7.10 Dependence on non-informative priors

In this section we study the impact of the prior strength (i.e. the factor )
on the clustering result. We limit our investigations now to the case of broad
non-informative priors obtained setting a small value of 7.

Let us consider system 2 based on MAP /BIC. As long as the prior distribution
is “weak” the clustering result and the final parameter estimation will be the
same because priors do not add any kind of information. Concerning the model
selection task, BIC just consider parameter estimation for the model selection: if
parameters are always the same, the selected model will be the same.

The case of Variational Bayesian learning (system 3) is different. In fact small
non-informative priors will produce as before the same posterior distributions over
parameters (and so the same segmentation) but a different free energy. In fact the
penalty term in the variational free energy consists in the KL divergence between
posterior and prior distributions that will change according to the choice of the
parameter 7.

In the following experiments, we progressively moved the value of 7 from 107
to 1. In figures (7.20-7.23) the best score (blue line) and the selected score (red
line) are plotted on a semilogarithmic scale. When the prior is small VB free
energy selects the best score while when the priors become informative w.r.t.
data the selected system holds a smaller score.

It can be noticed that when priors are non informative the system is very
robust in term of model selection capacity if the amount of data is large. The same
conclusion was found in [137] in a large vocabulary speech recognition system.

7.11 Dependence on strong priors

The choice of flat priors is obviously not the best choice in terms of clustering
results. In fact broad priors represent the case in which there is no prior knowledge
on the data. It is in any case interesting to consider the influence of strong
informative prior distributions on the speaker clustering result.

As in previous section we moved the hyperparameter 7 considering this time
value that cannot be neglected during the training phase. We increased the value
of 7 from 1 to 1000 by step of 100. Figures (7.24-7.27) shows the best score
(in blue) and the selected score (in red) using the VB learning/model selection
function of the prior 7 for the four BN files. The black dashed line represents
the baseline obtained using non-informative priors. In this case the best score
coincides with the selected score.

At first we can notice in all the four graphs a peak in the best system perfor-
mances for a value of 7 in between 200 and 300. This means that the maximum
of the scoring function is obtained for a value of strong value of 7. Increasing the

139



strength of the prior distribution decreases the value of the corresponding score.

On the other hand the red line shows the selected system and it can be noticed
that the stronger the prior is, the weaker the correspondence between best score
and free energy is. In other words a very strong prior distribution deteriorates
both the model learning and the model selection.

Anyway in some interval of prior distributions the system performs better than
the system with non-informative priors. In the empirical Bayesian approach the
prior distribution parameters (i.e. hyperparameters) are optimized on the basis
of data. We will consider these cases in section 7.13.
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7.11.1 Comparison with MAP

To make the comparison as complete as possible in this section we study the
difference between VB and MAP with strong prior distributions. Both MAP and
VB systems are initialized with the same strong prior distributions. Value of 7
moves from 1 to 1000 by step of 100. Table 7.4 contains best scores for MAP and
VB; NI designates the score for non-informative prior.

Scores for the two systems are very close for all values of 7. VB performs
slightly better for some prior values probably because of its capacity to average
over all possible models in each case. Both approaches have a peak in the best
system score around a value of 7 equal to 300 and performances deteriorate when
prior distribution becomes too strong. Figures (7.28-7.31) plot the MAP and the
VB best scores w.r.t. 7. Even if the VB score is higher than the MAP score, they
are very close and have the same behavior w.r.t 7 i.e. a peak around 7 = 200
and then performances degrade.

On the other side selecting the best system with the BIC presents some serious
problems. In table 7.5 the best score obtained tuning A value is presented for
different values of 7. In brackets the notation y/n (yes/no) designates if the BIC
score corresponds to the best absolute score. For values of 7 close to 100 or 200
the BIC can select the best absolute score; when 7 increases BIC is extremely
inefficient. Different prior distributions lead to different values of A, surprisingly
when 7 increases the best score is obtained with A = 0. Anyway it is evident that
optimal X is dependent on prior distributions.

