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Abstract

This document presents a comprehensive approach to Hidden Markov Modelling. Concepts are first
introduced in a one-dimensional context. Both model evaluation and training are considered and theoretical
developments which lead to algorithms are presented. Major implementation issues are also addressed.

Then, results are extended to two-dimensional Hidden Markov Modelling. Again, model evaluation
and training are considered and corresponding algorithms sketched. Proofs and detailed justifications of
results presented can be found in the referenced bibliography.

This report is the first part of a three-fold document. Part Two [8] details the implementation of the
tools presented in this document and part Three [9] specialises in applying these procedures to colour
image analysis.

Résumé

Ce document présente une approche détaillée des Modeles de Markov Cachés. La théorie relative a
cet outil est d’abord traitée a travers un modéle unidimensionnel. Les techniques d’évaluation du modéle
par rapport aux données (reconnaissance) et le probleme de I’entrainement sont détaillés. Les algorithmes
sous-jacents sont aussi mis en évidence et les problémes pratiques rencontrés classiquement traités.

Cette approche est alors étendue au cas bidimensionnel. Les formules et les algorithmes sont adaptés
dans ce contexte. Pour une justification détaillée de ces résultats, le lecteur est renvoyé a la littérature
citée en référence.

Ce rapport constitue la premitre partie d’un rapport qui en contient trois. La deuxitme partie [8]
détaille I'implémentation faite des outils détaillés dans ce document et la troisitme partie [9] résume les
résultats obtenus en appliquant ce type d’outils pour I’analyse d’images couleurs.
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Introduction

In this report, we introduce the use of Hidden Markov Models (HMM) for 2D image segmentation.
Most segmentation techniques based their performances on similarity measures. In our work, we
alm to define a model-based segmentation technique whereby specific features are extracted from
the image under investigation.

We mostly based this study on the example of face localisation in colour images where the part
of the image containing the face is located using a pre-defined face model.

Hidden Markov Models [10, 11] are stochastic models which provide a high level of flexibility
for modelling the structure of an observation sequence. They allow for recovering the (hidden)
structure of a sequence of observations by pairing each observation with a (hidden) state. State
duration is left free so that HMM represent a powerful technique for realising elastic matching
when imposing constraints on the topology of state transitions. It is now acknowledged that the
use of HMM is fundamental in automated speech analysis and recognition [7]. In this type of
applications, the signal is mono-dimensional whereas pattern recognition in images requires two-
dimensional operators. Nevertheless, mono-dimensional Hidden Markov Models (IDHMM) have
been successfully applied to keyword spotting in binary document images [5]. The sequential aspect
of written words is exploited (2.e., from left to right). Each column of a word image is mapped onto
a feature vector considered as a multi-dimensional observation. The sequence of such observations
1s then matched against different left-right models, each representing a keyword to be recognised.
Recognition is based on the selection of the model of keyword that fits best the image in question.
An extension of this work is found in [6]. The two-dimensional structure of the image is accounted
for using a pseudo two-dimensional model (Pseudo 2D HMM or P2DHMM). This extension is
shown to add robustness of the detection system against variations of size and slant of the fonts
present in the document image.

Similarly, the potential of HMM for performing face recognition is demonstrated in [14]. The
idea is again to exploit the sequential (vertical) structure of a human face. The image is divided
in a sequence of overlapping horizontal stripes and the sequence of these stripes (e.g., eyes-nose-
mouth) is labelled using a 1DHMM. Results reported indicate that the use of HMM provides a
suitable alternative to techniques classically used for this type of applications.

In this report, the aim is to test the ability of HMM to perform an image segmentation task
rather than presenting a formal image segmentation system. One-dimensional Hidden Markov
Models first reviewed in Chapter 1 and extended in Chapter 2 to pseudo-dimensional models to
take advantage of the specific context of Image segmentation.

Stephane Marchand@Eurecom.fr T.R. RR-99-49 Part A/l - March 4, 1999




Chapter 1

One-dimensional models

1.1 Introduction

Hidden Markov Models are mostly used for modelling the creation of an observation sequence
O = {o1,...,0r} over time (i.e., from timet =1 tot = T), where each item o in the sequence
is taken from a set V (i.e., the vocabulary). The main idea is to design a multi-state system
(finite state machine, FSM) which outputs this sequence while being in a state g¢ at a given time
{. At each state, the system is designed to output a certain observation from the vocabulary with
a likelihood given by the output probabilities. At each time step the system will switch from its
current state to the next (possibly stay in the same state) with a transition probability. The given
of the transition probabilities will therefore implicitly design the (hidden) structure of the system.
The state of the system at time ¢ = 1 is given by its initial state probabilities. Figure 1.1 shows an
example of a Hidden Markov Model where the system can only either loop within the same state
or switch to the next state but cannot go back to a former state. This type of HMM is referred to

as left-right model or Bakis model.

Trans[tion prob.

> g

4
Ou!pu{ prob ., i l

Initial state prob.

Figure 1.1: A left-right (Bakis) Hidden Markov Model.

A Hidden Markov Model can therefore conveniently be formalised via the following definition.

Definition 1 Hidden Markov Model.
A Hidden Markov Model can be formalised via the description A = {S,V, A, B, 11} where,

e S={s1,...,sn} is the set of N possible states.

o V = {uvy,...,vr} is the output alphabet. In other words, for any t, there exist | such that

op = Ug.

e A ={ai;j}ij=1. N ts the set of transition probabilities.

o B={bi(l)}i=1..Ni=1..1 1S the set of output probabilities.

o [1={m,...,7n} is the set of initial state probabilities.
Over time, a Hidden Markov Model A will output an observation sequence O = {oy,...,or} while
visiting states in the sequence @ = {q1,...,qr}, where g = s;! for some 7 at any timet = 1,..., T,

thus associating a hidden structure with O.

