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Abstract. The behavior of the least squares filter (LeSF) is analyzed
for a class of non-stationary signals that are composed of multiple sinu-
soids whose frequencies, phases and the amplitudes may vary from block
to block and which are embedded in white noise. Analytic expressions
for the weights and the output of the LeSF are derived as a function of
the block length and the signal SNR computed over the corresponding
block. Recognizing that such a sinusoidal model is a valid approximation
to the speech signals, we have used LeSF filter estimated on each block to
enhance the speech signals embedded in white noise. Automatic speech
recognition (ASR) experiments on a connected numbers task, OGI Num-
bers95[20] show that the proposed LeSF based features yield an increase
in speech recognition performance in various non-stationary noise con-
ditions when compared directly to the un-enhanced speech and noise
robust JRASTA-PLP features.

1 Introduction

Speech enhancement, amongst other signal de-noising techniques, has been a
topic of great interest for past several decades. The importance of such tech-
niques in speech coding and automatic speech recognition systems can only be
understated. Towards this end, adaptive filtering techniques have been shown to
be quite effective in various signal de-noising applications. Some representative
examples are echo cancellation[9], data equalization[10-12], narrow-band signal
enhancement[8, 13], beamforming[14, 15], spectral estimation[3], radar clutter re-
jection, system identification[16] and speech processing[8].

Most of the above mentioned representative examples require an explicit
external noise reference to remove additive noise from the desired signal as dis-
cussed in [8]. In situations where an external noise reference for the additive
noise is not available, the interfering noise may be suppressed using a Wiener
linear prediction filter ( for stationary input signal and stationary noise) if there
is a significant difference in the bandwidth of the signal and the additive noise
[8,3,2]. One of the earliest use of the least mean square filtering for speech en-
hancement is due to Sambur[5]. In his work, the step size of the LMS filter was
chosen to be one percent of the reciprocal of the largest eigenvalue of the corre-
lation matrix of the first voiced frame. However, speech being a non-stationary



signal, the estimation of the step size based on the correlation matrix of just sin-
gle frame of the speech signal, may lead to divergence of the LMS filter output.
Nevertheless, the exposition in [5] helped to illustrate the efficacy of the LMS
algorithm for enhancing naturally occurring signals such as speech. In [3], Zei-
dler et. al. have analyzed the steady state behavior of the adaptive line enhancer
(ALE), an implementation of least mean square algorithm that has applications
in detecting and tracking stationary sinusoidal signals in white noise.

In [2], Anderson et al extended the above mentioned analysis for a stationary
input consisting of finite band-width signals in white noise. These signals consist
of white Gaussian noise (WGN) passed through a filter whose band-width « is
quite small relative to the Nyquist frequency, but generally comparable to the
bin width 1/L. They have derived analytic expressions for the weights and the
output of the LMS adaptive filter as function of input signal band-width and
SNR, as well as the LMS filter length and bulk delay '2~% (please refer to Fig.
1).

In this paper, we extend the previous work in [2, 3] for enhancing a class of
non-stationary signals that are composed of multiple sinusoids whose frequencies
and the amplitudes may vary from block to block and which are embedded in
white noise. The key difference in the approach proposed in this paper is that
we relax the assumption of the input signal being stationary. Therefore the
input signal is blocked into frames and we analyze a L-weight least squares filter
(LeSF), estimated on each frame which consists of N samples of the input signal.

We have derived the analytical expressions for the impulse response of the L-
weight least squares filter (LesF) as a function of the input SNR, (computed over
the current frame), effective band-width of the signal (due to finite frame length),
filter length L’ and frame length *N’. Recognizing that such a time-varying si-
nusoidal model[7] is a reasonable approximation to the speech waveforms, we
have applied the block estimated LeSF filter for de-noising speech signals em-
bedded in broad-band noise. Sinusoidal model is particularly suitable for voiced
speech which consists of sinusoids with frequencies at the multiple of the fun-
damental frequency (pitch). The ASR experiments were performed on the OGI
Numbers95[19] database which consists of free-format connected numbers. The
clean utterances were corrupted by realistic additive noise from the Noisex[20]
database. The usual Mel-frequency cepstral coefficient (MFCC) [17] features are
derived from the LeSF enhanced speech signal for automatic speech recognition
(ASR) application. The experimental results indicate a significant improvement
in the ASR performance.