An interpretation to the value of A = 0 when 7 is large can be provided. In
fact when prior distributions are extremely peaked all the “mass” of the integral
is concentrated in a point, the MAP estimation. It means that the likelihood
computed on the MAP estimation concentrates all the model selection properties
of the Bayesian integral. For this reason the best system is the one with no
penalty at all i.e. A = 0.

In summary both MAP and VB methods are extremely sensitive to initial
prior distributions. Both methods have a peak in the best score for a given
value in the prior distribution and performance degrades when prior becomes too
strong. Anyway VB slightly outperforms the MAP for informative priors. A big
drawback with the MAP /BIC system is the value of the optimal threshold A that
changes with the prior distribution. For very strong prior distribution the BIC
is completely unable to select the best result and the optimal threshold collapse
to the solution A = 0.

143



File NI 1 100 | 200 | 300 | 400
Filel MAP | 0.87 | 0.88 | 0.88 | 0.90 | 0.90 | 0.87
File1 VB | 0.87 | 0.87 | 0.88 | 0.90 | 0.92 | 0.89
File2 MAP | 0.74 | 0.74 | 0.83 | 0.88 | 0.88 | 0.87
File2 VB [ 0.74 | 0.74 | 0.83 | 0.89 | 0.88 | 0.88
File3 MAP | 0.80 | 0.80 | 0.85 | 0.87 | 0.86 | 0.84
File3 VB | 0.80 | 0.81 | 0.85 | 0.88 | 0.86 | 0.85
File 4 MAP | 0.74 | 0.74 | 0.76 | 0.76 | 0.73 | 0.73
File4 VB |0.74 | 0.74 | 0.77 | 0.79 | 0.77 | 0.75

File 500 | 600 | 700 | 800 | 900 | 1000
Filel MAP | 0.85 | 0.86 | 0.84 | 0.83 | 0.82 | 0.80
File1 VB | 0.87 | 0.86 | 0.85 | 0.85 | 0.84 | 0.82

File2 MAP | 0.87 | 0.86 | 0.86 | 0.82 | 0.82 | 0.81
File2 VB | 0.87 | 0.87 | 0.87 | 0.85 | 0.83 | 0.82
File 3 MAP | 0.81 | 0.79 | 0.77 [ 0.73 | 0.71 | 0.71
File3 VB | 0.83 | 0.83 | 0.80 | 0.79 | 0.76 | 0.71
File 4 MAP | 0.70 | 0.70 | 0.70 | 0.67 | 0.64 | 0.64
File4 VB | 0.74 | 0.73 | 0.72 | 0.70 | 0.68 | 0.66

Table 7.4: Best score K function of prior 7 for MAP/BIC and VB systems (NI

= non-informative).

File NI 1 100 200 300 400
File 1 | 2.9(y) | 2.8(y) | 2.4(y) | 0.6(y) | 0.4(n) | O(n)
File2 | 2.7(y) | 2.7(y) | 0.4(y) | 0.5(n) | O(n) 0(n)
File 3 | 1.9(y) | 1.9(y) | 0.6(n) | 0.7(n) | O(n) | O(n)
File 4 | 2.6(y) | 2.6(y) | 1(y) |0.9(n) | 0.9(n) | 0.2(n)

File 500 600 700 800 900 1000
Filel | O(n) | O(n) | O(n) | O(n) | O(n) | O(n)
File2 | O(n) | O(n) | O(n) | O(n) | O(n) | O(n)
File3 | O(n) | O(n) | O(n) | O(n) | O(n) | O(n)
File4 | O(n) | O(n) | O(n) | O(n) | O(n) | O(n)

Table 7.5: Best value of BIC threeshold A function of prior distribution for the
MAP/BIC system. In brackets (yes/no) if the BIC chooses the best result or not
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7.12 Automatic component death

As discussed in chapter 5 Variational Bayesian methods have the appealing prop-
erty of self-pruning extra degree of freedom during the learning task. This inter-
esting result turns out extremely useful when the model is not chosen accurately
with respect to the data (e.g. many Gaussian components for limited amount of

data).