I Note that we will sometimes use the notation “g: = " for “g¢ = s;”.

Stephane.Marchand@Eurecom fr T R. RR-99-49 Part A/2 - March 4, 1989
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1D Hidden Markov Models 3

Remark 1 Note that a unique observation sequence O may be generated by X\ when visiting dif-
ferent state sequences Q1) ... Q%)
1.2 HMM parameters and model evaluation

In the context described above, details on the parameters of a Hidden Markov Model X can be
given.

Proposition 1 Parameters of a Hidden Markov Model.

¢ A transition probability a;; can be expressed as aij = Plg: = sj|q-1 = &), 1 < i,j < N, for
any 1 <t <T.

* An output probability b;(l) can be expressed as b; () = Ploy = uilg: = si].
o [nitial state probabilities are given by m; = Plg = s4].

Since most of parameters above are probabilities, they impose some constraints given by,

N
Z;'r,- =1
i=1

M=

(Iij:l Vi:l,...,N
1

[y
1

[
=

Il

o

=

[

“l—i

=

i=1

This formalism now allows us to formulate the major HMM modelling problem. Given a Hidden
Markov Model A and an observation sequence O, evaluating the goodness of fit of A\ with respect
to O requires to calculating P[O|)]. However, in the general case, the parameters of the model are
unknown. There is therefore a need for initiating a training procedure. Following on the principle
of model evaluation, training procedures will operate as follows. Starting with some given initial
parameters and given a set of observation sequences O%) k = 1,--+, K new parameters will be
iteratively computed so that P[O*)|)] is maximised. Two approaches are classically used and are
presented in Section 1.2.1 and Section 1.2.2 respectively.

1.2.1 Baum-Welsh forward-backward algorithm

Following on Remark 1, a given observation sequence O may correspond to different state sequences
QW,...,Q9). In other words, states sequences {Q(9)} are all the states sequences Q for which
P[O|Q, ] # 0. In that case,

G
PO = PIO|Q, AIP[Q¥)|A]

g=1

However, direct computation of that equation would be much too long. The Forward-Backward
approach proposes to split this calculation in two parts so that complexity is optimally reduced.

Forward procedure

This procedure uses a dynamic programming approach for computing the probability of generating
an observation sequence up to a certain stage. Such a probability readily suggests the definition
of forward variables.

2Unless necessary for comprehension, A, the representation of the Hidden Markov Model in the probabilities will
be dropped.

Stephane.Marchand@Eurecom.fr T.R. RR-99-49 Part A/3 - March 4, 1999




1D Hidden Markov Models 4

Definition 2 Forward variable.

Given a Hidden Markov Model X, and an observation sequence O, the probability of getting the
partial observation sequence {o1,...,0¢} with being in state s; at time t is noted (i) and is called
the forward variable. More formallj,

o:(i) = Ploy, . .-, 0,8 = 8i|A].

The definition of the forward variable then allows for efficient computation using the following
dynamic programming procedure. By definition, we clearly have,

Ozl(i) = Tf,‘b,‘(ol}
Now, for any t = 2,3,...,T,

O‘,g(l.) = P[Ol-l'--sot:qt:sip\l

= P[0z|fh = silzp[olu---uat—l)fh-l = 5j|/\]P[‘It = S:‘|th = Sj]

N
bi(oe) > e-1(4)aji
i=1

We finally obtain?,
N
PO =) Ploy,...,or,qr = si]A] = ZQT(T)
=1

Backward procedure

Although not needed for model evaluation, the Backward procedure is essential for training as will
become apparent in Section 1.3. Typically for the generation of a given observation sequence 0,
every forward variable a (i) is paired with a backward variable f3; ().

Definition 3 Backward variable.

Given a Hidden Markov Model X, and an observation sequence O, the probability of getting the
partial observation sequence {oy41,...,07} with being in state s; at time t 1s noted Py(i) and 1s
called the backward variable. More formally,

Bi (i) = Plot41, .- . orlge = i, Al

A dynamic programming approach is again used for the computation of backward variables. We
set arbitrarily,

pr(i) =1
Now, foranyt=7T-1,T-2,...,1

Bi(i) = Plot1,.-- 07| = 5, A]
N

= ZP[0t+2; oy 07|geg1 = Sj,)\lp[th = sjlg: = 5i|Plot+1]qe+1 = 55]

= Zﬁ:+1 J)azj 0t+1

Following the definitions of forward and backward variables, we can define the posteriori variable
¢ () as follows.

1(1) = Plge =s:i]0,A]

3Note that this formula is valid in the case of an ergodic model only. In that case, no constraints are given on
the state of the HMM during its final step (see Section 1.4 for details).

Stephane Marchand@Eurecom.fr T.R. RR-99-49 Part A/4 - March 4, 1993
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1D Hidden Markov Models 5
- P[O,q;:s,-],\]
P[O]A]
. Ploy, ..., 01, qt = 5i|A]P[og41, . . ., 07|qr = si, A]
Sie1 PO gt = s;1]
. (2) 5, (7)

S e ()8 (5)

Therefore v, (i) is the probability of being in state s; at time ¢ when generating the sequence ob-
servation O with model A. This variable is used for computing the most likely state sequence
associated with an observation sequence and therefore proves fundamental when solving the recog-
nition problem.