2 Least Squares filter (LeSF) for signal enhancement

The basic operation of the LeSF is illustrated in figure (1) and it can be under-
stood intuitively as follows. The autocorrelation sequence of the additive noise
u(n) that is broad-band decays much faster for higher lags than that of the
speech signal. Therefore the use of a large filter length ("L’) and the bulk de-
lay P causes de-correlation between the noise components of the input signal,



s(n) +u(n) 79 e(n)
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Fig. 1. The basic operation of the LeSF. The input to the filter is noisy speech, (z(n) =
s(n) +u(n)), delayed by bulk delay =P. The filter weights wy, are estimated using the
least squares algorithm based on the samples in the current frame. The output of the
filter y(n) is the enhanced signal.

namely (u(n—L—P+1),u(n—L—P+2),...,u(n— P)) and the noise component
of the reference signal, namely (u(n)). The LeSF filter responds by adaptively
forming a frequency response which has pass-bands centered at the frequencies
of the formants of the speech signal while rejecting as much of broad-band noise
(whose spectrum lies away from the formant positions). Denoting the clean and
the additive noise signals by s(n) and u(n) respectively, we obtain the noisy
signal z(n).

z(n) = s(n) + u(n) (1)

The LeSF filter consists of L weights and the filter coefficients wy for k €
[0,1,2..L — 1] are estimated by minimizing the energy of the error signal e(n)
over the current frame, n € [0, N —1].

e(n) = z(n) —y(n) (2)
L-1

where y(n) = Z w(i)z(n — P — i) 3)
=0

Let A denote the (N + L) x L data matrix[6] of the input frame x =
[2(0),z(1),....(N — 1)] and d denote the (N + L) x 1 desired signal vector
which in this case is just a delayed version of signal x. The LeSF weight vector
w is then given by

w= (AHA) AT (4)

As is well known, A7 A is a symmetric L x L Toeplitz matrix whose (i, j)
element is the temporal autocorrelation of the signal vector x estimated over the
frame length [6].

[A"A] = r(li = ) (5)

]

= YN g m)z(n + i - j)) (6)



In practice, AT A can always be assumed to be non-singular due to presence
of additive noise[6] for filter length L < N. The weight vector w in (4) can
be obtained using Levinson Durbin algorithm[6] without incurring a significant
computational cost.

3 LeSF applied to Sinusoidal model of Speech

As proposed in [7], speech signals can be modeled as a sum of multiple sinusoids
whose amplitudes, phases and frequencies can vary from frame to frame. Let us
assume that a given frame of speech signal s(n) can be approximated as a sum
of M sinusoids. Then the noisy signal z(n) can be expressed as

M
z(n) = Z A; cos(win + ¢;) + u(n) (7

i=1
where n € [0, N — 1] and u(n) is a realization of white noise. Then the k" lag

autocorrelation can be shown to be,

r(k) = YN F T (n)z(n + k)
~ M (N — k) AZcos(2n fik) + No?6(k) (®)

where it is assumed that N > 1/(f; — f;) for all frequency pairs (i,j) and the
noise u(n) is white, ergodic and uncorrelated with the signal s(n). The LeSF
weight vector w(k) is then obtained as the solution of the Normal equations,

Ll — B)w(k) = r(l + P)
e [0,1,2..L — 1] 9)

The set of L linear equations described in (9) can be solved by elementary
methods if the z-transform (S,;(z)) of the symmetric autocorrelation sequence
(r(k)) is a rational function of ’2’ [1].

Sea(2) = ) (k) (10)
k=—o0

Consider then, a real symmetric rational z transform with M pairs of zeros and
M pairs of poles.

(2 — e Bm+i¥m ) (=1 _ g=Fm—i¥m)

M
Sua() = GE%:

(2 — e mbien) (a7 emon )
(1)

If the signal x is real, then so is its autocorrelation sequence, (k). In this case
the power spectrum, S, (z), has quadruplet sets of poles and zeros because of
the presence of conjugate pairs at z = exp(Lay, Twy,) and z = exp(£Lm £¥)-



Anderson et. al.[2] have derived the general form of the solution to (9) for input
signal with rational power spectra such as that described by (11). In this case,
the LeSF weights are given by,

M
w(k) = Z (Be Prktitmk O etPmbti¥mk)
m=1

(12)

As can be seen, LeSF consists of an exponentially decaying term and an expo-
nentially growing term attributed to reflection [8], that occurs due to finite filter
length L. The value of the coefficients B,,, and C,, can be determined by solving
the set of coupled equations obtained by substituting the expression for w(k)
given in (12) into (9).