0
0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15
cluster

Figure 7.32: Number of final Gaussian components and amount of data per
cluster (file 2)

In speaker indexing problems, the amount of data for each speaker is generally
asymmetrical in the sense that some speakers provide very long segments while
others pronounce just few utterances. It is logical to model the first one with a
more complex model compared to the second.

Previous work in this sense can be found in [105]. The speaker model consists
in a GMM when large amount of data is provided and in a Vector Quantization
(VQ) model when poor amount of data is available. To make uniform the dis-
tance measure between the GMM and the V(Q, the Vector Quantization model is
realized through a CVGMM (Common Variance GMM) that generalizes the VQ.
The model selection is anyway realized with the BIC and the additional cost of
the model switching between the GMM and the VQGMM must be handled.

The VB solution to the same issue is simpler and more elegant. It is in
fact enough to initialize the GMM with a large initial number of components
and train the system using the VBEM algorithm. At the end of the training
session components that are redundant in representing the data have a posterior
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probability equal to the prior probability resulting in a null contribution to the
free energy. As long as the prior and the posterior are the same they will result
in a null KI. divergence too, the only term that will survive in the penalty is the
one in the KL divergence of the Dirichlet distribution over component weights.

Figure 7.32 plots on the same graph the final Gaussian components (out of
the initial 15 components per model) and the corresponding amount of data per
cluster in the case of file 2. It is evident to notice that the initial number of
components is preserved when the amount of data in the cluster is consistent
while in the case of poor data the final number of components may dramatically
reduce from 15 to just a few. In this way overfitting problem can be avoided and
a more compact representation of the considered speaker can be obtained.

Anyway an important consideration must be done: speaker clustering is a
simple modeling task and no inference on unseen data is required. It has been
noticed in [96], that VB self-pruning may provide wrong results in some extreme
situations (in [96] the case of a single learning point is treated). In some cases
the pruning may eliminate degrees of uncertainty that could be useful in terms
of generality of the model and make the inference on unseen data more efficient.
Anyway in the speaker indexing task no inference is required and the result is
simply the file segmentation. In conclusion the self-pruning effect is definitely an
appealing property for this kind of task.

7.13 Optimal prior

In this section we compare best system results for three different hyperparameter
settings: non-informative hyperparameters, heuristically optimal hyperparame-
ters and the best value obtained manually tuning the prior distributions. Results
are summarized in table 7.6. The procedure for inferring the optimal prior dis-
tributions is described in section 7.3.3. It basically consists in minimizing the
KL divergence between the variational posterior and the prior. This approach
could be defined as a “maximum likelihood” approach to hyperparameters and
suffers of the same drawback of common ML approach. In fact point estimation
of hyperparameters that define prior distributions is not faithful to the Bayesian
framework. On the other side using non-informative prior is not the best solution
in terms of performance (see 7.11).

Looking at performances of table 7.3.3, we can notice that using heuristic
priors performances of system increases w.r.t. the non-informative prior for 3 of
the 4 files while for file 2 the result is unchanged. In file 1 an extremely small
improvement is noted (from 87% to 88%) while in file 3 and file 4 improvements
are more consistent (respectively 7% and 5%).

Let us compare now the heuristic prior results with the tuned prior results. In
the first two files heuristic prior results are far from best results obtained tuning
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the system. In file 3 they are close (87% and 88%). In file 4 they result in the
same score (79%) but from two different solutions (i.e. different acp and asp).
In summary the solution provided with heuristic prior is not that close to the
solution obtained by manually tuning prior distributions. A possible explication
is probably due to the fact that considering hyperparameters from a maximum
likelihood point of view is not the optimal choice in this kind of problem.

Another interesting remark consists in the fact that the inferred number clus-
ter for optimal prior system is higher than the non-informative prior system. In
the same way the manually tuned system offers the highest number of inferred
cluster. It basically means that with the appropriate prior distribution more po-
tentiality of the model (i.e. more state) are used compared to the non-informative
case.

To summarize the heuristic prior system provides higher performances com-
pared to the non-informative case at the price of a higher number of clusters.
On the other side optimal prior results in weaker performances compared to the
manually tuned priors. We can conclude that heuristic prior is not close to the
best manually tuned solution to the problem.