1.2.2 Viterbi algorithm

This procedure for model evaluation is a simplification of the above procedure. It focuses in finding
the most likely state sequence Q* = {47...., 9%} by which a given observation sequence O has been
generated. The corresponding dynamic programming procedure (called Viterbi algorithm) is as
follows. At each time step ¢ we calculate the value,

6 (i) = max Ploy, .oy qt-1,00 = 8i,01,...,0¢|A]
{Ch,---:qt—l}

for every state s; in the model. By induction,

dey1(i) = 5:‘(0c+1)j511§}‘_‘(N(5c (7)aji)

The maximal probability will therefore be given by,
P[O|A] = max dr(i)

In order to be able to retrieve the sequence Q* leading to this value, the best path generated by
this maximisation is stored in the array ¢,(7).
The complete procedure is therefore given as follows.

L. 81(i) = mibi(o1) 1<i<N

- 8:(i) = bi(or) max{d—1(j)aji ; j=1...N} 1<i<N 2<t<7T
. (i) = argmax{dr—1(f)aji ; j=1...N} 1<i<N 2<t<T

. P[O|A] = max{ér(i) ; i=1...N}

LS L - N ]

. gp = argmax{dr(i) ; i=1...N}

The best state sequence is then retrieved by,
q::¢(q;+1) t:T‘*l,,l

Remark 2 [t should be noted that Viterbi algorithm is similar to Baum- Welsh algorithm where
variables v; (1) degenerate to 0’s and 1’s.

1.3 Training

Training allows for automatically and optimally adjusting a given model to a particular type of
problem. The problem of deciding of the best model structure is left open. A data set (the
training set) is used for estimating models parameters. The training process of a given model
A is as follows. For each observation O sequence in the training set, we calculate P[O|)A] and
P[O, q: = si|A] at every time step and for each state. This can be done using either of the above
procedures. From these estimations, model parameters will be re-estimated by simply “counting”

Stephane.Marchand@Eurecom.fr T.R. RR-99-49 Part A/5 - March 4, 1999




1D Hidden Markov Models 6

event that occurred when (re-)generating the training set. For example an new estimate @;; for
the transition probability a;; is given by:

expected number of transitions from s; to s; z’f‘:—ll Plg: = 5i,qt41 = 55|10, A]
Qijj = =

expected number of transitions from s; 31:11 Plg: = 5|0, Al

Depending on whether Baum-Welsh procedure is used or not, forward and backward variables
or simple counting will be used. Next sections present re-estimation formulas when Baum-welsh
procedure is used. These formulas are first presented in the case where the vocabulary V' is finite
and then extended to the case where V' is continuous (or very large).

1.3.1 Discrete output sequence

Let us suppose first that we use the observation sequence O for training the Hidden Markov Model
and that each o, is taken from a finite vocabulary set V. We search A such that the probability of
the model to output the sequence O is maximised. We start with initial given parameters A, B
and TI for A. S and V are fixed prior to training in the design of the model.

An iterative re-estimation is then undertaken with the knowledge of O. We consider Baum-
Welsh training procedure which maximises the probability of O among all possible state sequences
Q (as opposed to Viterbi algorithm which finds the state sequence which maximises the probability
of 0). In that case, re-estimation formulas are given by,

— _ PlO,a1=silA _ a1 (i) 61 (4)
' P[Ol’\] 2?[31 QT(j)

= 1 (i)

21 = ary e @b (@e)Bn i) _ 0y, iz Celi)by (0r1)Be (7)
Tia 0 oy ()b (0e41) B (57) ! ey (i) (3)
T E;F:l'o =v at(z)r@t(?‘)
b,' l = Al L
0= ST @m0

Remark 3 Note that these coefficients are normalised so that they satisfy the probability con-
straints given earlier.

For obtaining accurate estimates of the parameters above, the training is to be done with a set of
observation sequences {O(l), s .,O(K)}. Re-estimation formulas are generalised as,

e AdPesR 6

L R N (A’
2pe=i ?1,: Zj:l Df'(r)(J)

- _ Tk % ST o i)k (o) B ()
1J = . .
>F AT a6
K . .
E(l) - Zk:l kaz;le;o,:u, agk)("")f@t(k)(?)

PR MR 1) )

where, a) J(?.) and ﬁfk)(z) are calculated using formulas above with the training observation se-

quence O%) = {o(lk),...,oéf‘)} and P, = P[O")]|)]. It has been shown that such a iterative
procedure converges to a fixed point with increasing at each iteration Py = P[O™)|A], for all k.

1.3.2 Continuous output sequence

In the case where each o, is taken from a continuous distribution (i.e., the vocabulary has an infinite
size), some extra parameters are to be introduced. We model the output probability distribution
(which is continuous in this case) by a Gaussian mixture with a diagonal covariance matrix. More

Stephane.Marchand@Eurecom.fr T.R. RR-99-49 Part A/6 — March 4, 1999
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formally,
M (d) (d)y2
1 o _
Z CimN Ot;.u1m|f7:m) = Z Cz'm“?=1 —F/——¢€Xp ((_(d‘)u”i) )
m=1 v/ 271'0'5:2 20},

where D is the dimension of the output item o, and M is the number of mixtures in the Gaussian
distribution. Corresponding constraints are imposed by

Therefore translating into,

and,
G20 V= Lo o N W= 100,08

In that case, the parameter b;(o;) is re-estimated via the recalculation of Cim, Pim and oy, for
it=1,...,Nand m=1,..., M. Re-estimation formulas are given by

= Zt 22 1 [01: e O, Q-1 = 5j|)']P{(It = 5:‘|9’t—1 = Sj]cimN(0t=Himyo'z'm)P[OtH,---,OT,Q: = s5;|A]
Jj=

sz e
v

where ¥ is the appropriate normalisation factor for the constraints above to be respected (z.e., W is
the sum over all mixtures m of the numerator of the above expression). Therefore, when including
multiple observation sequence training,