To be able to use the general form of the solution of the LeSF filter as in (12),
we need a pole-zero model of the input autocorrelation in the form as described
n (11). For sufficiently large frame length N, such that filter length L < N, we
can make the following approximation.

(N — k) ~ Ne~*/N (13)
kel0,1,2,...,L] and L € N

Using this approximation in (8), we get,
M
r(k) = Ne "Ny~ AZcos(wik) + No?5(k) (14)
i=1

In this form, r(k) corresponds to a sum of multiple decaying exponential se-
quences and its z transform takes up the form,

Spa(z) = Z NAIA—e?) %

2
m=1
1
((z — e—am+jwm)(z—1 — e—am_jwm)
1 .
+ )+ No*

(z — e_am_jwm)(zfl — e*am‘f‘jwm)
where o, =1/N Ym € [1.M]
(15)

Under the approximation that the decaying exponentials are widely spaced
along the unit circle, the power spectrum S, (z) in (15) that consists of sum of
certain terms can be approximated by a ratio of the product of terms (of the
form (z — e#*7%)), leading to a rational ’z’ transform. Specifically, as explained
in [1,2] and making the following assumptions,



— The pole pairs in (15) lie sufficiently close to the unit circle (easily satisfied
asa~0.)

— All the frequency pairs (w;,w;) in (15) are sufficiently separated from each
other such that their contribution to the total power spectrum do not overlap
significantly.

the z transform of the total input can be expressed as,

Sm(z) = g2 H;é:l (Z - eiﬁm"'.?:wm)(z N e+ﬁm+j'wm)
17 (2 — e-amsdom) (2 — etemtion)
(5 = e¥onsom) (s = =Pm=iom)
(z —efam=jom)(z — e~ m—Jum)
where oy = 1/N

(16)

Corresponding to each of the sinusoidal component in the input signal there are
four poles at locations z = eTAE Wm and there are four zeros on the same radial
lines as the signal poles but at different distances away from the unit circle. Using
the general solution described in (12), which has been derived at length in [2],
the solution of the LeSF weight vector to the present problem is,

M
w(n) = Z (Bme P + CpretPm™) coswym (n + P) (17)

m=1

The values of 3,,, B, and C,, can be determined by substituting (17)
and (14) in (9). The I** equation in the linear-system described in (9) has
terms with coefficients exp(—B,!), exp(+PBml), exp(—al)cos(wy, (! + P)) and
exp(al) cos(wm (! + P)). Besides these, there are two other kind of terms that
can be neglected.

— “Non-stationary” terms that are modulated by a sinusoid at frequency 2w,
where m € [1, M]. For w,, # 0, wy, # 7, their total contribution is approxi-
mately zero.?

— Interference terms that are modulated by a sinusoid at frequency Aw = (w; —
w;) where (3,j) € [1,..., M]. If filter length L > 27 /Aw, these interference
terms approximately sum up to zero and hence can be neglected.

The coefficients of the terms exp(—B,1), exp(+Bml) are the same for each of the
L equations and setting them to zero leads to just one equation which relates
Bm to a and the SNR. Let p; denote the “partial” SNR of the sinusoid at
frequency w; i.e p; = A?/0? and the complementary signal SNR be denoted as
v = (XM A?)/o*. Then we have the following relation,

m=1,m#i

Pi

cosh B; = cosha + ———
y 2vi+pi+2

sinh o (18)

3 due to self cancelling positive and negative half periods of a sinusoid.