File File 1 File 2
N. | acp | asp | K
Non-info | 10 | 0.84 | 0.90 | 0.87
Opt 17 1 0.88 | 0.89 | 0.88 0.70 | 0.78 | 0.74
Tuned | 19 | 0.90 | 0.93 | 0.92 0.87 1 0.91 | 0.89
File File 3 File 4
N.|acp | asp | K | N.| acp | asp | K
Non-info | 14 | 0.76 | 0.84 | 0.80 | 12 | 0.69 | 0.79 | 0.74
Opt 18 10.82 1091 | 0.87 | 22 | 0.81 | 0.77 | 0.79
Tuned | 22 | 0.80 | 0.89 | 0.88 | 22 | 0.74 | 0.84 | 0.79

acp | asp | K
0.70 | 0.78 | 0.74

’:]@@02

Table 7.6: Non informative, optimal and tuned value

7.14 Empirical priors i.e. VB/MAP adaptation

An advantage of Bayesian methods is the possibility of using previous knowledge
about the problem in the prior term. In this section we consider the previous
speaker clustering problem in which prior distributions are initialized according
to an Universal Background Model (UBM) build from a separate set of data.

This is the same principle of MAP adaptation techniques ([113]). This time
we will compare the MAP adaptation with the VB adaptation (as already de-
scribed in section 5). Again while the MAP based system uses the BIC for model
selection, the VB approach uses free energy instead.
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The UBM consists in a 32 Gaussian component GMM trained with 2 hours
of speech coming from regions FO, F1 and F2 of the training data set BN-96. In
order to estimate prior probabilities from the UBM parameters we used the same
choice of [47] i.e. fixed a set of relevance factor 7; and an UBM with parameters
B = Ef‘il N(ub, 3% (as we already discussed in section 5.6), hyperparameters
are set as:

)\02' = C?ZTZ' (794)

poi = i (7.95)
boi = 7 (7.96)
av;i = T (7.97)
Boi = ¥t (7.98)

We set 7; = 7 Vi. Parameter 7 determines the strength of the a priori distribu-
tion: small values of 7 result in a non-informative prior while increasing values of
7 increase the relevance of the prior model. In order to study clustering results,
we have considered different values of 7 and reported speaker clustering results
in table 7.7. The range of values for 7 is different from the one considered in the
non-empirical case because systems have a different behavior. Also in this case
the VB system outperforms the MAP/BIC. The difference becomes larger when
the parameter 7 increases; this is due to the averaging effect of the variational
method. Figures (7.33)-(7.36) depict the dependence of MAP and VB system
w.r.t. parameter 7. On the other side the VB system with empirical prior suffers
from the same model selection problem of the non empirical system. In fact when
the value of 7 becomes too large, the free energy selects a model that does not
correspond to the best score. Figures (7.37)-(7.40) show for the four files the best
score and the selected score function of 7. When the value of 7 is low the selected
model is close to the best value; the difference becomes larger when the value of
7 is increased. From figures (7.37)-(7.40) we can notice a peak in performances
around a value of 7 = 900. In order to have an idea of best clustering values that
can be obtained by adaptation we report in table 7.8 results VB systems and in
table 7.9 results for MAP/BIC and for a value of 7 = 900. BIC was heuristically
tuned with a threshold A in order to achieve the best performance. Elements in
table 7.8 have the same meaning as in previous sections.
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Table 7.7:

File 100 | 1000 | 2000 | 3000 | 4000 | 5000
Filel MAP | 0.81 | 0.87 | 0.86 | 0.84 | 0.83 | 0.82
File1 VB | 0.85 | 0.87 | 0.87 | 0.86 | 0.86 | 0.85
File2 MAP | 0.80 | 0.89 | 0.86 | 0.84 | 0.83 | 0.82
File2 VB | 0.80 | 0.90 | 0.88 | 0.86 | 0.86 | 0.84
File3 MAP | 0.82 | 0.83 | 0.80 | 0.75 | 0.72 | 0.68
File3 VB | 0.83 | 0.85 | 0.84 | 0.82 | 0.80 | 0.78
File 4 MAP | 0.73 | 0.72 | 0.68 | 0.68 | 0.64 | 0.63
File4 VB | 0.72 | 0.75 | 0.73 | 0.72 | 0.72 | 0.71