K i B k k)Y, . N k v

_ Zk 1}:]'_th 2 cimN (o ( )y#zm:aim)ﬁt( )(3) Zj=1 ﬂjiagu)ﬂ))
ilsd ) N k e
T A TN time T N (o, i, 03 ) B () T, 4500 (5)

Phiatis K T (k) pr( oK) (k) () =N (k)
o k=i ﬁzt 2% N( s Him; Oim ) B (1) Zj:l ajiog 7 (J)
EL 1 P,i Et =N 1!‘!mn°'=m)!5tk)( )Z;\;l “jiagi)1(j)

and,
Z;.K 1 p%t E? 2( (k) . #im)2N(0£k),ﬂim, U:‘m)ﬁt(k)(i) Z;V 1 aJ,agk)l(J)
k)y. N k
Zk 1 Pk z; 2 :#zm;o':m) ( )(1) Ej—l ajiag )1(-7)

Re-estimation formulas for initial state and transition probabilities are clearly not influenced by
the form of the output.

Tim =

Formulas above can be better understood if state s; is split into two sub-states s;,_., and 1 o
(Figure 1.2). Between states s, and s, the system goes through states s;,, with probabilities
¢im and outputs a component of the global output o; via the Gaussian distribution N (0, thim, Oim)-
Transition probabilities from a state s;,, to state s;, ., are all set to 1.

1.4 Implementation issues

Besides programming structures, the main issue in the implementation of Hidden Markov Models
is the fact that the recursive formulas given in the forward and backward procedures typically
multiply probability values (therefore lower than 1) between themselves. Hence, this product
quickly tends to zero and goes beyond any machine storage capabilities. The idea is therefore to
define a scaling procedure which will allow to obtain equivalent re-estimations while keeping values
in a reasonable order of magnitude. At each step of the forward procedure, forward variables (1)

Stephane.Marchand@Eurecom.fr T.R. RR-99-49 Part A/7 - March 4, 1999
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a;;
Ji
..... -

@, ()

State  j

State i
Time -1 Time ! Time t+/

Figure 1.2: State partition.

are divided by their sum. Thus defining scaled variable (i) and d.(7) as follows.

a1 (i) = mibi(o1) @1(i) = a1 (i) Ga(d) = fi_ll%
afi) = blon) Sl dnlilas @) = sl
(i) = bi(oe) Ef:l de-1(f)aji (i) = T

Simple calculations show that

. at(i) . A p a-’.(i)
&) = ———— i=2...Nand é&(i) = ———— t=1...N
i oe-1(d) e (i)
Defining
N N 3 N
s Doy (i) ;
z = (i) = S5=—"— i=2...Nand z; = aq(1)
i=1 Z:IV:I ae—1(1) ;

We obtain,
N
Hg.zlzt: = Z Q’g('i)
i=1

Backward variables are also scaled using the same scale factors z; as in the forward procedure.
Scaled forward and backward variables are therefore defined as,
o g o (1)

Gy (i) = and G (i) = £e(2)

Hﬁ;zlzt H;{'::tzt

In this manner, values of a;(i) and ﬁ't(z) are kept close to 1. Moreover, this can be efficiently
included in the recursive forward and backward procedures by dividing at each step a.(z) and 5 (i)
by z.

Let us define

Z =M,z

Clearly, ar (i) = Zar(i), fi1(i) = ZB(i) and, forany t = 1,...,T—1, a¢(i)Be 41 (i) = Z64 (1) B 1 (3).
Now, in the general case of an ergodic model, Py = P[O%)|)] = Zf\;l agnk)(i]. Therefore, using
scaled variables,

Stephane.Marchand@Eurecom.fr T.R. RR-99-49 Part A/8 - March 4, 1999
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1D Hidden Markov Models 9

where, Z(*) = IZ_ z*) and %) = S al®(@). It is therefore clear that introducing scale factors
in the unscaled formulas will remove factors J%c since factors Z*) will cancel out in all formulas.
In the case where extra constraints are given on the state of the system at specific steps, these
formulas are to be adapted. For example, in the case of a left-right (Bakis) model presented in
Figure 1.1, a constraint imposes
qr = 8N

Therefore the value for the assessment of a model is
Py = PO, g1 = sy |X] = ap(N) = &l (N)2(*)

In that case a factor ﬁN— will replace the factor 3~ in scaled re-estimation formulas. Again,
T

)
this is conveniently implemented since scaled variables &5")(5) are easy to handle, by definition.

Following this example, different constraints can be designed for giving a specific structure to
a model A.

Stephane.Marchand@Burecom.fr T.R. RR-99-49 Part A/9 — March 4, 1999
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Chapter 2

Two-dimensional models

2.1 Introduction

The aim of this chapter is to generalise previous one-dimensional models in order to handle two-
dimensional data. Typically, causality is introduced in two-dimensional data by defining a depen-
dency between neighbouring items. For instance, consider a set of data O organised in a matrix-like
manner

o011 Ox1 0x1
O == Oly Ory OXy
Ny -+ Oy - OXY

Causality can be expressed as the dependency between an item oy and its neighbours in a line-
scanning order. For example,

Op—1y—1 Ozy—1 Or4+1y—1
AV 4

Op—1y - Oy

However, a fully connected two-dimensional structure for a HMM leads to NP-hard problems for
updating parameters (training) and recovering the structure of a new 2D observation sequence
(recognition).