There are two interesting cases. First case is when the sinusoid at frequency w;
is significantly stronger than other sinusoids such that ~; is quite low. This is
illustrated in figure (2), where we plot the bandwidth 3; of the LeSF’s pass-band
that is centered around w; as a function of the partial SNR of the it* sinusoid, p;.
The complementary signal’s SNR is quite low at v; = —6.99db. We plot curves
for different “effective” input sinusoid’s bandwidth a. From (15), we note that «
is reciprocal of frame length N. The vertical line in figure (2) corresponds to the
case when p; = ;. We note that for a given partial SNR p;, the LeSF bandwidth
becomes narrower as the frame length IV increases, indicating a better selectivity
of the LeSF filter.

alpha=Q.01

alpha=0.005

alpha=0.001

bandwidth of the filter in db

-39
=50 —40 —30 —20 -10 o 10 20 30
Partial SNR of a sinusoid in db, complemetary signal SNR= —6.99

Fig. 2. Plot of the filter bandwidth B; centered around frequency w; as a function of
partial sinusoid SNR p; for a given complementary signal SNR v; = —6.99db and
“effective” input bandwidth a(alpha) = 0.01,0.005,0.001 respectively. The vertical line
meets the three curves when p; = ;.

In figure (3), we plot the bandwidth 3; as a function of p; for the cases when
complementary signal SNR is high at v; = 10db and is low at v; = —6.99db.
The two dots correspond to the case when p; = ;. We note that v; = 10db
corresponds to a signal with high overall SNR*. Therefore the cross-over point
(v; = p;) for low 7; occurs at narrower bandwidth as compared to high ~; case.
This is so because in the former case the overall signal SNR is low and thus
the LeSF filter has to have narrower pass-bands to reject as much of noise as
possible.

B; and Cj; in (17) are determined by equating their respective coefficients.
The “non-stationary” interference terms between all of the pairs of the frequency
(wi,wj), can be neglected if (w; — w;) >> 2n/L. This requires that LeSF’s
frequency resolution (27 /L) should be able to resolve the constituent sinusoids.

2 PiePla+ B;)2(B; — @)

" ((a+B:)* — e BB — a)?)
o 2e PiRLAD =P (o 4 B)(B; — a)2
Y (@t Bi)? = e (B — a)?)

4 As overall SNR of the signal = 10log, (10107 4 1010)



We note from (18) that the various sinusoids are coupled with each other through
the dependence of their bandwidth 3; on the complementary signal SNR, ;. As
a consequence of that B;, C; are also indirectly dependent on the powers of the
other sinusoids through 5;.

|
[}

Complementary signal
SNR= —6.99

bandwidth of the filter in db

Complementary signal
—250 SNR= 10

Partial SNR of & sinusoid in'db

Fig. 3. Plot of the filter bandwidth B; centered around frequency w; as a function of
partial sinusoid SNR p; for given complementary signal SNRs v; = —6.99db, 10db re-
spectively. The “effective” input bandwidth a(alpha) = 0.01 for both the curves. The

two dots correspond to the cases when the partial SNR p; is equal to complementary
signal SNR ~;.

Magnitude response (in db)

0.1 0.4 0.5

0.2 0.3
Normalized frequency

Fig. 4. Plot of the magnitude response of the LeSF filter as a function of the input
SNR. The input consists of three sinusoids at nmormalized frequencies (0.1, 0.2, 0.4)
with relative strength (1: 0.6 : 0.4) respectively.

In Fig.4, the magnitude response of the LeSF filter is plotted for various
SNR. The input in this case consist of three sinusoids at normalized frequencies
(0.1, 0.2, 0.4). The frame length is N = 500 and filter length is (L = 100). As
the signal SNR decreases, the bandwidth of the LeSF filter starts to decrease in
order to reject as much of noise as possible. The LESF filter’s gain decreases with
decreasing SNR. Similar results were reported in [2, 3] for the case of stationary
inputs.

In Fig. 5, we plot the spectrograms of a clean speech utterance. Fig. 6 and Fig.
7 display the same utterance embedded in F16-cockpit noise at SNR 6dB and its
LeSF enhanced version respectively. As can be seen from the spectrograms, the
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Fig. 5. Clean spectrogram of an utterance from the OGI Numbers95 database
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Fig. 6. Spectrogram of the utterance corrupted by F16-cockpit noise at 6dB SNR.

LeSF filter has been able to reject significant amount of additive F-16 cockpit
noise [20] from the speech signal.