Best score K function of prior 7 for MAP/BIC and VB systems

File File 1 File 2
N.|acp | asp | K | N.|acp | asp | K
VB (known) | 8 |0.68 | 0.86 | 0.77 | 14 | 0.70 | 0.82 | 0.76
VB (best) 24 10.88 | 0.85 | 0.87 | 18 1 0.90 | 0.90 | 0.90
VB (selected) | 17 | 0.84 | 0.88 | 0.86 | 17 | 0.84 | 0.90 | 0.87
File File 3 File 4
N.|acp | asp | K | N.|acp | asp | K
VB (known) | 16 | 0.79 | 0.87 | 0.83 | 21 | 0.70 | 0.75 | 0.73
VB (best) 21 {0.85|0.86 | 0.85| 19 | 0.70 | 0.80 | 0.75
VB (selected) | 22 | 0.83 | 0.85 | 0.84 | 23 | 0.73 | 0.76 | 0.74

Table 7.8: Results on NIST 1996 HUB-4 evaluation test for speaker clustering,
Variational Bayesian learning/model selection with empirical priors and 7 = 900

File File 1 File 2
N.|acp | asp | K | N.| acp | asp | K
MAP/BIC (known) | 8 | 0.69 [ 0.94 | 0.80 | 14 | 0.70 | 0.85 | 0.77
MAP/BIC (best) 25 10.89 | 0.83 | 0.86 | 20 | 0.87 | 0.90 | 0.89
MAP/BIC (selected) | 25 | 0.89 | 0.83 | 0.86 | 21 | 0.89 | 0.85 | 0.87
File File 3 File 4
N.|acp | asp | K | N.| acp | asp | K
MAP/BIC (known) | 16 | 0.76 | 0.85 | 0.80 | 21 | 0.71 | 0.68 | 0.69
MAP/BIC (best) 23 1 0.8510.8310.84 |19 |0.71 |0.77 | 0.74
MAP/BIC (selected) | 23 | 0.85 | 0.83 | 0.84 | 23 | 0.73 | 0.71 | 0.72
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Table 7.9: Results on NIST 1996 HUB-4 evaluation test for speaker clustering,
for MAP/BIC with empirical priors and 7 = 900
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Chapter 8

Contributions and Conclusion

In this thesis we have discussed the use of Variational Bayesian methods in an
audio indexing problem. Classical indexing problems have often been formulated
as a model selection problem and solved with very rough approximations like the
Bayesian information Criterion. The VB framework offers an elegant solution
for both model learning and model selection. In our work we have proposed for
the first time the use of this technique for speaker clustering and speaker change
detection purposes. The main contribution of this thesis consists in the proposal
and the study of a fully bayesian framework in an audio processing applications.

In the first part of this work we have discussed the theoretical framework of
Variational Bayesian methods as developed in machine learning field in the last
ten years. We developed as well the computation for popular model like HMM
or GMM. A particularly emphasis has been put on the possibility of optimizing
prior distributions i.e. finding optimal hyperparameters. In fact VB techniques
as all Bayesian techniques are sensitive on prior distributions (depending on the
current amount of available data). This dependence can be reduced by optimizing
hyperparameters even if it looses the Bayesian spirit of the approach.

In experiments, we first have shown how VB is definitely more robust w.r.t.
classical learning criteria like MAP or ML in a GMM learning/testing task. Ex-
periments discussed in chapters 6 and 7 shows that improvements are obtained
as well on real data. In the speaker changing point detection task, the VB allows
a definitely better resolution than the BIC. Because of the reduced amount of
data in this task, VB shows a high sensitivity to prior distributions.

On the other hand in speaker clustering based on both no a priori informa-
tions and on an UBM model for Broadcast News, segmentation shows a good
robustness to non informative prior distributions. The problem of strong prior
distributions and optimal prior distributions has also been addressed. In all cases
the VB has outperformed both the ML/BIC and the MAP/BIC.