The approach taken is therefore to introduce two-dimensional causality at the line level. In
other words, a line Oy = {o01y,...,0xy} is now considered as an observation and the sequence
O = {0y,...,0y} is also modelled by an upper-level HMM (called P2DHMM, for Pseudo-2D
HMM), just as every line has been modelled by a 1IDHMM in Chapter 1. The structure of a
P2DHMM modelling a matrix-like two-dimensional observation sequence will therefore be com-
posed of different (horizontal) one-dimensional models (one for each possible type of line) con-
nected by a global (vertical) model representing relationships between lines. Figure 2.1 shows an
instance of P2DHMM which is an extension of the simple 1DHMM shown in Figure 1.1.

Extending the notation proposed in Definition 1, a Pseudo 2-Dimensional HMM can be repre-
sented by the following parameters.

Definition 4 2-Dimensional Hidden Markov Model.

A Pseudo 2-Dimensional Hidden Markov Model can be formalised via the description A =
{\, A, B, 11}, where,

o X=4X ; i= L~ N} is the set of N possible super-states in the model. Each of these
super-states is a IDHMM X' whose parameters are M= {5 V, A n'}, following Definition 1.

In other words,

- g ={s,.. s’N,} is the set of N' possible states of super-state A,
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. Superstate |
State |

3 Superstate 3
State’1

Figure 2.1: A Pseudo-2D Hidden Markov Model.

@

Superstate 2

()

L1

Q

=V ={v1,...,vL} is the output alphabet (common to all super-states). In other words,
for any t, there exist | such that o, = v;.

— A" = {af; }xi=1. N+ is the set of transition probabilities within super-state \i.
- B = {bi(l)}kzl_,.N.J:l___L is the set of output probabilities of super-state A*.

— ' ={m},...,m\.} is the set of initial state probabilities of super-state \i.
o A ={aij}ij=1. N s is the set of transition probabilities within the P2DHMM.
o Il ={m,...,mn} is the set of initial super-state probabilities of the P2DHMM.

Like in the one-dimensional model, the Psendo two-dimensional Hidden Markov Model will asso-
ciate a state sequence @ to an observation sequence O = {0zy}e=1.xy=1..v. The state sequence
Q will be composed of two levels. @Q is primarily a super-state sequence Q@ = {Q1,...,Qy} in-
dicating the super-state corresponding to the sequence of lines of observation O = {0y, .. ., Oy}
Each state line (Qy is then composed of states ¢y (Qy = {q14,- . ., ¢xy}) indicating the state of the
corresponding 1DHMM at a position (z, y).

In summary, a P2DHMM consists in two IDHMM embedded at different levels. In this context,
2D-causality will only be modelled at line level (as opposed to pixel level).

2.2 P2DHMM parameters and model evaluation

More formally, the parameters of a P2DHMM can be expressed as follows.
e Super-state transition probability: a;; = Plgy = M|gy—1 = \].

Initial super-state probability: m; = P[Q; = A*|A].

*

State transition probability of super-state A': al, = Plosg =& lgnsy= st

State output probability of super-state A': b%(1) = Plosy = vi|gey = 5]

Initial state probability: 7} = P[gy, = s}|/\i].

Stochastic constraints similar to that imposed on the parameters of a IDHMM are to be fulfilled
in the P2DHMM.

Following on the structure of a P2DHMM, model evaluation will be achieved using two nested
one-dimensional evaluations. Both Baum-Welsh and Viterbi procedures are available and will both
work on the following principle. One-dimensional (horizontal) model evaluation is first performed
with respect to each line Oy of observations so that the values P[O,|Q, = '] can be computed.
These values are then taken as output probabilities in the super-state of the upper-level HMM.
Another one-dimensional (vertical) model evaluation is then initiated to calculate values P[Q, =
A'|A] for every line Oy, and every super-state A’. These values finally become weights for the
calculation of Plgz, = sj|\'].
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2.2.1 Baum-Welch procedure

Forward and backward variables are defined at both levels. The notation is extended as follows.
fw(k) = Ployy, - - -» 02y, Gzy = $k|Qy = At Al

. ﬁiy(k) = Plogg1y,: ) 0%y Qag = 84 |Qy = MLAL

o ay(i) = P[O1,...,04,Qy = A|A].

e By(i) = P[Oy41,.--,0v,Qy = M|A]

Formulas and procedures for calculating a;y(k) and ﬁ;y(k) are directly adapted from Chapter 1.
In turn, they define super-state output probabilities as,

*®

-
bi(0y) = PlO4]Qy = N] =) _ o, ().
j=1

Remark 4 This formula is given in the most general case of an ergodic model. For a Bakus-like
model, ' _ . _
bi(Oy) = POy, axy = siyilQy = N'] = ok, (N).

These values thus allow for the calculation of values ay (i) and B, (i) as defined for IDHMM while
including relationships between lines of observations. At both level, probabilities of being in a
certain (super-)state for a certain (line of) observation can also be calculated. More formally,

) = P[Qy = N[0, A] = —u(DPuld)
Lihs il Yie oy (3)8y (5)

i ) G)
- ; - g (A5 L0
Yoy (§) = Plazy = 8510y, X'] = o -
! ! kN:I a::y(k) :Iz:y(‘l”)

2.2.2 Viterbi procedure

Similarly to one-dimensional model, this procedure searches for the most likely state sequence oF
which corresponds to the given observation sequence 0. Two embedded dynamic programming
procedures are used. A first step calculates for each line of observations O, and every possible
super-state (i.e., IDHMM) A' the most likely state sequence qiy,...,qxy through which O, has
been generated. The probability along each possible state sequence is stored using 6z, (7) where,

‘5;:3,1(]) = qu‘l_']?,a(}::_ly P[Qly; sy Qr—1y, Qey = S;,O1y, ceey Oa:ylx.]