4 Experiments and Results

In order to assess the effectiveness of the proposed algorithm, speech recogni-
tion experiments were conducted on the OGI Numbers[19] corpus. This database
contains spontaneously spoken free-format connected numbers over a telephone
channel. The lexicon consists of 31 words®. The train-set and the test-set consist
of 3233 and 1206 utterances respectively. Speech signals were blocked into frames
of 500 samples (62.5ms) each and a 100 tap LeSF filter was derived using (4)
for each frame. Noting that the autocorrelation coefficients of a periodic signal
are themselves periodic with the same period (hence they do not decay with
the increasing lag), Sambur[5] has used a bulk delay equal to the pitch period
of the voiced speech for its enhancement. However, for the un-voiced speech a
high bulk delay will result in a significant distortion by the LeSF filter as its
autocorrelation coefficients decay quite rapidly for the higher lags. Therefore,
we kept the bulk delay at ’P = 1’ as a good choice for enhancing both the voiced

® With confusable numbers like ’nine’, 'ninety’, ’ninteen’ and so on.
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Fig. 7. Spectrogram of the noisy utterance enhanced by a (L = 100) tap LeSF filter that
has been estimated over blocks of length (N = 500).

and un-voiced speech frames. However, we note that the LeSF filter is inherently
more suitable for enhancing the voiced speech as in this case we can represent
the speech frame as a sum of small number of sinusoids as in (7). The relatively
high order (L = 100) of the LeSF filter is required to be able to have suffi-
ciently high frequency resolution (27/L) to resolve the constituent sinusoids.
Each speech frame was then filtered through its corresponding LeSF filter to
derive an enhanced speech frame. Finally MFCC feature vector was computed
from the enhanced speech frame. These enhanced LeSF-MFCC were compared
to the baseline MFCC features and noise robust JRASTA-PLP[4] features with
the same window size (62.5ms). The MFCC feature vector computation is the
same for the baseline and the LeSF-MFCC features. The only difference is that
the MFCC baseline features are computed directly from the noisy speech while
the LeSF-MFCC features are computed from LeSF enhanced speech signal. Hid-
den Markov Model and Gaussian Mixture Model (HMM-GMM) based speech
recognition systems were trained using public domain software HTK[18] on the
clean training set from the original Numbers corpus. The system consisted of 80
tied-state triphone HMM’s with 3 emitting states per triphone and 12 mixtures
per state.

To verify the robustness of the features to noise, the clean test utterances
were corrupted using Factory and F-16 cockpit noise from the Noisex92 [20]
database. The speech recognition results for the baseline MFCC, RASTA-PLP
and the proposed LeSF-MFCC, in various levels of noise are given in Tables 1
and 2. Cepstral mean subtraction was performed on all the reported features.
The proposed LeSF processed MFCC performs significantly better than others
in all noise conditions. The slight performance degradation of the LeSF-MFCC
in the clean is due to the fact that the LeSF filter being an all-pole filter does
not model the valleys of the clean speech spectrum well. As a result, the LeSF
filter sometimes amplifies the low spectral energy regions of the clean spectrum.



Table 1. Word error rate results for factory noise. Parameters of the LeSF filter,

L=100 and N=500.

Table 2. Word error rate results for F16-cockpit noise. Parameters of the LeSF filter,

L=100 and N=500.

|[SNR_|[MFCC[PLP-JRASTA[LeSF MFCC|

Clean| 5.7 7.8 6.8
12 dB| 12.3 12.2 11.9
6dB | 27.1 23.8 21.0
0 db 71.0 59.8 42.6

[SNR_[MFCC[PLP-JRASTA[LeSF MFCC]|

Clean| 5.7 7.8 6.8
12 dB| 13.6 14.2 12.4
6dB | 284 25.3 20.6
0db | 72.3 59.2 41.2

5 Conclusion

We consider a class of non-stationary signals as input that are composed of
multiple sinusoids whose frequencies and the amplitudes may vary from block to
block and which are embedded in the white noise. We have derived the analytical
expressions for the impulse response of the L-weight least squares filter (LesF) as
a function of the input SNR, (computed over the current frame), effective band-
width of the signal ( due to finite frame length), filter length ’L’ and frame length
"N’. Recognizing that such a time-varying sinusoidal model[7] is a reasonable
approximation to the speech waveforms, we have applied the block estimated
LeSF filter for de-noising speech signals embedded in the realistic[20] broad-
band noise as commonly encountered on a factory floor and an aircraft cockpit.
The proposed technique leads to a significant improvement in ASR performance
as compared to noise robust JRASTA-PLP[4] and the MFCC features computed
from the unprocessed noisy signal.
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