Overload brought by Variational Bayesian is extremely reduced because pa-
rameters expected values can be computed in closed form for the considered
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parameter distributions. Advantages on the other hand are interesting both in
term of robustness (to overfitting, to poor data set) and in term of model selection
(free energy is a model quality measure).

Interest in VB methods is anyway recent and lot of possible developments are
still under investigation.

First of all an interesting progress may come from the possibility of making
the technique as independent as possible from prior distributions. In this thesis
we have used an empirical prior approach that has not shown a good robust-
ness to different tasks. The investigation of hierarchical prior distributions (that
have proven their efficiency in other tasks) may be a possible solution to prior
distributions problems.

On the other hand VB has been applied to other challenging tasks like sta-
tistical signal processing and speech recognition. An important issue must be
anyway pointed out. We have applied VB to problems that are inherently gen-
erative. Other tasks like speech recognition are discriminative tasks that have a
completely different goal. For this reason the use of VB methods for doing model
selection in ASR systems may be ineffective in the sense that a discriminative
model is controlled by a generative criterion. Future research should focus on
methods that are simultaneously discriminative and Bayesian in order to bene-
fit of both model selection and discriminative training. A problem with current
discriminative methods like MMI and MCE is that it is not straightforward to
obtain a prior-posterior relation for parameter distributions; this mean that in
classical HMM/GMM discriminative framework the bayesian solution is not di-
rectly applicable. As a final remark we would like to underline that those kinds
of solutions can be applied in systems that use kernels (e.g. Support Vector Ma-
chine) in which Variational Bayesian approximations are easily applicable (see
[121]). In those cases model selection in the bayesian sense is directly feasible
because of the form of the discriminative function.

154



Appendix A

Some KL divergences

In this section we explicit the KL divergences used in this thesis; distributions
considered here are Dirichlet distributions, Gaussian distributions and Wishart
distributions.

A.0.1 Dirichlet distribution

Given an hidden variable 7 = {my,... , 7}, the Dirichlet distribution with hy-
perparameters o = {aq,... ai} designated with 7 = Dir(a) can be written as
F(O‘O) -1 =1
p(m|a) = R Al
p( | ) F(Oél) N F(ozk) 1 k ( )
where

k
ap = Z a; (A.2)
7=1

a; > 0 (A?))
mp > 0 (A.4)

k
Y omi=1 (A.5)
7=1

The KL divergence between two distributions with parameters o and 3 can
be explicited as:

KL(allB) = log % — S llog %) _ (0, — g)(w(8) ~ W(ay))]  (AS)

Bo I'(a;)

In this work the first log moment is used as well:

| rla) togm; = W) - Wla (A7)

155



where U(.) is the digamma function and I'(.) is the Gamma function (see [1]).

A.0.2 Gaussian distribution

The Gaussian distribution or multivariate normal distribution with mean p and
covariance ¥ designated with N(y|u, ) is defined as:

_ 1 _
Pyl T) = (27| Peap(=5y — )57y — 1) (A.8)
The KL divergence between N(y|u1,1) and N(y|uz, X2) can be explicited as:

1
K L(pt1, 1|2, %9) = —5(509|2122|
[l = [0 4 (1 — p2) (1 — p2) 185" log €) (A.9)

A.0.3 Wishart distribution

The Wishart distribution with a degree of freedom and B precision matrix is

defined as:

1
ZaB

1
p(Wla, B) = |W|(“_d_1)/26:l;p(—§tr[B_1W]) (A.10)

where d is the coefficient dimension and

d .
Zog = 20427 A1) /4) |0/ H F(a +1—z

—) (A.11)

=1

The KL divergence between two Wishart distributions W(ay, By) and W (az, W)

can be written as:

Z, _
K L(ay, Bi||ay, W) = log B, (a1 —az)

1
<logW > +§a2tr[BQ_IBl — 1]

CllBl 2
(A.12)
where
4 a1 +1—k
<logW >= ZW(%)—I—dlogQ—l—logﬂ?ﬂ (A.13)
k=1
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