The resulting optimal moves are stored in the array qﬁiy (7) so that backtracking can be operated
to retrieve this best path. This procedure is as follows.

o 31, (5) = mibj(ony),
1LjEN, 1Cis N, LEy <Y
¢ 6;'9'(']) - b;(o*cy)max{di'—ly([)ajj 3 1 S l S Ni}a
1€/ N, 1€igs N, 1<y<Y,1ce2<X
o ¢%,(5) = argmax{d;_;,(Naj; ; 1 <1< Ny,
1<j<NL1<i<N,1<y<Y, 1<z<X
This allows for computing the value of b;(0,) = P[O,|Qy = A'] as

bi(Oy) = lg}g{;\,io’xy (7)
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and to obtain the last state in each 1D optimal path using A". This state is stored in x'(0y) as

Xi(Oy) = arg  max dxy(J)-

SJEN®
A second step finally determines the most likely sequence of super-states Q1, ..., Qy corresponding
to the sequence of lines of observations Oy, ..., Oy (this corresponds to assoclating a super-state

per line of observations). For each line O,

85(8) = o, X |5 SR WEERE o W g W T 2

This second procedure is as follows.
e §1(i) = b;(01), 1 <i<N.

® dy(i) = b;(Oy) max{dy_1(j)aji ; 1 <j < N},
1<i<N,2<y<Y.

o &,(i) = argmax{dy_1(j)aji ; 1 <j < N},
I1<i<N,2<y<Y.

Then,

P[O|A] = 1%‘?&'6}, ().

State sequence backtracking is then done as follows.
o Qv =argmax{dy (i) ; 1<i< N}
e Fory=Y —-1,...,1:

= Qy = Py1(Qy+1)

~ gxy=x%(0y)

—Fore=X—1,...,1:
oy = 053 (Gos1y)

For model evaluation only the value of P[O|A] is needed. Values P[Oy|\’] can help is assessing
further the results. States associated with each observation, be it through a probability (i.e.,
Yry (7)) or a 0-1 value (Viterbi procedure) are needed for solving the recognition problem.

2.3 Training

The training of a P2DHMM will be based on essentially the same principle as the training of a
IDHMM described in Section 1.3. A set of two-dimensional observation sequences {O(!), ..., O()}
is chosen. Using initial parameters, the goodness-of-fit of the model A is evaluated using either
of the above procedures. While doing this, states are associated with each observation. Using
Viterbi procedure, an observation ogf;) is associated with a state g, is the best state sequence.
Simple statistics then allow for re-evaluating model parameters. Using Baum-Welsh procedure,
each observation o:(,,ky) is associated with every possible state sj,- with a certain probability (:.e.,
Plgzy = s5|0y,\]). The training procedure is then using these probabilities for re-estimating
the parameters of the model at each iteration. Re-estimation formulas for state and super-state
transition probabilities are as follows (we consider directly multiple sequence training).

From Section 1.3, it is clear that new estimates for state transition probabilities (and hence
super-state transition probabilities) do not depend on whether training data is continuous or dis-
crete. The same argument holds for initial (super-)state probabilities.

i k) e k).
Y AP )
Z.{'{:l "PIT Z;V:l a'(ffc)(])
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= @ k e
- el B Zy L af¥)(i)b; (0808, (5)
ajj = Q4 v *)

K Y a6

where P = P[O™)|A] and,
VE)  i(k) oy i (h) s
)3y il lb—‘%‘%a;&,)( IAR0)
.R.
Zklzy 1;?72 I( ﬂly{)

S‘J..

, k) (i) —1 _i(k i ¢k ik
Ef:] 23:1 b_wfa(TT)Zx 1 x(y)(l)b (o (xy)+1)ﬂz(;,u-|)-1(m)
m = a:m ( ) .
(i)

Zk 12:; 1 b_y'TW I(L)( )f@xy (1)

Ettending one-dimensional re-estimation formulas to two-dimensional ones is done by adding a

—1
a

weight 7y (1} to each line in the re-estimation of the parameters of the super-state A*. This allows
to bind lines together using the upper-level (vertical) model to express their inter- dependency.

Depending on whether training data is discrete (i.e., V is finite) or continuous (i.e., V' is infinite
or, in practice very large), state output probabilities b‘(omy) will take different forms, as already
detailed in Sections 1.3.1 and 1.3.2. The next sections brleﬂy suggest extensions of these formulas.

2.3.1 Discrete output sequence

A code-book stores the vocabulary V = {vy,...,vr}. Using this look-up table, one directly accesses
the value of b;(l) Using again the principle described above, we obtain the new estimate of the
output probability using forward and backward variables as,

K Y (k) (4 X (k i(k) ;.
F(I) Zk—1zy—1 woc(ki) Zm—l;o,m, C'my)( )B:v(y)(J)
A X . k

ZF‘. IZy 1 b O(k)) r=1 (Ix(;)(_]) -'”"(y)( )

When using Viterbi procedure, simple statistics allow for re-estimating this value.

2.3.2 Continuous output sequence

When output probabilities are taken from a continuous distribution, modelling is done as in Sec-
tion 1.3.2. In this case, for every state s} of super-state Al we have,

z L : (89— it

i 1 i 1 i m

B (0eg) = 3 CimN (Ory, iy Th) = 3 cjmnf?:lf(d—exp (——w—f—) '
= 270 i)

m=1 2o-jm

where D is the dimension of the output item o,y and M is the number of mixtures in the Gaussian
distribution. Parameter M can be different from state to state, depending on what this distribution
models. To be complete, one should replace M by M;f for the number of mixtures in the output
distribution of state s} of super-state A'. However, since re-calculation is independent from this
value and for the sake of clarity, only M is used. In this context, new estimates for parameters of
the output probability distribution are,

K Y i) ; k)
Zh_lZy 1b(ofk: Z:.r:.l(';m'N‘(OTy'u_;ms ;m) b ( Zt ]alJ x—ly([)

k)
1) k NN ik
Z y 1 b O(k) Zm" 1 C;m Zr— Of(l'!.') ﬂt',tm’? Jm )ﬁry ( ) =1 a( nfrl )ly(!)

i
Cim =
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Similarly,
K Y M6 —x (& k) i\ (k) il g
) Dol Zy:l 5:,(0%) Z;r:? Oiy)N(og«'y).»#jm , U;'m)ﬁr(y )(J) Zf\—_rl a!j“’z(f)ly(l)

Ejm i (k).
ZK b X (k) ¢ X (k). Ny o ok
k=1 Zy:l b?(Oj:)}) Zz:? N(Oﬂf(y =;‘tjml Cr]m)‘dl'(y J(J) =1 G?JQ;(_)ly(I)

and,

K ¥ AN X k ; k) ; i(k), . i ik
B Zk:l Zy:i mj_)z:x:?(oiy) - #]m)gN(O;y)!y]m’ogm) ;"(y )(j) Zf\;l a}ja;‘(—)ly(l)

a..
K Y {*) (i X k) Ry
Zk:l Zy:l ﬁ:o_g(-%}j Zr:? N(OE'-'S')’ uj-mi G';m)ﬁr(y )(-7) Zi:l a‘;;ax(f)ly(l)

Jm

Remark 5 In the above development, covariance matrices of Gaussian mizture components are
considered as being diagonal. In speech recognition where HMM are widely used, components of
feature vectors are de-correlated so that this approzimation is valid. For the sake of generality, we
will consider miztures of Gaussian distribution will full covariance matrices Yijm. That 1s,

M

i ] 1 1 i i - 1

bj(oxy) = Z ij—D‘*i— exp (‘“5(01'&' . Jujm)T(Ejm) l(ory - Ju‘jm)) . (2.1)
met | JEmPIE]

Re-estimation formulas for im, the covariance matriz associated with mizture m of state s}- of
super-state A' 1is

K Y i) =X k ; k ; k) 4 i v i(k) A
Zk:l Zy:I f(“ayrr) Ez:E(Ogy) == Hjm)(og:y) o #}m)TN(O(xy}:ﬂjms C’J"m) r(y )(J) ZfL a;jaz'(~)ly

9

)

im

K Y A0 —x k) P YAt k) =N ik
Zk:l Zy:l fgﬁ Zx:E N(o&,y),,u;-m, O';m)ﬂ;(y )(J) =1 a;ja.r(—iy(l)

2.3.3 Multiple stream observation

It can be the case that an observation is composed of a combination of different information streams.
In the case of an image for example, one can associate each pixel with a vector of observations
which contain e.g., RGB components and values of the gradients at that pixel. It is clear that
RGB components and gradient values can be considered as independent and therefore to follow
their own PDF. Moreover, from prior knowledge, one may allocate weights to different part of the
observation vector so that the influence of each part can be modulated.

For modelling this, we will define the observation vector o, at position (z, y) as being the super-

imposition of different multi-component streams of observations (i.e., Opy = (ogﬁ,’,...,o&?)T).

The output of each stream ogﬁy) will be modelled by a Gaussian mixture b},(og:’!)) as given in
Equation (2.1) above. The global output probability distribution at state s} of super-state A can
then be modelled as the product of these stream PDF (independent successive PDF). In other
words _ ,

bi(ory) = T, b, (ol2))
However, in that case, no weighting scheme is readily feasible on this model.

We present here a different approach which is similar to the justification of mixture weight
re-estimation. Let S be the number of streams and w, be stream weights such that Zfﬂ =15.In
this configuration, the output PDF at a state is considered as being modelled as if each stream s
was produced with a certain probability w,. Figure 2.2 shows conceptually how the model works.

State S;,- of super-state \' is first partitioned into parallel sub-states represented by output PDF

b}s(ogfy)) where each produces the part of the observation corresponding to each stream (i.e., o,(g’)).
The global output PDF is therefore defined by the weighted sum of these stream output PDF. Now,
each of the stream output PDF is a Gaussian mixture so that the scheme proposed in Figure 1.2
1s applied again. This scheme means that the global output probability b;(ory) will be calculated
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State &
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Figure 2.2: Model for multiple weighted stream output PDF.

1 1 3
b (0zy) E w_”b_”

So that,

M
; : p 1 1 i
b (ory) = E wh E el ——————exXp (——(o(’) i R )= ol2) — )) ,
2 Y Js Jjsm - jsm jsm Ty jsm
m=1 (QW)D"lE}ml 2

s=1

where D, is the dimension of stream s. This model readily suggests re-estimation formulas for
both stream weights and Gaussian mixture coefficients. Typically, a factor wj w111 simply be
added in front of each re-estimation formula. This is understood by the fact that w , Tepresents
the probability of generating the complete observation vector oz, by a PDF with mﬁmte covari-
ance between values which do not belong to stream s (i.e., with the stream PDF b1 (ory) only).
Equivalently, with the same token as in Section 1.3.2, one may consider that state sJ 1s split into
different sub-state levels until reaching the level where a single Gaussian PDF will output a portion
of the global observation corresponding to a given stream.
Re-estimation of stream weights is given by:

Foai B iy (k) N' ik
Zk IZy 1 b m)zz_ Jsbjs Oxy)) ;c(y (7] Y= a.!ja;—)ly(l)

h k) NG (k) gy
Zk:l Zyzl b’j(oy{"j E =1 w_]s Zx—z ya! 01,-y ) i‘(y (.}) ;:1 a}ja;ﬁ'—ly(l)

2.4 Implementation issues

Based on a similar argument as in Section 1.4, we emphasise the need for a scaling procedure in
the actual computation of the parameters of a P2DHMM. Given a super-state A and a line of
observations Oy, the value P[O,|)\'] is typically calculated by recursively multiplying probability
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values between themselves. In Section 1.4, a scaling technique that allows for keeping forward
and backward variables within an acceptable order of magnitude is presented. This technique
can clearly be applied for re-estimating parameters of super-state A'. However, when using two-
dimensional Markov modelling, another problem arises.

We introduce this shortcoming via an example. Let us set the following parameters for a given
experiment:

e Observation parameters: X = 300, ¥ = 200, D =3, L = 100 (L is the dimension of the
vocabulary in each dimension)

¢ Model parameters: N =3, N! =1, N2 = 3, N3 = 1. This set of parameters describes the
P2DHMM presented in Figure 2.1.

We obtain the following (rough) estimates:
o bi(0ry) = 107° if letters are all equally likely.
e a;j ~al, ~ 10"
o T~ 71';; ~ 1071,

In this context since P[Oy|\] = quy___qu w;lyb;ly(oly)aququbfm(ozy) e 'aqx—lquyb;Xy(oXy)’ we
obtain P[Oy|A"] ~ 10-21%1, This factor will be used as output probability of the upper-level
(vertical) model. The same type of estimation leads to P[O|A] =~ 1071%°, It is now clear that the
scaling procedure described in Section 1.4 does not allow for solving this type of problem since
values of P[O,|A] ~ 10719% are already beyond the storage capabilities of most of computers.

The solution therefore lies in calculating these values through their log-value. Developments
are mostly based on the following (trivial and exact) formula.

Given ay,...a,,

log (Z a,-) =logai +log [ 1+ Z exp(loga; —loga;.) | Vi* € {1...n}, (2.2)

i=1 i=1jizie

where log(.) is the natural logarithm (i.e., log,(.)) function. In other words, the log-value of a
sum can be calculated from the log-value of each of its terms. This allows for storing values
through their log-value solely and operating calculations without referring to their actual values.
In particular, using Equation (2.2) with a suitable choice of i*, we will calculate parameters and
variables related to the upper-level (vertical) HMM via their log-value.

2.4.1 Forward procedure

Assuming that all parameters of the super-states of the P2DHMM have been calculated using the
scaling procedure described in Section 1.4, we obtain in the case of an ergodic model (the case of
other structures for the P2DHMM is easily adapted from this case and from Section 1.4):

b(O) = Z4®,

where, Z;.(k) = Hlezi(;) and zig,k) are defined to scale forward variables a;(k)(j) (see Section 1.4).

Since the value of bi(Oé,k)) is typically extremely small, we can only compute its log-value as,

X
log(bi(O{F))) = log(Zi(*¥)) = Z log(z4%)).
r=1

Based on log-values of super-state output probabilities, the forward procedure is adapted to cal-
culate log-value of ay (i) using Equation (2.2). In other words, we calculate,

Yy
by (i) = log(ay (1)) — > log(Zy).
y'=1
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Remark 6 Note that the scaling procedure presented in Section 1.4 is necessary here to lower
down the order of magnitude of the variables themselves.

2.4.2 Backward procedure

Similarly to Section 1.4, backward variables will be scaled using the same scale factors Z, as in
forward variable scaling. Equation (2.2) is used again to calculate

Y
By(i) = log(By (i) — > log(Zy).

y'=y+1

2.4.3 Parameter re-estimation

Using the above procedures, we clearly obtain
y _\ Y
Gy (i) = log(ay (i) — Y _ log(Zy) and By (i) = log(By (i) — > log(Zy)
y'=1 y'=y

In this context,

y Y
iy (1) + By (1) = log(ay (i) = > log(Zy) + log(By41(i)) = D log(Zy)
y'=1 y'=y+1

Y
= log(ary (1)) +log(By+1(i)) = D log(zy)
y'=1
and (in the general case),
v
log(P[O|A]) = > log(zy')
y'=1

So that scale factors will cancel out in the re-estimation formulas of a;;.

Remark 7 Other types of P2DHMM (e.g., Bakis model) are readily adapted from Section 1.4.

2.4.4 Calculation of output probability values

One may note that the calculation of b}(oxy) requires the calculation of both the determinant
|E}m| and the inverse (E}m)'l of the covariance matrix for each component of the Gaussian
mixture. Since it is numerically difficult and imprecise to invert this matrix, we consider V' =
(Zhm) " 0y — %, ) and calculate the exponential part of the output probability as (ozy —,ujm)TV.
By using Gauss elimination procedure, we can solve the system EimV = (ozy — u}m). Since this
system must be solved for every oz, we store the covariance matrix in its LU-decomposition form,
as given by the classic Gauss elimination algorithm. This in turn reduces the computation of the
determinant {E;m| to the product of diagonal values of this decomposition.
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Conclusion on the theoretical
developments

This report introduces and details major ideas behind Hidden Markov Modelling. The aim here is
to set the context and notation in order to apply these tools for colour image analysis. In parallel,
the bibliography cited within this text should provide the reader with key references for a tutorial
on HMM theory.

In summary, the aim here was not to introduce any new material but rather to summarise and
set our context for the development of future applications.
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